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Fig. 8. Typical waveforms obtained for z = 0.4 m and x values of 0.4, 0.5,
0.6, and 0.7 m. The earlier arrivals are the direct wave and the later’ arri-
vals are the reflected wave.

val times. Also be sure to measure the height of the bar at
each end, and its length so you can calculate the dip.
Using your plot of the direct wave for the four micro-
phone experiment, extrapolate the travel time back to zero
distance. You will probably find some residual time for
zero distance. This value must be subtracted from all the
travel time values before proceeding. What does this time
correspond to? (Answer: This time probably corresponds
to the time elapsed from when the pulse was generated to
the time the sound pulse passed the zero distance mark.)

B. Data display and computation

Make a table of the arrival times versus x all the configu-
rations measured and plot on the same graph. Include on

the plot a solid line indicating the theoretical arrival time
for the direct wave (sound in air). For the reflections from
the flat surface, compute x* and ¢ ? values and plot them on
a separate plot. For best results you will want to make a
plot with ascale for #  that is appropriate for the values of 1 2
obtained from a single reflection. That is, do not set your
origin at zero. Set it a little less than the value you expect for
¢ 5. Extrapolate these plots to x = 0 to find #,. Compute the
velocity of sound in air from the slope of the x*-¢2 plot.
Compare ¢, with the value determined from measuring the
depth to the reflector and compare V to its theoretical val-
ue.

For the dipping reflector, use the difference in up-dip
and down-dip arrivals to compute the dip according to the
approximation given earlier.

C. Evaluation

Summarize in words what you have accomplished.
Comment on sources of error including:(a) your estima-
tion of the error in “picking” arrival times and (b) the
inaccuracies of the dip computation above.

V. CONCLUSION

Apparatus has been described here which models a re-
flection seismic experiment. It has proved to be a popular
experiment, and, with care, students can obtain values of
the speed of sound in air, as well as the distance to and
inclination of a reflector that are accurate to within a few
percent.
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Electromechanical implications of Faraday’s law: A problem collection
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A collection of problems illustrating the electromechanical implications of Faraday’s law is
presented. They are appropriate for well-prepared freshmen and all undergraduate physics
majors. A number of interesting examples are worked out analytically, including Thomson’s
jumping ring demonstration. They are of interest in part because they include the effects of
inductance and capacitance more fully than in the usual textbook treatments.

L. INTRODUCTION

The collections of problems given to undergraduate
physics majors typically do not treat a number of aspects of
Faraday’s law that are crucial for understanding many of
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its practical implications. The present collection is de-
signed to develop insights not normally obtained from the
usual Faraday’s law problems. They nearly all involve
forces and torques on current loops.

Typical textbook treatments neglect self-inductance
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when first introducing Faraday’s law. When self-induc-
tance is later introduced, however, the same current loop is
not reanalyzed, so that the implications of self-inductance
for the electrical and (especially) the mechanical behavior
of the loop are not fully developed. By discussing the be-
havior of the loop with resistance and inductance (and ca-
pacitance), it has been possible to generate new problems.

The fascinating Elihu Thomson jumping ring demon-
stration has been a major impetus for the creation of this
problem set. Recently, in order to pose a test question with
the same basic physics as the jumping ring, I came across a
very simple geometry that clearly illustrates the relevant
physics. (See Sec. V1.) When capacitance was added to the
circuit, even more complex possibilities developed: At my
suggestion an enterprising undergraduate put a capacitor
into an inductive loop, thereby making what we facetiously
call the “sucking” ring demonstration. I hope that the next
generation of physics students will be able to put the in-
sights from these problems to good use.

Sections I1 and III deal with linear motion, Secs. IV-VII
deal with ac response, and Secs. VIII and IX deal with
rotational motion.

Before presenting the problems, I remind the reader to
apprise his (or her) students of the following essential (but
often neglected) sign conventions. (i) If a complete circuit
C has associated with it an open surface S, the direction of
circulation determines the orientation of the surface by the
right-hand rule; curl the fingers of the right hand along the
direction of circulation 1 and the thumb gives the direc-
tion of the normal to the surface d S. (ii) The current is
taken to be positive along the direction of circulation. (iii)
The direction of the magnetic moment of a circuit is, by
definition, along the normal to the plane of the circuit using
the right-hand rule with fingers curling along the direction
of positive current.

I1. A BASIC PROBLEM—THROWING A
CURRENT LOOP INTO A B FIELD

A. An inductanceless loop

This situation is depicted in Fig. 1, where the loop has
resistance R, inductance L, mass M, rightward velocity v,
vertical dimension /, and horizontal dimension 4. The mag-
netic field has the value B, pointing into the paper, for x > 0,
and is zero for x <0. The usual treatment sets I = 0,
Therefore, the (counterclockwise) total emf is

€ = Bly, ' (n

X = X X X
==
=]

Fig. 1. A current loop of resistance R, inductance L, and mass M moving
into a fixed magnetic field B.

|
!
1
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obtained either from the motional emf
e=§Em0t-dl, E...=vXB, )
or the standard form of Faraday’s law
€= —ijB-dS. - (3)
dt
Here, the usual rule, that d S pointing out of the paper

implies that d I circulates counterclockwise, is satisfied. Us-
ing the circuit equation € = iR gives

i=Blv/R. (4)
The force on the right arm, found from
F=iXB, , (3)
yields, with
F=M i‘_'_’ (6)
dt
272
d_ _gp-_B1, %)
dt

whose solution is

v=voexp( —t/7), x=uvor[l —exp(—1/7)], (8)
where v, is the initial velocity and

7=MR /B3> 9)
Equation (8) applies as long as the current loop lies only

partly in the B field. This is a very standard problem. We
now perform a variation on the theme.

B. A resistanceless loop

Consider that the loop is made of a superconducting ma-
terial so that R =~ 0. In this case we cannot neglect the self-
inductance, which produces an emf — L(di/dt) that must
be added to Blv of Eq. (1). Their sum gives iR =~0. Hence

By—L% o (10)
dr

so that, on integrating,

i=(Bl/L)x, (11)
which satisfies the initial condition i = 0 when x = 0. \The
equation of motion yields

2
‘fh’z‘ = —ilB= —

This is, of course, the equation of motion for a harmonic
oscillator subject to x = 0 and dx/dt = v, at t = 0. Its solu-
tion is

2312
M Bl (12)

x = (V/wy)sin @gt, v=v,cos wt, (13)
where
wy = Bl /(ML)"2, (14)

Therefore, as long as vy/w, does not exceed the width A, so
that the loop never completely enters the region of B field,
the loop will eventually be repelled from the B field, leaving
with velocity v, in the opposite direction.

For B=0.17,/=0.1m, M =0.1 kg,and L = 10" H,
Eq. (14) gives w, = 10°s™", so that v, = 1 ms™! gives v,/
@y =10"? m. These are not implausible numbers. Note
that B, /, and M, with R = 1073 Q, yield 7 = 1 s, another
casily observable time scale.
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C. A loop with both resistance and inductance

We now have the circuit equation
di

Bly—L—=iR (15)
dt
and the force equation
ME_ _is. (16)
dt
Differentiating Eq. (15) and substltutmg in Eq. (16) gives
1 d% di
—_— A4 7T—+4i=0, 17
w? dt? dt an

where 7 is given by (9) and w, is given by (14). The same
equation holds for v, with /—v. Clearly, we obtain under-
damping, critically damped, or overdamped motion ac-
cording to

wyt>V2, (underdamping),
wor =V2, (critical damping),
wor <V2, (overdamping). (18)

The initial conditions are i =0 and di/dt = Blv,/L. The
solution of Eq. (17) is standard, so we will not dwell on it
other than to note that in the overdamped and the critically
damped case, and even for the underdamped case (if there
is a sufficient amount of damping), the loop will come to
rest in the B field without being expelled.

D. Variation on the problem—pulling a B field past a
current loop

Here we have a current loop initially at rest, to be drawn
into motion by the B field moving to the left. This is the
principle of the induction motor, simplified here to the case
of linear motion. The solutions can be obtained from a Ga-
lilean boost by — v, of the solutions given above. Note that
the currents do not change.

II1. A BASIC PROBLEM—PULLING A CURRENT
LOOP INTO A B FIELD

This resembles the previous basis problem. Now a con-
stant force F is applied to the loop as it is drawn into the B
field. Let v = v, initially.

A, An inductanceless loop

We again have

i=Blv/R, (19)
but now the force equation reads
272
M%: _ap-r-B1, (20)

The solution is
+ (vo—v,_ dexp( —t/T),

x=v,t+ [(v, —v)/7]lexp(—1t/7) —1], (21)
where the terminal velocity v is

v, =FR/B?I? (22)
Note that as 71— oo,

v=v,_

and 7 is given by Eq. (9).
i, —»i=F/IB.
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B. A resistanceless loop

We again have

i= (Bl/L)x, (23)
but now the force equation reads
2 2
dx _p_ip=r—21, (24)
dr?

This is a harmonic oscillator equation, subject tox = 0 and
dx/dt = v, at t = 0, with the solution

x = (Vo/®,)sin wot + (FL /B?1?) (1 — cos wyt),
v = vy c0s Wt + (FLwy/B*1?)sin wt. (25)

If the loop is wide enough (4 — « ), no matter how large F
is, the loop will eventually be pushed back out of the B field
(to be returned by the force F).

C. A loop with both resistance and inductance

We now have Eq. (15) for the emf and

M§~F—le (26)

for the force. Differentiating Eq. (15) and substituting in
Eq. (26) gives
1 d% di .
— i~
w dt*  dt (
where o, is given by (14) and i
The analogous equation for v is

) =0, (27)

= F/IB, asin Sec. II1 C.

1 d% dv
—~+@-v,)= (28)

a)(z, dt? d
wherev__ is given by Eq. (22). Except for the shift in v and

i, the solutions will be like those of Eq. (17).

D. Variation on the problem—pulling a B field past a
current loop acted on by a constant force

The solutions in this case can be obtained from the above
solutions by making a Galilean boost by — v,.

IV. A CURRENT LOOP PARTLY IN AN
OSCILLATING B FIELD

Here we consider a rectangular loop initially at rest,
partly in a B field oscillating at a frequency w. The loop
extends a distance x into the B field, and has vertical di-

X X X X X

P —
X X

x|

Fig. 2. A current loop partially in an oscillating magnetic field B.

le— > —p]

X X X
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mension /, resistance R, and inductance L. See Fig. 2. If we
take B = B, sin wt, where B> 0 means that B points into
the paper, then the induced emf is given by — B,(Ix)(d/
dt)sin @t = — Bylxw cos wt, where a negative emf tends to
cause current flow counterclockwise through the loop.
Hence, if i > 0 is taken to be counterclockwise, we have

Bylxw cos wt =iR + L 5—; (29)
The force on the right arm, following Egs. (5)-(7), gives
the net force

2
F=M%§= _ iB, sin ot. (30)

A. An inductanceless loop

We now take L (di/dt) <R, in which case (if ox>dx/dt,
so that the motional emf may be neglected)

I= (Bylxw/R)cos wt, (31)
so that
F= — (B,Y1’0/R) (sin ot cos wt)x. (32)

If we hold the loop at fixed x, we see that there is an oscillat-
ing force at a frequency of 2w. Further, if the loop is entirely
inside the B field, so that x = 4, there is a force on the left
arm which is equal and opposite to Eq. (32). In addition,
there are forces on the upper and lower arms. All four of
these forces have the effect of causing an alternate com-
pression and expansion of the loop at a frequency 2w. This
causes a vibration of the surrounding air at a frequency 2w,
which in many cases is quite audible. It is possible to feel a
loop vibrating in such circumstances, as this author has
done on many occasions, when moving a conducting ring
about the fringes of a solenoid used for the jumping rings
demonstration. (See Sec. VI.) Indeed, this fringing phe-
nomenon suggested the present problem.

B. A resistanceless loop
We now take L (di/dt) > iR, so that Eq. (29) implies

i~ (ByIx/L)sin wt (33)
if i = 0 at t = 0. The force on the right arm becomes
F= — (B3]*/L)(sin* t)x. (34)

Thus there is a constant force pushing the loop out of the B
field and an oscillating force at frequency 2w, since sin’® ot

=1 — 1 cos 2wt. If w is so high that we may set sin® w? toits
time average, then

Fomdx Bl (35)
dt? 2L
and the loop is expelled from the B field according to
x =Xx,cos Qf, (36)
where
Q = B,J/(2ML)""2. (37)

Clearly, Eq. (36) holds only if £} €, so that the motional
emf may be neglected. In a time 7/2(), the loop (which was
initially at rest at x,) is expelled from the region of the B
field. This is easily understood in terms of Lenz’s law; the
system moves out of the region to minimize the rate of
change of the magnetic flux.
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C. A loop with both resistance and inductance

We assume that w is so high that, for purposes of solving
Eq. (29), we may treat x as constant. Then the solution for
iis

i=[Byxaw/(R*+ &*L?)][R cos ot + wL sin wt

—Rexp(—t/7.)], (38)

where 7, = L /R and we include the transient which en-
ables us to satisfy i = 0 at # = 0. If we now drop this tran-
sient, we find that Eq. (30) becomes

d*x
dt?
Bl%w

= — mz—z(R sin wt cos wt + wL sin? wt)x.
(39)

If we replace sin wt cos wt and sin” w? by their time aver-
ages, then Eq. (39) becomes

F=M

— d*x B2l%0°L

P~ "Ly ” 40)
so that

x = x, cos Q, (41)
where \

Q=0[wL/(R*+&’L?)"?]. (42)

Hence, the presence of resistance increases the time it takes
to expel the loop from the B field, since ( < ().

We repeat that we have neglected the motional emf that
would oppose the outward motion of the current loop. This
would give a term — B/ sin wt(dx/dt) which would be
added to the left-hand side of Eq. (29). If the fractional rate
of change of the B field is much greater than the fractional
rate of change of position, this term should be relatively
negligible. ‘

Finally, note that the introduction of capacitance to the
circuit can cause significant changes in the response of the
system. Mathematically, this can be done by letting
oL -oL — (oC) . In particular, note that if the capaci-
tance dominates the phase, the circuit will feel a net force
pushing it into, or a net torque orienting it along, the B
field. This seems to violate Lenz’s law, but can be under-
stood in terms of the capacitor dominating the inductance
(of course, at very short times, when the transients are
included, the inductance dominates), whose emf does sat-
isfy Lenz’s law. In fact, this suggests a method to find the
direction of an ac B field if it has a fixed, but unknown,
direction. Take a coil with a large capacitance in its circuit,
so that the capacitance dominates the phase. Mount the
coil so that it can rotate freely about some axis. The coil,
because of the dominant capacitive coupling, will orient as
much as possible along B. Hence, by changing the direction
of the rotation axis it should be possible to locate the direc-
tion of B. Actually, use of an inductively dominated coil,
free to rotate about some axis, would more easily locate the
direction of B. In two orientations of the axis, two normals
7, and 7, will be located. Their cross product will give the

- direction of B.

Comparison of the inductively and capacitatively domi-
nated cases provides an excellent example of the signifi-
cance of the seemingly abstract concept of “phase”: For the
inductively dominated case the ring is pushed out of the

W. M. Saslow 989



field and for the capacitatively dominated case it is pushed
into the field.

V. ARING IN AN OSCILLATING B FIELD

We consider here a ring of radius a in a B field with
B = B, sin wt, as in Sec. IV. The emf equation is

Byra*w coswt =iR + L %, (43)
where B> 0 implies that / is counterclockwise. The net
force on the ring will be zero, by symmetry, but there is a
radial force per unit length obtained from

dF =id1xB. (44)
With d 1 counterwise and B > 0, we find that dF points radi-
ally inward, with

4aF _ _ip.

dl

The solution of Eq. (43), for fixed R, is analogous to that of
Eq. (39). If we neglect the initial transient, then

i = [Byrad*w/(R? + &’L*)] (R cos ot + oL sin o),

(46)

(45)

so that
dF _ Blmd’w

il m(R sin wt cos @t + wL sin® wt).

(47)

In other words, there is a net compressional force

dF Blpad*w’L

| = (48)

dl et 2(R*+w°L")
and a net oscillatory force
dF Blma*w’L .
R = ————— (R sin 2wt — wL cos 2wt).
dl Vose 2(R2+a>2L2)( )

(49)

As for the case in Sec. IV, it is possible to feel the vibration
and to hear the noise associated with it. For /27 = 60 Hz,
this is a lovely example of 120-cycle hum. As in the pre-
vious problem, a capacitor may be included in the circuit
by letting oL »wL — (oC) ™", leading to the possibility
that the compressional force can become negative—a force
of expansion.

VI. THOMSON’S JUMPING RING

A diagram of Thomson’s jumping ring system is given in
Fig. 3. Currents I, and I, flow in the ring and in the sole-
noid, and are considered to be positive as viewed from be-
low. The mutual inductance M near the center of the sole-
noid is given by’

M =unNma?, (50)
where 7 is the number of turns per unit length of the sole-
noid, N is the number of turns in the ring (we will take
N = 1), and q is the radius of the ring. The magnetic field
due to the solenoid has a radial component

B, =ponl K, (3]

where K is a geometrical constant and is a measure of the
flaring out of the magnetic field due to the solenoid. Using
Eq. (44), now applied to the vertical component of the

990 Am. J. Phys., Vol. 55, No. 11, November 1987

> o

o}
Ir
Fig. 3. Schematic of Thomson’s jumping
ring, placed somewhat above a concentric
solenoid.
L4 Is

force on the ring, one finds that

dF,= —1.dIB,, (52)
so that
F,= —1,(2ma)B,
= _ (ugrK 2ma) L1, (53)
The emf equation for the ring is given by
dl, dl,
——Mdt =IR+L - (54)

We will assume that an external power source produces
an I, of the form

I, = I, sin ot. (55)
Neglecting transients, the solution of Egs. (54) and (55)
is
I, = — [MI,0/(R?+ ®’L?)](R cos vt + oL sin o?),

(56)
which gives
F, = (uonK 2ma) [Mwl%/(R* + o’L?)]
X (R sin wt cos ot + wL sin® ot). (57)
There is a net vertical force and an oscillatory force at fre-
quency 20.

It should be remarked that the value of I, very much
depends upon the presence of the ring. We have blown
fuses on our jumping ring apparatus at Texas A&M by
holding our ring in place, thus forcing the solenoid to pro-
vide a large amoung of power which goes into Joule heat-
ing. The work done by F,, which causes the ring to jump, is
usually negligible compared to the Joule heating. However,
cooling the ring (by dipping it in liquid N, ) gives spectacu-
lar results: On one occasion, a ceiling tile was knocked off
by the force of impact (in which case the work done by F,
must have been fairly significant). Note that, for oscilla-
tions rapid enough that the vertical displacement may be

W. M. Saslow 990



considered constant, we have the time average
F, = (uonkKM 2ma){0?L1%/[2(R* + &L ?)]}. (58)

Bécause K varies with height (as does M), this force is not
constant. At the center of a symmetrical solenoid, X =0,
so KM is at a minimum. As one moves above the center,
KM increases to a maximum somewhere near the top of the
solenoid, after which KM decreases. In the high-frequency
limit (where IR €Ldl,/dt),

F, = (uonKMma/L)I%),

a value which is independent of frequency.

It should be noted that if the ring moves, one must also
include a term — I (dM /dt) on the left-hand side of Eq.
(54) to account for the emf induced by the motion of the
ring. It is expected, however, that this term is relatively
small, because the magnetic (or inductive) inertia of the
current is typically much less than the mechanical inertia
of the ring.

If the ring is replaced by a circuit which is dominated by
a capacitor [again, let oL »wL — («@C) '], then the sys-
tem will be drawn into the region of the B field, asin Sec. V.
As mentioned in the Introduction, a resourceful under-
graduate has built a working model of this “sucking” ring.
Note that w, = (LC) ~/? typically exceeds 27(60s~") by
alarge factor, so that almost any coil in series with a capaci-
tor will be dominated by the capacitor.

The reader should note that the jumping ring was an
invention of the American scientist Elihu Thomson, who
employed its principles to make the first ac motor. An ac-
count of his discovery can be found in Ref. 2.

(39)

VIL. INDUCTION HEATING AND INTERACTION
OF NEIGHBORING CURRENT LOOPS

Consider two rectangular current loops in a plane, with
sides parallel. Let one of the loops be much larger than the
other, and let the smaller loop be outside of, but so close to
the larger one that the larger loop may be treated as if only
one arm mattered, so it is like an infinite wire. Let the near-
est arm of the smaller loop be a distance x away from the
nearest (effectively infinite) arm of the larger loop. Let its
parallel arm be a distance b further away and its height be
h. It is a standard calculation to show that the mutual in-
ductance is given by (with B = uyI /27r)

M= f BdS/I,

_ kol (E‘*_")
2r x

where I, is the current through the larger loop.

The emf equation for the smaller loop is [neglecting the

— I,(dM /dt) term from the motion of the smaller loop]

P _rri %
dt dt

where I is the current through the smaller loop.
The net force on the smaller loop, of mass m, is given by

F=md2x=1s 'uOII{_I—_ 1 )’
dt? 2r \x x4+b

where Eq. (5) was employed. Here I, (1;) is considered to
be positive if it is upward (downward) along the nearest
arms of the two loops. If we take I, = I, sin w¢, then the

(60)

) (61)

(62)
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solution of Eq. (61) is
I, = — [Mol,,/(R*+ ®’L*)](R cos ot + L sin ot),

(63)
so that
2
F=mdx
dt?
__ Mopdi, (1 1)
R +’LH\x x4+ b
X (R sin wt cos ot + oL sin? wt). (64)

Taking the time average (this assumes a more rapid vari-
ation of I than of x) we have

Fomdx _ __ Moulll {_1____1_)' (65)

dt? 4r(R*+*’LH\x  x+b

Since M depends upon x, it is not trivial to obtain a solution
to Eq. (66). Certainly it gives the appearance of motion ina
potential field, which causes the smaller loop to be repelled
by the larger one. However, it differs from true potential
motion in that there is a constant Joule heating of the
smaller loop, is given by

P=TR=M?**I*R/[2(R*+w*L?]. (66)

If the circuits are held fixed, then Eq. (66) gives a constant
rate of so-called induction heating. Usually, industrial ap-
plications of induction heating are made at such high fre-
quencies that the skin effect is important; indeed, to pro-
duce heating localized near the surface, the skin effect is
essential. Note that such induction heating occurs for all of
the cases where the magnetic field is oscillating (Secs. IV-
VII). Indeed, the jumping ring phenomenon is employed
to levitate small samples of metal in a high vacuum, which
are simultaneously subjected to induction heating.* When
the metal has become molten the field is turned off and the
sample falls under gravity, to be splat cooled by a piston
and anvil.

VIIL. ROTATIONAL EDDY CURRENT BRAKE
AND INDUCTION MOTOR

A. Eddy current brake

This is a well-known problem,' but we include it because
typically its mechanical significance is glossed over and
because it is a useful preliminary to Sec. XI. A diagram of
the situation is given in Fig. 4 for the case of a rotational
eddy current brake. The disk has a radius a, thickness 4,

Fig. 4. Schematic of an eddy current brake, with a disk of radius a spinning
about a vertical, with the axis in a fixed vertical B field confined to a square
region of side b.
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conductivity o, and rotates with instantaneous angular ve-
locity @ about an axis along which there is a field B. This
field is localized about a small square of side b at a distance
r from the center of the disk.

If the current flow pattern is uniform through the square
and the resistance is important only within this square, we
may employ the familiar equation R = o~/ /4, where the
wire length / is b and the flow has a cross-sectional area
A = bh. Thus R~ (oh)~'. (This is a severe approxima-
tion.) The magnetic torque is approximately given by

I, =rXF, (67)
where

F = ilxB. ' (68)
Here, the force is opposite to the disk’s velocity with re-
spect to the square, with F = — /bB, where { > 0 for radial-

ly outward current. Thus the torque is opposite to the
disk’s angular velocity, with

[ = — ibrB. (69)

The induced emf, from € = fvXB«dl, with v = e Xr, is
wBbr. Thus the emf equation is

wBbr=iR + L%, (70)

dt :

Here, L is of the order of ugb, so we have L~ (up)K’,
where K ' is a geometrical constant. If we include friction in
the bearing, with relaxation time 7, then with (69) the
torque equation is

I = — Iw/T — ibrB. (71)

Solving Eq. (71) for i, and employing this in Eq. (70),
yields
.. R 1 ) . ( R , B )
O+ |—+—]o+|— =0. 72
+(L7'+LT+LIw 72)
The same equation holds for /, with & replaced by i.
In the limit of large Rr/L, the & term in (72) can be

dropped (it yields a small amplitude and very rapid tran-
sient), giving

o+ (1/r)o=0 (R7/L>1), (73)
where

1/r,=1/7+0B**h/I (74)
and we have used R =~ (¢h) ~. This has a solution

o =ay,exp( —t/7,), (75)
so that ’

0=w=aw,exp(—1t/7)), (76)

where w, is the initial angular velocity.
In the limit of small R /L and small 1/7, & oscillates
according to

&+ (B**?/Lhe =0, (7N
so that

» = mg cos (U, (78)
where

Q = Bbr/\LI . (79)

We will not discuss the more general case, whose possibi-
lities may be considered by the reader. It should be clear
that, when the resistance dominates, it provides a signifi-
cant source of damping. The reader can compute the total
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2R Joule heating loss and verify that fi°R dt = } Iw3, the
initial kinetic energy (before B was turned on).

B. Induction motor

Now let B rotate about the axis at the fixed angular ve-
locity w,. This induces currents in the disk which bring the
latter into rotation, eventually at the angular velocity w,. If
there is no friction in the bearing the torque equation is still
givenby (71), but now the induced emf'is (w — w,) Bbr, so
that the emf equation (70) is replaced by

(w — wo)Bbr =1iR +L%. (80)

Elimination of i from Eqgs. (71) and (80) yields
l). (R szer) B
+ w0 = @

. (R
b+ |—+—)o+[—+
(L T Lt LI LI

o
(81)
The steady-state solution @ of Eq. (82) is, with
75 =1/(cB***h), (82)
@ =1 +1/0B%*Pht) ™' = wo(l + 15/7) "
(83)
If the friction in the bearing is negligible, so that 7— 0,
then @ ~w,; otherwise, bearing friction is a factor in deter-
mining the operating speed of the induction motor. Clear-
1y, we have chosen to ask only a few questions about this

system. Note that from (80) the steady-state current is
given by '

i= (Bbr/R)(@ — wy) = — (Joy/Bbrr) (1 4+ 75/7) 7}

(34)
and the steady-state rate of dissipation P is given by
P=7R+13%/r= Io}/7)(1 +75/7)"". (85)
Thus as 7/75 > 0,
@-w, i-0, P-0; (86)
whereas, as 7/75 -0,
B-wy(1/75), i— —Ilwy(Bbrry)~', P—lwi/7y.
(87)

In practice, it is of interest to consider the case where the
motor must support a constant load torque — I', duetoan
object which the motor must turn (e.g., hoisting an ele-

phant). In that case Eq. (71) becomes
I = —Io/r—ibrB—T;. (88)

The emf equation is still given by Eq. (80), but the equation
for w is now given by

252
z,>+(5+i)a>+(i+ Bb ”)w
L T

Lr LI
252 RF
_B% r w0, — e (89)
LI LI
The steady-state solution @, is
B = (1 +75/7) @y — 13T /1). (90)

Addition of a constant load torque decreases _thp steady-
state angular velocity. Equation (90) is not valid if o, <O.
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IX. DAMPING OF A PERMANENT MAGNET
OSCILLATING IN AN EXTERNAL B FIELD

In 1825, Arago noticed that a magnetic needle, when
placed in a magnetic field, would oscillate for a much
shorter time if placed near a large piece of copper than if
placed far away from the copper.* This phenomenon was
later explained by Faraday as a consequence of the action
of induced currents. Without the copper present, three
sources of damping come to mind: bearing friction, air fric-
tion, and currents induced in the magnetic needle itself.
For small oscillations, the latter become negligible because
the emf varies as 6 sin 8, where the angle 8 between the
magnetic moment m of the needle and the external B field is
small. The other effects may be incorporated into a rota-
tional drag term, as done previously.

In the presence of a sheet of copper, we model the damp-
ing as the torque on the magnetic needle, which we assume
to have a length 27, and to produce a field B, localized over
an area b ° of a sheet of copper having thickness /# and con-
ductivity ¢. Following Sec. VIII, but including the mXxB
torque on the needle, the torque on the magnetic needle is

16 = —mBsinG—I@/r—iero, (91)

where the last term is the torque due to currents induced in
the copper sheet. It is obtained by the product of the mo-
ment arm r of the magnetic needle with the reactive force
on the magnet ibB,,. The emf in the copper sheet satisfies
[by analogy to (70)]

; . di

@B.br =iR + L —.

’ dt v

Now consider @ to be small, so sin &~6. Then (91) be-
comes

I~ — mBO — 10 /7 — ibrB,. (93)

IfR> L(di/dt), as was probably the casein Arago’s experi-
ments, then (92) yields i = Bybr6 /R and Eq. (93) becomes

(92)

5 a1 | b°rBY ) mB
6+6 (—— + —0=0. 94
T IR + I o8
If this corresponds to underdamping, then with
1 b**B} oBlb*h )
—_ = = (95)

s IR I

[which is the same as Eq. (82) ], the frequency of oscilla-
tion is

Q= Q[ (1 — 17403) (1/7 + 1/75)*] "2, (96)
where

Q,= (mB /)", (97)
The characteristic decay rate is

a=2(1/7+ 1/13). (98)
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It is thus clear how the presence of the copper sheet could
have increased the rate of decay. Further, since 1/75 is
proportional to A, the decay rate increases as the thickness
of the copper sheet increases, in qualitative agreement with
another of Arago’s findings.

One experiment Arago could not have performed in-
volves using a superconducting aluminum sheet, with
R = 0. In that case, by (92) one has i = Bybr@ /L (uptoa
constant, which we set to zero), so that Eq. (93) becomes

0+ (1/7) 8 + (mB /I + B2b*P/LI)6 = 0. (99)
For 7— o this gives an oscillation frequency
Qo= [(mB+Bb*P/L)/I1'? (100)

which is higher than €),. In other words, the presence of a
superconductor causes the needle to oscillate more rapidly.
Physically, a repulsive image magnet has been induced in
the superconductor; this provides an additional restoring
force on the magnetic needle.

X. CONCLUSION

It is hoped that this collection of problems has added to
the reader’s insight and perhaps has suggested new ways to
employ Faraday’s law. Would it not be interesting to move
an object about simply by beaming microwaves at a metal
plate on the object and thereby pushing it in the opposite
direction? No motors would be needed: only wheels, metal
plates, and a directable source of microwaves. Moreover,
by using capacitors and a second (and lower) microwave
frequency, it might be possible to move things about by
pulling them. That is, the lower frequency would be below
the object’s resonant frequency, so that the capacitor
would dominate, leading to an attractive force; whereas the
higher frequency would be above the object’s resonant fre-
quency, so that the inductor would dominate, leading to a
repulsive force.

Note added in proof: Since submitting this paper, I have
become aware of the following work that treats the “levi-
tating” ring: S. Y. Mak and K. Young, Am. J. Phys. 54, 808
(1986).
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