
El electromagnetismo, la primera teoría de 
campos
• La teoría clásica del campo electromagnético surgió en 

forma más o menos completa en 1873 en el Tratado 
sobre electricidad y magnetismo de James Clerk 
Maxwell. 
• Maxwell basó su teoría en gran parte en las ideas 

intuitivas de Michael Faraday.
• La amplia aceptación de la teoría de Maxwell ha 

provocado un cambio fundamental en nuestra 
comprensión de la realidad física.
• En esta teoría, los campos electromagnéticos son los 

mediadores de la interacción entre objetos materiales.

James Clerk Maxwell

Michael Faraday



¿Qué es una teoría de campos?
1. Un cuerpo genera en el espacio que lo rodea y en su interior, una propiedad que llamaremos ‘campo’.
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2. Ese campo tiene un valor y una dirección y sentido que depende del cuerpo que lo genera y cuán lejos 

está de este.
3. La presencia de un segundo cuerpo (azul) en el espacio ocupado por el campo del primero genera una 

fuerza en el segundo que es producto de la interacción de este con el campo generado por el primero

4. En una teoría de campos, las fuerzas son resultantes de la interacción de un cuerpo (en este caso el azul) 
con el campo generado en todo el espacio por el naranja. 

CAMPO



El campo eléctrico 𝐸 de una carga puntual

• El campo eléctrico es el medio a través 
del cual podemos calcular la fuerza de 
Coulomb
• ¿Cómo definimos el campo eléctrico?
• Veamos un caso simple, el de una sola 

carga eléctrica 𝑞.
• Para mayor comodidad, colocamos el 

origen del sistema de coordenadas 
sobre ella.

𝑞



El campo eléctrico 𝐸 de una carga puntual

• Imaginemos ahora una segunda carga hipotética 
‘de prueba’ 𝑞´ > 0	en una posición arbitraria que 
llamaremos 𝑟′. 

• La fuerza que sufre 𝑞´ por la presencia de 𝑞 es 

𝐹⃗′ =
1

4𝜋𝜖!

𝑞𝑞′
𝑟′"

/𝑟′

• Ahora bien, el vector

𝐸 𝑟# =
𝐹′
𝑞′
=

1
4𝜋𝜖!

𝑞
𝑟′"

/𝑟′

No depende de 𝑞′ pero sí de la posición 𝑟′. 

𝑞

𝑞´𝑟′

%𝑟′



El campo eléctrico 𝐸 de una carga puntual

• Como el punto 𝑟′	 es un punto 
cualquiera, la expresión anterior puede 
escribirse como un vector dependiente 
de la posición 𝑟 

𝐸 𝑟 =
1

4𝜋𝜖!
𝑞
𝑟"
𝑟̂

• Este es el campo eléctrico creado por 
la carga puntual 𝒒 en el punto 𝒓

• Es un vector dibujado en el extremo del 
vector posición 𝑟

𝑞

𝐸(𝑟)

𝑟



El campo eléctrico 𝐸 de una carga puntual

• Es un vector 𝐸	definido en cada punto 
del espacio. A cada posición 𝑟	le 
asignamos una flecha 𝐸(𝑟) (vector).

• El vector 𝐸(𝑟) apunta hacia afuera si 
𝑞 > 0 y hacia adentro si 𝑞 < 0

• La intensidad dependerá de la 
posición. 

• Su intensidad se mide en N/C o como 
veremos más adelante en Volt /m

𝑞

𝑞 > 0



Líneas de campo de una carga 𝑞

• Son líneas que tienen al campo 𝐸	como vectores tangentes.
• Densidad de líneas indica intensidad.

𝑞 𝑞



¿Qué pasa si no colocamos la carga en el 
origen?
• Supongamos que la carga no se encuentra 

en el origen de nuestro sistema de 
coordenadas.

• El campo eléctrico en el punto 𝑟	entonces 
queda:

𝐸 𝑟 =
1

4𝜋𝜖!

𝑞

𝑟 − 𝑟#
"
(𝑟 − 𝑟#)
𝑟 − 𝑟#

𝐸 𝑟 =
1

4𝜋𝜖!

𝑞(𝑟 − 𝑟#)

𝑟 − 𝑟#
$

• ('⃗('
!)

'⃗('!
 es un versor que apunta desde el 

punto fuente al punto campo.

𝑟
𝑟′

𝑟 − 𝑟! 𝑞
𝐸 𝑟



Ejemplo: dos cargas puntuales de signos 
opuestos
• Supongamos dos cargas 𝑞 y −𝑞 

separadas una distancia 𝑑. Este 
arreglo se llama ‘dipolo’
• Queremos calcular el campo 

eléctrico generado por ellas en 
todo el espacio.
• Elijamos el sistema de 

coordenadas tal que ambas 
cargas quedan sobre el eje z 
equidistantes del origen.
• Elegimos un punto arbitrario 𝑟

𝑧

𝑥

𝑦
𝑑/2

𝑑/2

𝑞

−𝑞

𝑟



Ejemplo: dos cargas puntuales de signos 
opuestos
• El campo generado por ambas cargas en el punto 𝑟 es 

la superposición o suma de los campos generados por 
cada una de las cargas en ese mismo punto 𝑟.

• Los campos eléctricos de cada carga en el punto 𝑟 son:

𝐸"(𝑟) =
1

4𝜋𝜖#
𝑞

𝑟 − 𝑑2 𝑧̂
$

𝑟 − 𝑑2 𝑧̂

𝑟 − 𝑑2 𝑧̂
=

𝑞
4𝜋𝜖#

𝑟 − 𝑑2 𝑧̂

𝑟 − 𝑑2 𝑧̂
%

𝐸&(𝑟) =
1

4𝜋𝜖#
(−𝑞)

𝑟 + 𝑑2 𝑧̂
$

𝑟 + 𝑑2 𝑧̂

𝑟 + 𝑑2 𝑧̂
= −

𝑞
4𝜋𝜖#

𝑟 + 𝑑2 𝑧̂

𝑟 + 𝑑2 𝑧̂
%

𝑧

𝑥

𝑦
𝑑/2

𝑑/2

𝑟 𝑟 +
𝑑
2
𝑧̂

𝑟 −
𝑑
2
𝑧̂

𝑞

−𝑞



Ejemplo: dos cargas puntuales de signos 
opuestos
• Entonces el campo en el punto 𝑟 es la suma 

vectorial de los campos de cada carga en ese 
punto del espacio.

𝐸(𝑟) = 𝐸! + 𝐸" =
𝑞

4𝜋𝜖#

𝑟 − 𝑑2 𝑧̂

𝑟 − 𝑑2 𝑧̂
$ −

𝑟 + 𝑑2 𝑧̂

𝑟 + 𝑑2 𝑧̂
$

• ¿Alcanzan a ver qué ocurre con la intensidad del 
campo a medida que nos alejamos del dipolo?

𝑧

𝑥

𝑦
𝑑/2

𝑑/2

𝑟 𝑟 +
𝑑
2
𝑧̂

𝑟 −
𝑑
2
𝑧̂

𝑞

−𝑞



https://phet.colorado.edu/sims/html/charges
-and-fields/latest/charges-and-fields_all.html



Campo eléctrico de una distribución

• Pensemos en un diferencial de carga 

𝜌 𝑟# 𝑑𝑉′  en el punto 𝑟′	(‘fuente’) como 
parte de una distribución volumétrica 𝜌 
dentro de un cuerpo de volumen 𝑉.

• La contribución de 𝜌 𝑟% 𝑑𝑉′ al campo 
eléctrico 𝐸 en el punto 𝑟	(‘campo’) es:

 

𝑑𝐸 𝑟 =
1

4𝜋𝜖#
𝜌 𝑟% 𝑑𝑉%	(𝑟 − 𝑟%)

𝑟 − 𝑟%
$

𝑑𝐸

𝑟
𝑟′

𝑟 − 𝑟! 𝑑𝑉′ 𝜌



• El campo total 𝐸 en el punto 𝑟	se obtiene integrando sobre todo el volumen de la distribución de carga. 

𝐸 𝑟 =
1

4𝜋𝜖#
2

𝜌 𝑟' 	(𝑟 − 𝑟')

𝑟 − 𝑟'
% 𝑑𝑉'

• En cartesianas 𝑟! = (𝑥′, 𝑦′, 𝑧′) y 𝑟 = (𝑥, 𝑦, 𝑧):

𝐸" 𝑥, 𝑦, 𝑧 =
1

4𝜋𝜖#
6

𝜌 𝑥!, 𝑦!, 𝑧! 	(𝑥 − 𝑥!)

(𝑥 − 𝑥!)$+(𝑦 − 𝑦′)$+(𝑧 − 𝑧!)$
% 𝑑𝑥

!𝑑𝑦!𝑑𝑧!

𝐸& 𝑥, 𝑦, 𝑧 =
1

4𝜋𝜖#
6

𝜌 𝑥!, 𝑦!, 𝑧! 	(𝑦 − 𝑦′)

(𝑥 − 𝑥!)$+(𝑦 − 𝑦′)$+(𝑧 − 𝑧!)$
% 𝑑𝑥

!𝑑𝑦!𝑑𝑧!

𝐸' 𝑥, 𝑦, 𝑧 =
1

4𝜋𝜖#
6

𝜌 𝑥!, 𝑦!, 𝑧! 	(𝑧 − 𝑧!)

(𝑥 − 𝑥!)$+(𝑦 − 𝑦′)$+(𝑧 − 𝑧!)$
% 𝑑𝑥

!𝑑𝑦!𝑑𝑧!

Campo eléctrico de una distribución

Volumen
de carga



¿Hay una manera más fácil de 
calcular el campo eléctrico para 
distribuciones de carga simétricas?



Flujo de un campo a través de una superficie
El flujo es el producto de un campo por el área transversal que atraviesa 



Flujo de un campo a través de una superficie

Superficie plana de área A, 𝐸 uniforme

Φ = 𝐸 8 𝐴 = 𝐸𝐴	 cos 𝜃

El flujo es el producto de un campo por el área transversal que atraviesa 



Flujo de campo eléctrico

• Superficie compuestas de facetas de área 𝐴" 
atravesadas por campos 𝐸" .

• Si las facetas son infinitesimalmente pequeñas:

Φ = >
#$%$&	($&	"

𝐸" 8 𝐴" = >
#$%$&	($&	"

𝐸"𝐴" cos 𝜃"

Φ = ?𝐸 8 𝑑𝑠 = ?𝐸 8 A𝑛	𝑑𝑠

S S
Campo en la faceta 
infinitesimal

Normal a la faceta 
infinitesimal

Diferencial de 
área

𝐸



Flujo eléctrico de una carga Q a través de una 
esfera de radio r
• En coordenadas esféricas, 

el campo generado a una 
distancia 𝑟 es siempre 
radial y vale: 

𝐸(𝑟) =
1

4𝜋𝜖)
𝑄
𝑟* 𝑟̂

𝐸



Flujo eléctrico de una carga Q a través de una 
esfera de radio r 
• El flujo del campo eléctrico 

a través de una esfera de 
radio 𝑟 vale: Esfera de 

radio r

Φ = ?𝐸 8 𝑑𝑠
Superficie de 
la esfera

𝐸



Flujo eléctrico de una carga Q a través de una 
esfera de radio r
• Sobre la esfera, 𝐸 apunta 

siempre radialmente y vale lo 
mismo Esfera de 

radio r

Φ = ?
1

4𝜋𝜖)
𝑄
𝑟*
𝑟̂ 8 𝑑𝑠

Superficie de 
la esfera

𝐸



Flujo eléctrico de una carga Q a través de una 
esfera de radio r
• El diferencial de área en la 

esfera apunta radialmente y 
vale 𝑟* sin 𝜃	𝑑𝜃	𝑑𝜑 Esfera de 

radio r

Φ = ?
1

4𝜋𝜖)
𝑄
𝑟* 𝑟̂ 8 𝑟

* sin 𝜃	𝑑𝜃	𝑑𝜑 𝑟̂

Superficie de 
la esfera

𝐸



Flujo eléctrico de una carga Q a través de una 
esfera de radio r
• Partiendo de: 

• Reorganizamos los factores y tachamos los 𝑟*

Φ = ?
1

4𝜋𝜖)
𝑄
𝑟*
𝑟̂ 8 𝑟* sin 𝜃	𝑑𝜃	𝑑𝜑 𝑟̂

Superficie de 
la esfera

Φ = ?
1

4𝜋𝜖)
𝑄
𝑟* 𝑟

* sin 𝜃	𝑑𝜃	𝑑𝜑 𝑟̂ 8 𝑟̂

Superficie de 
la esfera



Flujo eléctrico de una carga Q a través de una 
esfera de radio r
• Luego, sabemos que por definición 𝑟̂ 8 𝑟̂ = 1

• Ponemos ahora los límites de integración y Q sale afuera

Φ = ?
1

4𝜋𝜖)
𝑄 sin 𝜃	𝑑𝜃	𝑑𝜑

Φ =
𝑄

4𝜋𝜖)
?
)

+
sin 𝜃	𝑑𝜃	?

)

*+
𝑑𝜑

Superficie de 
la esfera



Flujo eléctrico de una carga Q a través de una 
esfera de radio r
• La primera integral da 2, mientras que la segunda vale 2𝜋, 

entonces

• Vemos que el resultado no depende del radio de la esfera, o sea 
que es el mismo para cualquier valor de r.

Φ =
1

4𝜋𝜖)
𝑄	4𝜋 =

𝑄
𝜖)



Ley de Gauss
• Supongamos una superficie cerrada S que encierra 

un volumen V

• Se verifica que el flujo del campo eléctrico E a través 
de S es proporcional a la carga total encerrada 
dentro de S (es decir en el volumen V)

P𝐸 8 𝑑𝑎 =
1
𝜖)
>
",-

.

𝑞" =
1
𝜖)
R𝜌	𝑑𝑉

Volumen 
encerrado 
por S

Carl Friederich 
Gauss

(1777-1855)

Superficie 
cerrada S



Teorema y Ley de Gauss

• Dado un campo 𝐸 y una superficie cerrada 𝑆 que envuelve un 
volumen 𝑉

P𝐸 8 𝑑𝑎 =R∇ 8 𝐸	𝑑𝑉

• Entonces, de la ley de Gauss deducimos que: 
∇ 8 𝐸 =

𝜌
𝜖)

• Esta es la versión diferencial de la Ley de Gauss. Vale punto a 
punto

𝑉𝑆



Ley de Gauss y Divergencia de 𝐸

• La divergencia de un campo en un punto dado nos dice 
gráficamente la medida en la que el campo converge o no a ese 
punto. Veamos tres ejemplos:

• Esto dice que los puntos en donde hay densidad de carga positiva 
son manantiales de campo eléctrico y donde hay densidad 
negativa son ‘sumideros’ 

∇ 8 𝐸 < 0 ∇ 8 𝐸 > 0 ∇ 8 𝐸 = 0



Otro ejemplo



Campo de una distribución esférica de carga

• Supongamos una distribución 
de carga 𝜌 como la de la figura.

ELECTROSTATICS: CHARGlS AND FlRLDS 25 

Looking back over our proof, we see that it hinged on the 
inverse-square nature of the interaction and of course on the additivity 
of interactions, or superposition. Thus the theorem is applicable to any 
inverse-square field in physics, for instance. to the gravitational field. 

It is easy to see that Gauss's law would nor hold if the law of 
force were. say. inverse-cube. For in that case the flux of electric field 
from a point charge q through a sphere of radius R centered on the 
charge would be 

By making the sphere large enough we could make the flux through 
it as small as we pleased, while the total charge inside remained 
constant. 

This remarkable theorem enlarges our grasp in two ways. First. 
it reveals a connection between the field and its sources that is the 
converse of Coulomb's Iaw. Coulomb's law tells us how to derive the 
electric field if the charges are given; with Gauss's law we can deter- 
mine how much charge is in any region if the field is known. Second. 
the mathematical relation here demonstrated is a powerFul analytic 
tool; it can make complicated problems easy. as we shall see. 

FIELD OF A SPHERICAL CHARGE DISTRIBUTION 
1.1 1 We can use Gauss's law to find the electric field of a spheri- 
cally symmetrical distribution of charge, that is, a distribution in 
which the charge density p depends only on the radius from a central 
point. Figure 1.18 depicts a cross section through some such distri- 
bution. Here the charge density i s  high a t  the center, and is zero 
beyond ro. What is the electric field at some point such as PI outside 
the distribution, or P2 inside it (Fig. 1.19)? If we could proceed only 
from Coulomb's law, we should have to carry out an  integration which 
would sum the electric field vectors at PI arising from each elementary 
volume in the charge distributioa Let's try a different approach which 
exploits both the symmetry of the system and Gauss's law. 

Because of the spherical symmetry, the electric field at any p i n t  
must be radially directed-no other direction is unique. Likewise, the 
field magnitude E must be the same a t  all points on a spherical surface 
S, of radius r,, for all such p in t s  are equivalent. Call this field mag- 
nitude El .  The flux through this surface SI is therefore simply 4?rdEI, 
and by Gauss's law this must be equal to h times the charge enclosed 
by the surface. That is, 4 ~ 4 ~ ~  = 47r (charge inside SI) or 

charge inside S, El = 4 (23) 

FIGURE 1.18 
A charge distribution with spher~cd symmetry 

FIGURE 1mlO 
The electric Celd of a spheriml charge distribution 



Campo de una distribución esférica de carga

• Supongamos una distribución de 
carga 𝜌 como la de la figura.

• La carga varía solamente con 
distancia radial y termina en 𝑟 =
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Campo de una distribución esférica de carga

• Supongamos una distribución de 
carga 𝜌 como la de la figura.

• La carga varía solamente con 
distancia radial y termina en 𝑟 =
𝑟).

• Calculemos el campo en todo el 
espacio aprovechando la Ley de 
Gauss y la simetría del sistema.
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inverse-square nature of the interaction and of course on the additivity 
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charge would be 

By making the sphere large enough we could make the flux through 
it as small as we pleased, while the total charge inside remained 
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must be radially directed-no other direction is unique. Likewise, the 
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the distribution, or P2 inside it (Fig. 1.19)? If we could proceed only 
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would sum the electric field vectors at PI arising from each elementary 
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esfera 𝑆-de radio 𝑟- , el flujo será: 

Φ = ∫𝐸 8 𝑑𝑠 = 𝐸- ∫ 𝑟̂ 8 𝑟̂	𝑑𝑠 = 4𝜋𝑟-*𝐸-
𝑆! 𝑆!
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By making the sphere large enough we could make the flux through 
it as small as we pleased, while the total charge inside remained 
constant. 
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converse of Coulomb's Iaw. Coulomb's law tells us how to derive the 
electric field if the charges are given; with Gauss's law we can deter- 
mine how much charge is in any region if the field is known. Second. 
the mathematical relation here demonstrated is a powerFul analytic 
tool; it can make complicated problems easy. as we shall see. 
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cally symmetrical distribution of charge, that is, a distribution in 
which the charge density p depends only on the radius from a central 
point. Figure 1.18 depicts a cross section through some such distri- 
bution. Here the charge density i s  high a t  the center, and is zero 
beyond ro. What is the electric field at some point such as PI outside 
the distribution, or P2 inside it (Fig. 1.19)? If we could proceed only 
from Coulomb's law, we should have to carry out an  integration which 
would sum the electric field vectors at PI arising from each elementary 
volume in the charge distributioa Let's try a different approach which 
exploits both the symmetry of the system and Gauss's law. 

Because of the spherical symmetry, the electric field at any p i n t  
must be radially directed-no other direction is unique. Likewise, the 
field magnitude E must be the same a t  all points on a spherical surface 
S, of radius r,, for all such p in t s  are equivalent. Call this field mag- 
nitude El .  The flux through this surface SI is therefore simply 4?rdEI, 
and by Gauss's law this must be equal to h times the charge enclosed 
by the surface. That is, 4 ~ 4 ~ ~  = 47r (charge inside SI) or 
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Looking back over our proof, we see that it hinged on the 
inverse-square nature of the interaction and of course on the additivity 
of interactions, or superposition. Thus the theorem is applicable to any 
inverse-square field in physics, for instance. to the gravitational field. 

It is easy to see that Gauss's law would nor hold if the law of 
force were. say. inverse-cube. For in that case the flux of electric field 
from a point charge q through a sphere of radius R centered on the 
charge would be 

By making the sphere large enough we could make the flux through 
it as small as we pleased, while the total charge inside remained 
constant. 

This remarkable theorem enlarges our grasp in two ways. First. 
it reveals a connection between the field and its sources that is the 
converse of Coulomb's Iaw. Coulomb's law tells us how to derive the 
electric field if the charges are given; with Gauss's law we can deter- 
mine how much charge is in any region if the field is known. Second. 
the mathematical relation here demonstrated is a powerFul analytic 
tool; it can make complicated problems easy. as we shall see. 
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1.1 1 We can use Gauss's law to find the electric field of a spheri- 
cally symmetrical distribution of charge, that is, a distribution in 
which the charge density p depends only on the radius from a central 
point. Figure 1.18 depicts a cross section through some such distri- 
bution. Here the charge density i s  high a t  the center, and is zero 
beyond ro. What is the electric field at some point such as PI outside 
the distribution, or P2 inside it (Fig. 1.19)? If we could proceed only 
from Coulomb's law, we should have to carry out an  integration which 
would sum the electric field vectors at PI arising from each elementary 
volume in the charge distributioa Let's try a different approach which 
exploits both the symmetry of the system and Gauss's law. 

Because of the spherical symmetry, the electric field at any p i n t  
must be radially directed-no other direction is unique. Likewise, the 
field magnitude E must be the same a t  all points on a spherical surface 
S, of radius r,, for all such p in t s  are equivalent. Call this field mag- 
nitude El .  The flux through this surface SI is therefore simply 4?rdEI, 
and by Gauss's law this must be equal to h times the charge enclosed 
by the surface. That is, 4 ~ 4 ~ ~  = 47r (charge inside SI) or 

charge inside S, El = 4 (23) 
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Looking back over our proof, we see that it hinged on the 
inverse-square nature of the interaction and of course on the additivity 
of interactions, or superposition. Thus the theorem is applicable to any 
inverse-square field in physics, for instance. to the gravitational field. 

It is easy to see that Gauss's law would nor hold if the law of 
force were. say. inverse-cube. For in that case the flux of electric field 
from a point charge q through a sphere of radius R centered on the 
charge would be 

By making the sphere large enough we could make the flux through 
it as small as we pleased, while the total charge inside remained 
constant. 

This remarkable theorem enlarges our grasp in two ways. First. 
it reveals a connection between the field and its sources that is the 
converse of Coulomb's Iaw. Coulomb's law tells us how to derive the 
electric field if the charges are given; with Gauss's law we can deter- 
mine how much charge is in any region if the field is known. Second. 
the mathematical relation here demonstrated is a powerFul analytic 
tool; it can make complicated problems easy. as we shall see. 

FIELD OF A SPHERICAL CHARGE DISTRIBUTION 
1.1 1 We can use Gauss's law to find the electric field of a spheri- 
cally symmetrical distribution of charge, that is, a distribution in 
which the charge density p depends only on the radius from a central 
point. Figure 1.18 depicts a cross section through some such distri- 
bution. Here the charge density i s  high a t  the center, and is zero 
beyond ro. What is the electric field at some point such as PI outside 
the distribution, or P2 inside it (Fig. 1.19)? If we could proceed only 
from Coulomb's law, we should have to carry out an  integration which 
would sum the electric field vectors at PI arising from each elementary 
volume in the charge distributioa Let's try a different approach which 
exploits both the symmetry of the system and Gauss's law. 

Because of the spherical symmetry, the electric field at any p i n t  
must be radially directed-no other direction is unique. Likewise, the 
field magnitude E must be the same a t  all points on a spherical surface 
S, of radius r,, for all such p in t s  are equivalent. Call this field mag- 
nitude El .  The flux through this surface SI is therefore simply 4?rdEI, 
and by Gauss's law this must be equal to h times the charge enclosed 
by the surface. That is, 4 ~ 4 ~ ~  = 47r (charge inside SI) or 

charge inside S, El = 4 (23) 
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Looking back over our proof, we see that it hinged on the 
inverse-square nature of the interaction and of course on the additivity 
of interactions, or superposition. Thus the theorem is applicable to any 
inverse-square field in physics, for instance. to the gravitational field. 

It is easy to see that Gauss's law would nor hold if the law of 
force were. say. inverse-cube. For in that case the flux of electric field 
from a point charge q through a sphere of radius R centered on the 
charge would be 

By making the sphere large enough we could make the flux through 
it as small as we pleased, while the total charge inside remained 
constant. 

This remarkable theorem enlarges our grasp in two ways. First. 
it reveals a connection between the field and its sources that is the 
converse of Coulomb's Iaw. Coulomb's law tells us how to derive the 
electric field if the charges are given; with Gauss's law we can deter- 
mine how much charge is in any region if the field is known. Second. 
the mathematical relation here demonstrated is a powerFul analytic 
tool; it can make complicated problems easy. as we shall see. 

FIELD OF A SPHERICAL CHARGE DISTRIBUTION 
1.1 1 We can use Gauss's law to find the electric field of a spheri- 
cally symmetrical distribution of charge, that is, a distribution in 
which the charge density p depends only on the radius from a central 
point. Figure 1.18 depicts a cross section through some such distri- 
bution. Here the charge density i s  high a t  the center, and is zero 
beyond ro. What is the electric field at some point such as PI outside 
the distribution, or P2 inside it (Fig. 1.19)? If we could proceed only 
from Coulomb's law, we should have to carry out an  integration which 
would sum the electric field vectors at PI arising from each elementary 
volume in the charge distributioa Let's try a different approach which 
exploits both the symmetry of the system and Gauss's law. 

Because of the spherical symmetry, the electric field at any p i n t  
must be radially directed-no other direction is unique. Likewise, the 
field magnitude E must be the same a t  all points on a spherical surface 
S, of radius r,, for all such p in t s  are equivalent. Call this field mag- 
nitude El .  The flux through this surface SI is therefore simply 4?rdEI, 
and by Gauss's law this must be equal to h times the charge enclosed 
by the surface. That is, 4 ~ 4 ~ ~  = 47r (charge inside SI) or 

charge inside S, El = 4 (23) 
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Looking back over our proof, we see that it hinged on the 
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of interactions, or superposition. Thus the theorem is applicable to any 
inverse-square field in physics, for instance. to the gravitational field. 
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force were. say. inverse-cube. For in that case the flux of electric field 
from a point charge q through a sphere of radius R centered on the 
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By making the sphere large enough we could make the flux through 
it as small as we pleased, while the total charge inside remained 
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mine how much charge is in any region if the field is known. Second. 
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which the charge density p depends only on the radius from a central 
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bution. Here the charge density i s  high a t  the center, and is zero 
beyond ro. What is the electric field at some point such as PI outside 
the distribution, or P2 inside it (Fig. 1.19)? If we could proceed only 
from Coulomb's law, we should have to carry out an  integration which 
would sum the electric field vectors at PI arising from each elementary 
volume in the charge distributioa Let's try a different approach which 
exploits both the symmetry of the system and Gauss's law. 

Because of the spherical symmetry, the electric field at any p i n t  
must be radially directed-no other direction is unique. Likewise, the 
field magnitude E must be the same a t  all points on a spherical surface 
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• Depende de cuánta carga encierre 𝑆*

𝐸* =
𝑐𝑎𝑟𝑔𝑎	𝑒𝑛𝑐𝑒𝑟𝑟𝑎𝑑𝑎	𝑝𝑜𝑟	𝑆*

4𝜋𝑟**𝜖)

𝐶𝑎𝑟𝑔𝑎	𝑒𝑛𝑐𝑒𝑟𝑟𝑎𝑑𝑎	𝑝𝑜𝑟	𝑆" = =𝜌	𝑑𝑉
Volumen 
encerrado
Por S2

ELECTROSTATICS: CHARGlS AND FlRLDS 25 

Looking back over our proof, we see that it hinged on the 
inverse-square nature of the interaction and of course on the additivity 
of interactions, or superposition. Thus the theorem is applicable to any 
inverse-square field in physics, for instance. to the gravitational field. 

It is easy to see that Gauss's law would nor hold if the law of 
force were. say. inverse-cube. For in that case the flux of electric field 
from a point charge q through a sphere of radius R centered on the 
charge would be 

By making the sphere large enough we could make the flux through 
it as small as we pleased, while the total charge inside remained 
constant. 

This remarkable theorem enlarges our grasp in two ways. First. 
it reveals a connection between the field and its sources that is the 
converse of Coulomb's Iaw. Coulomb's law tells us how to derive the 
electric field if the charges are given; with Gauss's law we can deter- 
mine how much charge is in any region if the field is known. Second. 
the mathematical relation here demonstrated is a powerFul analytic 
tool; it can make complicated problems easy. as we shall see. 

FIELD OF A SPHERICAL CHARGE DISTRIBUTION 
1.1 1 We can use Gauss's law to find the electric field of a spheri- 
cally symmetrical distribution of charge, that is, a distribution in 
which the charge density p depends only on the radius from a central 
point. Figure 1.18 depicts a cross section through some such distri- 
bution. Here the charge density i s  high a t  the center, and is zero 
beyond ro. What is the electric field at some point such as PI outside 
the distribution, or P2 inside it (Fig. 1.19)? If we could proceed only 
from Coulomb's law, we should have to carry out an  integration which 
would sum the electric field vectors at PI arising from each elementary 
volume in the charge distributioa Let's try a different approach which 
exploits both the symmetry of the system and Gauss's law. 

Because of the spherical symmetry, the electric field at any p i n t  
must be radially directed-no other direction is unique. Likewise, the 
field magnitude E must be the same a t  all points on a spherical surface 
S, of radius r,, for all such p in t s  are equivalent. Call this field mag- 
nitude El .  The flux through this surface SI is therefore simply 4?rdEI, 
and by Gauss's law this must be equal to h times the charge enclosed 
by the surface. That is, 4 ~ 4 ~ ~  = 47r (charge inside SI) or 

charge inside S, El = 4 (23) 

FIGURE 1.18 
A charge distribution with spher~cd symmetry 

FIGURE 1mlO 
The electric Celd of a spheriml charge distribution 



Campo de una distribución esférica de carga

• Análogamente, si 𝐸* es el módulo del 
campo sobre la esfera 𝑆* de radio 𝑟*

• Depende de cuánta carga encierre 𝑆*

• No depende de la carga fuera de S2 !

𝐸* =
𝑐𝑎𝑟𝑔𝑎	𝑒𝑛𝑐𝑒𝑟𝑟𝑎𝑑𝑎	𝑝𝑜𝑟	𝑆*

4𝜋𝑟**𝜖)

𝐶𝑎𝑟𝑔𝑎	𝑒𝑛𝑐𝑒𝑟𝑟𝑎𝑑𝑎	𝑝𝑜𝑟	𝑆" = =𝜌	𝑑𝑉
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