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The geometrical nature and some properties of the capacitance
coefficients based on Laplace’s equation

William J. Herreraa� and Rodolfo A. Diazb�
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The fact that the capacitance coefficients for a set of conductors are geometrical factors is derived
in most electricity and magnetism textbooks. We present an alternative derivation based on
Laplace’s equation that is accessible to students in an intermediate course on electricity and
magnetism. The properties of Laplace’s equation permits us to determine many properties of the
capacitance matrix. Some examples are given to illustrate the usefulness of these properties. © 2008
American Association of Physics Teachers.
�DOI: 10.1119/1.2800355�
I. INTRODUCTION

The fact that capacitance is a geometrical factor is an im-
portant property in courses on electricity and magnetism.1,2

Derivations of this property are usually based on the prin-
ciple of superposition1,2 and the Green function formalism.3,4

Nevertheless, such derivations are not convenient for calcu-
lations. Alternative techniques to calculate the capacitance
coefficients based on the Green function formalism5 and
other methods6–8 have been developed.

In this paper we give a simple proof of the geometrical
nature of the capacitance coefficients based on Laplace’s
equation. Our approach permits us to demonstrate many
properties of the capacitance matrix. The method is illus-
trated by reproducing some well known results, and applica-
tions in complex situations are suggested.

II. CAPACITANCE COEFFICIENTS

We consider a system of N internal conductors and an
external conductor that encloses them. The potential on each
internal conductor is denoted by �i, i=1,2 , . . . ,N. The sur-
face of the external conductor is denoted by SN+1 and its
potential is denoted by �N+1 �see Fig. 1�. One reason to in-
troduce the external conductor is that it provides a closed
boundary to ensure the uniqueness of the solutions. In addi-
tion, many capacitors contain an enclosing conductor as for
the case of spherical concentric shells. We shall see that the
case in which there is no external conductor can be obtained
in the appropriate limit.

The surface charge density � on an electrostatic conductor
is given by1,2

�i = �0E · ni = − �0 � � · ni �i = 1, . . . ,N + 1� , �1�

where ni is a unit vector normal to the surface Si pointing
outward with respect to the conductor �see Fig. 1�; E and �
denote the electrostatic field and potential, respectively. The
charge on each conductor is given by

Qi = �
Si

�i dS = − �0�
Si

� � · ni dS . �2�

The surface Si encloses the conductor i and is arbitrarily near
and locally parallel to the real surface of the conductor �see

9
Fig. 1�. We define the total surface ST as
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ST = S1 + ¯ + SN + SN+1. �3�

The volume VST
defined by the surface ST is the one delim-

ited by the external surface SN+1 and the N internal surfaces
Si. The potential � in such a volume must satisfy Laplace’s
equation with the boundary conditions

��Si� = �i �i = 1, . . . ,N + 1� . �4�

Because of the linearity of Laplace’s equation, the solution
for � can be parameterized as

� = �
j=1

N+1

� j f j , �5�

where the f j are functions that satisfy Laplace’s equation in
the volume VST

with the boundary conditions

�2f j = 0, f j�Si� = �ij �i, j = 1, . . . ,N + 1� . �6�

The solutions for f j ensure that � is the solution of Laplace’s
equation with the boundary conditions in Eq. �4�. The
uniqueness theorem also ensures that the solution for each f j
is unique �as is the solution for ��. The boundary conditions
�6� indicate that the f j functions depend only on the geom-
etry.

If we apply the gradient operator in Eq. �5� and substitute
the result into Eq. �2�, we obtain

Qi = �
j=1

N+1

Cij� j �7a�

Cij � − �0�
Si

� f j · ni dS , �7b�

which shows that the Cij factors are exclusively geometric.
The symmetry of the associated Cij matrix can be obtained
by purely geometrical arguments. We start from the defini-
tion of Cij in Eq. �7b� and find

Cij = − �0�
Si

� f j · ni dS = �0�
ST

f i � f j · �− ni� dS , �8�

where we have used the fact that f i=1 on the surface Si and
zero on the other surfaces. From Gauss’s theorem we obtain

Cij = �0�
VS

� · �f i � f j� dV �9a�

T
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=�0�
VST

��f i · �f j + f i�
2f j� dV . �9b�

Because �2f j =0 in VST
, it follows that

Cij = �0�
VST

� f i · �f j dV . �10�

Equation �10� implies that Cij is symmetric,10 that is,

Cij = Cji. �11�

For certain configuration of conductors, consider two sets
of charges and potentials 	Qi ,�i
 and 	Qi� ,�i�
. From Eqs. �7�
and �11� we have that

�
i=1

N+1

Qi�i� = �
i=1

N+1 ��
j=1

N+1

Cij� j��i� �12a�

= �
j=1

N+1 ��
i=1

N+1

Cji�i��� j , �12b�

which implies that

�
i=1

N+1

Qi�i� = �
j=1

N+1

Qj�� j . �13�

Equation �13� is known as the reciprocity theorem.1

When one or more of the N internal conductors has an
empty cavity, it is well known that there is no charge induced
on the surface of the cavity1,2 �let us call it Si,c�. Conse-
quently, although Si,c is part of the surface of the conductor,
such a surface can be excluded in the integration in Eq. �2�.
In addition, we can check by uniqueness that f j =�ij in the
volume of the cavity Vi,c so that �f j =0 in such a volume,
and hence it can be excluded from the volume integral �10�.
In conclusion neither Si,c nor Vi,c contributes in this case.

The situation is different if there is another conductor in
the cavity. In this case the surface of the cavity contributes in
Eq. �2�. Similarly the volume between the cavity and the
embedded conductor contributes in the volume integral �10�.
The arguments can be extended for successive embedding of
conductors in cavities as shown by Fig. 2 or for conductors

Fig. 1. A system consisting of N internal conductors with conductor N+1
enclosing them. The normals ni with i=1, . . . ,N+1 point outward with re-
spect to the conductors and inward with respect to the volume VST

�defined
by the region in white�. The surfaces Si with i=1, . . . ,N are slightly bigger
than the ones corresponding to the conductors. In contrast, the surface SN+1

is slightly smaller than the surface of the external conductor.
with several cavities.
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III. SOME ADDITIONAL PROPERTIES

We define a function F,

F � �
j=1

N+1

f j , �14�

and see from Eq. �6� that

�2F = 0, F�Si� = 1 �i = 1, . . . ,N + 1� . �15�

Because F=1 on the surface ST, we see by uniqueness that
F=1 in the volume VST

from which we find that

�
j=1

N+1

f j = 1. �16�

In addition, by summing over j in Eq. �7b� and taking into
account Eq. �16�, we find that

�
j=1

N+1

Cij = 0 �i = 1, . . . ,N + 1� . �17�

The symmetry of the Cij elements leads also to

�
i=1

N+1

Cij = 0 �j = 1, . . . ,N + 1� . �18�

Equations �17� and �18� imply that the sum of the ele-
ments over any row or column of the matrix is zero. Appen-
dix A gives some proofs of consistency for these important
properties. If we take into account the symmetrical nature of
the Cij matrix with dimension �N+1�� �N+1� and the N
+1 constraints in Eq. �18�, we see that for a system of N
conductors surrounded by another conductor N+1, the num-
ber of independent capacitance coefficients is

�N + 1�2 − 
N�N + 1�
2

� − �N + 1� =
N�N + 1�

2
. �19�

Other important properties are that

Fig. 2. Example of system in which there is a successive embedding of
conductors. The volume VST

corresponds to the region in white. The regions
corresponding to empty cavities �and their associated surfaces and volumes�
can be excluded without affecting the calculations. In this picture cavity A is
empty and its surface and volume need not be considered for calculations.
Cii � 0, �20a�
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Cij � 0 �i � j� . �20b�

Equation �20a� follows straightforwardly from Eq. �10�. To
demonstrate Eq. �20b�, we recall that the solutions of
Laplace’s equation cannot have local minima nor local
maxima in the volume in which the equation is valid.1,2 Con-
sequently, the f j functions must lie in the interval

0 � f j � 1. �21�

Because f j =0 on any surface Si for i� j, we see that f j ac-
quires its minimum value on such surfaces. Therefore the
function �f j should point outward with respect to the con-
ductor i for i� j. Hence

ni · �f j � 0 for i � j . �22�

We substitute Eq. �22� into Eq. �7� and obtain Cij �0 for i
� j. An additional derivation of the fact that Cii�0 can be
obtained by taking into account that f j acquires its maximum
value on the surface Sj.

Equation �18� can be rewritten as

�
i=1

N

Cij = − CN+1,j . �23�

From Eq. �20� we have that CN+1,j �0 for j=1, . . . ,N and
CN+1,N+1�0. Hence

�
i=1

N

Cij � 0 �j = 1, . . . ,N� , �24a�

�
i=1

N

Ci,N+1 � 0. �24b�

The following properties follow from Eqs. �11�, �18�, �20�,
and �24�:

�Cii� � �
i�j

N

�Cij� , �25a�

�Cii� � �Cij� , �25b�

CiiCjj � Cij
2 , �25c�

�CN+1,N+1� = �
i=1

N

�Ci,N+1� , �25d�

�CN+1,N+1� � �Ci,N+1� , �25e�

where i , j=1, . . . ,N.
A particularly interesting case arises when the external

conductor is at zero potential. In such a case, although the
elements of the form CN+1,j do not necessarily vanish, they
do not appear in the contributions to the charge on the inter-
nal conductors as can be seen from Eq. �7� by setting �N+1
=0. For this reason, the capacitance matrix used to describe
N free conductors �that is, not surrounded by another con-
ductor� has dimensions N�N.11

IV. TWO CONDUCTORS

We illustrate our method by deriving the basic properties
of a system of two conductors. These examples will show the

usefulness of Eq. �7� and some of the properties derived from
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our approach. We analyze a single internal conductor with an
external conductor, that is, N=1. The internal conductor is
labeled as conductor 1. From Eqs. �11� and �18� we have

C21 = C12 = − C11 = − C22. �26�

Therefore, there is only one independent coefficient, say C11
�in agreement with Eq. �19� with N=1�. The charges on the
internal and external conductors can be calculated from Eq.
�7�:

Q1 = C11��1 − �2� , �27a�

Q2 = − C11��1 − �2� = − Q1. �27b�

Equation �27b� is consistent with Eq. �A4� and shows that
the charge induced on the surface of the cavity of conductor
2 is opposite to the charge on conductor 1.

In Table I we display the results of three well known con-
figurations of two conductors. The second column shows the
f i functions, which can be found by Laplace’s equation �6�
and used to calculate C11 with Eq. �7�.

V. EXAMPLES

We use our approach to study a system with embedded
conductors. In addition, the case of two internal conductors
is examined, and we show the limit in which the configura-
tion of two conductors without an external conductor is ob-
tained. These examples show how the properties we have
derived can be used to calculate the capacitance coefficients.

Example 1. Consider two concentric spherical shells with
radii b and c and a solid spherical conductor �concentric with
the others� with radius a such that c	b	a. The potentials
are denoted by �1, �2, and �3, respectively. The general so-
lution of Laplace’s equation for f i can be written as

f i =
Ai

r
+ Bi. �28�

From Eqs. �6� and �28� we obtain f1 and f3:

f1 = � ab

b − a
�1

r
−

1

b
� �a � r � b� , � �29�

Table I. C11 and f1 factors for three systems of two conductors with a�r
�b and 0�x�d. We neglect edge effects for the cylinders and planes.

System f1 C11

Spherical shell with radius b
and concentric solid sphere
with radius a.

ab
b−a � 1

r − 1
b � 4
�0ab

b−a

Cylindrical shell with radius
b and concentric solid cylinder
with radius a, both with
length L.

ln�r/b�
ln�a/b�

2
�0L
ln�b/a�

Two parallel planes with area
A at x=0 and x=d �conductor 1�.

x /d �0
A
d

0 �b � r � c�;
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f3 = �0 �a � r � b� ,

bc

c − b
�1

b
−

1

r
� �b � r � c� . � �30�

Although f2 can be obtained the same way, it is easier to
extract it from Eq. �16�. The result is

f2 = �
ab

b − a
�1

a
−

1

r
� �a � r � b� ,

bc

c − b
�1

r
−

1

c
� �b � r � c� . � �31�

The nine capacitance coefficients can be evaluated explicitly
from Eq. �7�, but it is easier to use Eqs. �11� and �18� and to
take into account that C31=0 ��f1�r�=0 for r	b�. We have

C13 = 0, C12 = − C11, �32a�

C22 = C11 − C32, C33 = − C32. �32b�

From Eq. �7� the charge on each conductor is

Q1 = C11��1 − �2� , �33a�

Q2 = − Q1 + C32��3 − �2� , �33b�

Q3 = C32��2 − �3� = − �Q1 + Q2� . �33c�

Hence, we only have to calculate C11 and C32.
12 The result

gives

C11 = 4
�0
ab

b − a
, C32 = − 4
�0

bc

c − b
. �34�

If �2=�3, we find that Q1=−Q2 and Q3=0. It can be
shown that Eqs. �32� and �33� are valid even if the conduc-
tors are neither spherical nor concentric, because those equa-
tions come from Eqs. �7a�, �11�, and �18�, which reflect gen-
eral properties independent of specific geometries.

Example 2. Consider two internal conductors and a
grounded external conductor. As customary, we begin with
Q1=Q2=0. By transferring charge from one internal conduc-
tor to the other, we keep Q1=−Q2. From Eq. �7a� and the
definition V��1−�2 we find

Q1 = �C11 + C12��1 − C12V , �35�

Q1 = − C13�1 − C12V , �36�

where we have used Eq. �18�. Similarly Q2=−C23�1−C22V,
and using again Eq. �18� we find

Q1 + Q2 = C33�1 − C32V . �37�

Because the system is neutral, Q1+Q2=0 and hence

�1 = −
C32

C33
V; �38�

substituting Eq. �38� into Eq. �36� we obtain

Q1 = CV C �
C13C32 − C33C12

C33
. �39�

Because N=2 only three of the coefficients in the defini-
tion of C are independent. From Eqs. �20� we see that this
effective capacitance is non-negative. The procedure is not

valid if C33=0; in that case we see by using Eqs. �18� and
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�20� that Ci3=C3i=0, and from Eq. �36� we find C=−C12
=C22, which is also non-negative. The limit in which there is
no external conductor is obtained by taking all the dimen-
sions of the cavity to infinity while keeping the external con-
ductor grounded as discussed in Ref. 11.

VI. CONCLUSIONS

We have used an approach based on Laplace’s equation to
demonstrate that the capacitance matrix depends only on
purely geometrical factors. The explicit use of Laplace’s
equation permits us to demonstrate many properties of the
capacitance coefficients. The geometrical relations and prop-
erties shown here permit us to simplify many calculations of
the capacitance coefficients. Equation �6� shows that
Laplace’s equations required in our development are purely
geometrical. Laplace’s equation is usually easier than Green
function formalism for both analytical or numerical calcula-
tions. Appendix A shows some proofs of consistency.
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APPENDIX A: PROOFS OF CONSISTENCY

A proof of consistency for the identity �18� is achieved by
using Eq. �7� to calculate the total charge on the N internal
conductors:13

Qint = �
i=1

N

Qi = �
j=1

N+1 
� j�
i=1

N

Cij� . �A1�

We use Eq. �18� to find

Qint = − �
j=1

N+1

CN+1,j� j . �A2�

Note that Eq. �A2� requires many fewer elements of the Cij
matrix than Eq. �A1�. This difference becomes more signifi-
cant as N increases. If we again use Eq. �7�, we can find the
charge on the cavity of the external conductor,

QN+1 = �
j=1

N+1

CN+1,j� j , �A3�

and therefore

QN+1 = − Qint, �A4�

a property that can also be obtained from Gauss’s law.1,2

Another proof of consistency for Eq. �18� is found by
employing Eqs. �7� and �A2� to calculate Qint �taking into
account that Eq. �A2� comes directly from Eq. �18��:

Qint = − �
j=1

N+1

CN+1,j� j �A5a�

=�0�
SN+1

� ��
j=1

N+1

f j� j� · nN+1 dS . �A5b�
We use Eq. �5� to write Qint as
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Qint = �0�
SN+1

� � · nN+1 dS = �0�
SN+1

E · �− nN+1� dS .

�A6�

This relation is clearly correct because nN+1 points inward
with respect to the volume VST

.
A proof of consistency for Eq. �10� that shows the sym-

metry of Cij can be obtained by calculating the electrostatic
internal energy, which in terms of the electric field is

U =
�0

2
�

VST

E2 dV =
�0

2
�

VST

� � · �� dV �A7a�

=
1

2 �
i,j

N+1

�i� j
�0�
VST

� f i · �f j dV� , �A7b�

where we have used Eq. �5�. From Eq. �10� we find

U =
1

2 �
i,j

N+1

Cij� j�i =
1

2 �
i

N+1

Qi�i, �A8�

consistent with standard results.1,2

APPENDIX B: SUGGESTED PROBLEMS

To enhance the understanding of this approach and its ad-
vantages, we suggest the following exercises for the reader.

�1� Implement a numerical method to solve Laplace’s equa-
tion �6� for the f i functions associated with a nontrivial
geometry �for example, two non-concentric ellipsoids�.
Use Eqs. �16� and �21� to either simplify your calcula-
tions or to check the consistency of your results. Then
use Eq. �7� to obtain the Cij factors numerically. Use Eq.
�11� and Eqs. �17�–�25� either to simplify your calcula-
tions or to check the consistency of your results.

�2� We have emphasized that to calculate the total charge on
the internal conductors Eq. �A2� requires many fewer Cij
elements than Eq. �A1�. How many fewer elements are
required for an arbitrary value of N?

�3� For a successive embedding of concentric spherical
shells, calculate the capacitance coefficients for an arbi-
trary number of spheres.
59 Am. J. Phys., Vol. 76, No. 1, January 2008
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�4� Show that for the successive embedding of three conduc-
tors with arbitrary shapes, Eqs. �32� and �33� still hold.
Generalize your results for an arbitrary number of
conductors.
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