Electric fields and charge distributions associated with steady currents
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By means of the example of a very long straight wire, we investigate the question of
what determines the electric field outside current-carrying conductors.

Merzbacher! raises the question of the conditions which
determine the electrical field outside of a straight cur-
rent-carrying wire. The answer is related to the answer to
another question, viz., what causes the electric field inside
a current-carrying wire. We are not aware of any literature
where these questions are answered and would like to offer
the following solution.

For a steady current in a homogeneous conductor, the
charge density p is zero inside the conductor. This familiar
result follows when the continuity equation for steady
currents,?

op
0=—+4+V.J= -J,
- v.J (1)

is combined with Gauss’s law
V-E=p/e (2)

and the relation between the electric field E and the current
density J,

J =oE, (3)

since the conductivity o is constant.

Let us now consider an infinitely long wire of constant
circular cross section. Let us also imagine a Cartesian
coordinate system whose origin is somewhere on the axis
of the wire and whose z axis coincides with the axis of the
wire. It follows from Eq. (1) combined with symmetry
considerations that only the z component of J is nonzero and
that it can only be a function of x and y. It follows from
Maxwell’s equation

VXE=0, 4)

that such a J,(x,y) cannot be a function of x and y either.
Thus J is a constant vector everywhere inside the wire
pointing in the z direction and, because of Eq. (3), the same
is true for E.

If there exists a static electric field somewhere in space,
we require as a boundary condition that there must be
charges somewhere from which this field “originates.” As
we have just seen, in the present case the charges cannot
reside inside the wire. Neither are there any charges outside
the wire. The only place where charges can be is on the
surface of the wire because the preceding argument does
not exclude the possibility of a surface charge density. We
will now guess a distribution of surface charge and then
verify that it leads to the correct field inside the wire. Let
us introduce cylindrical polar coordinates r, 8, z related to
the Cartesian coordinates x, y, z in standard fashion. We
will assume there to be an amount of charge ¢z d# dz within
a wire surface element defined by df and dz, where c is
independent of 6 and z. Thus the assumed charge density
varies linearly with z and has cylindrical symmetry.
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At any point (r, 0, z) either inside or outside a wire ex-
tending from —L to L, the electric potential ¢(r, z) due to
such a charge distribution is given by

c 2% L
o(r,z) =—— f db f dz’
dmeg Jo —L
zl

% V(2 = z)?2 + R%[sin20 + (cosf — r/R)2j’

where R is the radius of the wire. By an elementary but
somewhat tedious calculation, done in the Appendix, one
can show that for L >> R, expression (5) is equal to

o(r,z) = (c/e)(In L/R)z L> R L>»zr. (6)

(%)

Expression (6) is valid for points that are within a distance
much smaller than L away from the origin. As L — o,
formula (6) becomes valid for all points both inside and
outside the wire. We see that formula (6) does indeed give
the correct electric field inside the wire,

E=-V¢=—(c/eo)(In L/R)Z. )]

For a given field whose z component equals E, the necessary
surface charge density equals

cz/R = [~Eeo/R1n (L/R)]z. (8)

As L — o this surface charge density goes to zero at any
given point z.

Thus we obtain to the questions asked at the beginning
the surprising answer that an infinitely long wire in which
a steady current is flowing has a vanishing surface charge
density (8) and a uniform electric field (7) both inside and
outside the wire. It is particularly noteworthy that as L
— « the electric field outside the wire has a vanishing
component normal to the wire. This is so because of can-
cellations of contributions to this component from the
positive and negative charges on the wire. One should re-
alize that charge distribution (8) assumes that the net
charge on the wire is zero. Other solutions exist, which su-
perimpose on (8) a uniform charge density. For such solu-
tions there would be a nonvanishing normal electric field
component outside of the wire.

Let us consider the Poynting vector S outside the wire.
The magnetic field outside a straight wire carrying a current
I has the magnitude

H = [/27r %)
and points clockwise when viewed in the current direction.
The uniform electric field outside the wire has magnitude

E and is directed in the current direction. Thus the Poynting
vector

S=EXH (10)
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everywhere points directly towards the axis of the wire and
is of magnitude

S = IE/27r. (11)

When S is integrated over a cylindrical ring of unit length
and concentric with the wire, we obtain the power crossing
that ring towards the wire. The result, which equals IE, is
independent of » and is equal to the Joule heating that takes
place inside the wire.

Summing up, to determine the electric field outside a
system of conductors carrying steady currents one has to
solve the following problem. First, one has to determine a
solution to Laplace’s equation for the electric potential in-
side the conductors,

V¢ =0, : (12)

such that the currents have the given values. We are as-
suming that the conductivities are given. Next, one deter-
mines a surface charge density which produces the electric
potential inside the conductors. The answer should be
unique if the entire system is assumed to have zero net
charge. At places where the conductivity is not constant,
nonzero charge densities will also exist inside a conductor.
The charge distribution determined in this manner will
allow calculation of the electric potential outside of the
conductors as well. It may be an interesting exercise to de-
termine in this manner the surface charges on two parallel
current carrying wires and the corresponding fields. It is
clear that a linearly varying charge density on either wire
as in Eq. (8) cannot be the answer if the two wires have
different internal electric fields because density (8) would
imply that both wires are producing uniform electric fields
throughout space whose superposition would also be uni-
form everywhere in contradiction to the assumption.

APPENDIX

We now would like to evaluate integral (5). With the
transformation of variables w = z’ — z and the abbrevia-
tion

S(r.0) = sin?0 + (cosf — r/R)? (A1)
we obtain
iffg 27 L-z wdw
¢( uj‘ d0 ;"L ~zV W 2'+4R%f
2w
+Zf fL— \/w2+R2f (A2)
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The first and second terms on the right-hand side of Eq.
(A2), denoted 4 and B, can be evaluated as follows:

Afd()\/mi

- j:" 49 WL =27+ R — VLT 2 ¥ R
(A3)

w=—L—-z

Assuming the conditions

L>»z, L>»r, L»R (A4)

and neglecting everything that is of order (z/L)? compared
to the leading term, Eq. (A3) reduces to

RY
a= " dﬂ[(L—z)(l+2(L_z)2)

_ RY
(L+7) (1 + 2(L+z)2)]
(A3)

= —4xz.

Similarly,

—zf d01n(w+\/w2+R2f)
w=—L—z
‘Zf dal( z+\/(L—z)2+R2fl)
L-z+VIF FRY

(e AL - z) + RY2(L - 7)
% Jo ‘wl“( RYJ2(L + z) )

2% 4L
=z . dol n(sz)

=larmE+ (% a0
"R ﬁ "f(r,ﬁ)z

Combining results (A5) and (A6) with Eq. (A2) we obtain
for the electric potential under conditions (A4) the ex-
pression

¢(r,z)=—-—(ln—+-——f dfln T 0)—1)

For sufficiently large L, Eq. (A7) is dominated by the first
term on the right-hand side, and we obtain formula (6).

-2z

(A6)

(A7)

1E. Merzbacher, Am. J. Phys. 48, 178 (1980).
2Al1l formulas and calculations will be in SI units.
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LETTER TO THE EDITOR

The concept of the atom is usually
ascribed to Democritus, and its devel-
opment from a philosophical abstrac-
tion attributed to Dalton (1808) and
Avogadro (1811). Their formulation
was the culmination of more than a
century of work on the quantitative in-
vestigation of chemical reactions. This
is thoroughly explored in the first two
of the four articles making up the sym-
posium ‘“‘History of the Atom” [Am.
J. Phys. 49 (3) (1981)].

There is, however, a parallel path
that has its origins in the study of crys-
tals, and that began in the 17th cen-
tury. These two lines of development
were finally united in 1912, with the
discovery of x-ray diffraction.

"As early as 1633 Kepler had pub-
lished diagrams in 4 New Year’s Gift
of Hexagonal Snow, in which the hex-
agonal symmetry of the snowflake was
related to the hexagonal patterns that
could be made by arranging spherical
balls in a plane. In 1665, Robert
Hooke published very similar dia-
grams in Micrographia and described
experiments in which he made models
of various solid objects from “bullets”
(presumably lead shot). A review of
this period would not be complete
without mention of the most striking
drawing of Iceland spa, published in
1690 by Huygens, in which the shape
of the rhomb and the “easy cleavage”
planes were explained in terms of the
close packing of some ellipsoidal ele-
mentary units.

What all three writers show is the
insight that the external shape, or
morphology, of a crystal is controlled
by the packing of what Hooke de-
scribed as “globular particles” and
Huygens ‘‘small invisible equal
particles.”

There is in all this a confusion be-
tween the concept of the atom or mol-
ecule and that of the unit cell, but, by
1801, Haiiy had replaced the “parti-
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cles” by a parallelopiped, or unit cell,
which he called the “molécule inté-
grante,” this, in turn, being composed
of “molécules élémentaires” or atoms,
and in so doing had laid the founda-
tions of modern crystallography.
The exact relationship between the
nnit cell and the constituent atoms
was a matter of considerable specula-
tion throughout the 19th century,
spurred on by the development of
symmetry theory, but the problem
was not solved until the experiment of
von Laue on the x-ray diffraction pat-
terns of zinc blende in 1912 ‘and its
subsequent interpretation by W. L.
Bragg in terms of what we would now
call a face-centered-cubic lattice. Per-
haps the final vindication of the views
of Kepler, Hooke, and Huygens came
in the late 1920s with the development
of Fourier methods, which have
proved decisive in our understanding
of the solid state in physics, chemistry,
and biology. '
D. M. Nicholas
School of Materials Science
and Physics
Thames Polytechnic
Wellington Street
London, SE18 6PB
England

LETTER TO THE EDITOR

The solution to the problem by G.
P. Sastry' is incorrect in part. If one
makes the reasonable assumption that
specular reflection is intended, then
Snell’s law immediately allows only
6 =0, except when / = 0, without use
of Fermat’s principle. The quantity / is
a distance and, by definition, />0. The
required change in sign of the second
derivative results from the fact that,
for point 4 outside the hemisphere;
the angle © becomes the external an-
gle of the triangle and the form of the
law of cosines must be changed ac-
cordingly. Thus for this case,

(dzD) _ —IR
dO%/e-o R+I’

which also eliminates the apparent

problem at /=R and the artificial
limitation |/ | < R.

F. W. Prosser

Department of Physics and Astronomy

University of Kansas

Lawrence, Kansas 66045

30 April 1981

'G. P. Sastry, Am. J. Phys. 49, 345 (1981).

LETTER TO THE EDITOR

The recent article “Electric fields
and charge distributions associated
with steady currents,” which ap-
peared in Am. J. Phys. 49, 450 (1981),
gives rise to questions and doubts con-
cerning the efficiency of the editorial
process at the Journal.

As many readers have probably dis-
covered for themselves, the results ob-
tained in this paper can all be found
explained with much greater math-
ematical clarity and physical insight
in A. Sommerfeld’s Electrodynamics
(Academic, New York, 1952). The au-
thors of the paper have to assume (ac-
tually, guess) that the surface charge
density on the wire is proportional to
z, whereas, in Sommerfeld’s elegant
and very thorough treatment, this re-
sult is derived clearly and unambigu-
ously from the basic equations.

I find it rather surprising that the
authors of the paper are not aware of
the above reference. Sommerfeld’s
Electrodynamics is the 3rd volume of
the famous series “Lectures on Theo-
retical Physics” and is one of the clas-
sic treatises of the literature on elec-
tromagnetism. It is even more
astonishing that these facts have total-
ly escaped the scrutiny of the referees.

Victor Namias
Department of Physics
Purdue University
Hammond, Indiana 46323
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