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For a closed system that contains an arbitrary pure substance, which can exchange energy as heat
and as expansion/compression work, but no particles, with its surroundings, the inexact differential
of the reversibly exchanged heat is a differential in two variables. This inexact differential can be
turned into an exact one by an integrating factor that, in general, depends on both variables. We
identify the general form of the integrating factor as the reciprocal temperature (Clausius’
well-known 1/T), which is guaranteed to be a valid integrating factor by the second law of
thermodynamics, multiplied by an arbitrary function of the implicit adiabat equation &(7,V)
=constant or &7, P)=constant. In general, we cannot expect that two different equations of state
(corresponding to two different substances) predict identical equations for the adiabats. The
requirement of having a universal integrating factor thus eliminates the volume-dependent or
pressure-dependent integrating factors and leaves only a function of temperature alone: Clausius’
integrating factor 1/7. The existence of other integrating factors is rarely mentioned in textbooks;
instead, the integrating factor 1/T is usually taken for granted relying on the second law or,
occasionally, one finds it “derived” incorrectly from the first law of thermodynamics alone. © 2006

American Association of Physics Teachers.
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L. INTRODUCTION

A central theme in the history of thermodynamics is the
quest for state functions that describe the changes of all mea-
surable equilibrium quantities in terms of a set of thermody-
namic state variables, that is, a set of variables that uniquely
determine a thermodynamic state. Equilibrium thermody-
namics is based on two laws, each of which identifies such a
state function. The principle of energy conservation implies
that any change of the internal energy U of a closed system
is caused by a transfer of heat ¢ into or out of that system or
by work w being done on or by the system.] In differential
form, the first law of thermodynamics thus reads

dU= 6q + éw. (1)

The differential of the state function U is exact, while the
differentials of heat and work are not (see below); the latter
fact is indicated by using the symbol & instead of d for these
differentials. Quantities that have exact differentials are state
functions, which means that the difference of the values of
such a quantity at two different state points depends only on
the position of these points, but not on the path that is taken
to get from the initial point to the final one. In contrast, for
quantities with inexact differentials, the difference depends
on the initial and final state points and the choice of the path
connecting them.”

The introduction of the state function U separates possible
processes (those that conserve energy) from impossible pro-
cesses (those that violate the principle of energy conserva-
tion). This separation is not sufficient because not all pro-
cesses that can happen will happen; some of them are (much)
more likely to occur than others. Hence, a second state func-
tion is needed to separate the likely (spontaneously occur-
ring) processes from the unlikely ones. If we focus on revers-
ible processes3 and assume that the system can only
exchange heat and expansion/compression work with its sur-
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roundings, the infinitesimal amount of work can be ex-
pressed as ow,.,=—PdV, where P denotes the pressure and V
the volume of the system. Thus, we obtain

AU = 8¢ ey + OWiey = 0oy — PAV. (2)

Because 6w, is given by purely mechanical variables, 8¢,
is the only quantity left to provide us with the sought-for
second state function. As state functions have exact differen-
tials, an integrating factor is needed at this point. An inte-
grating factor f is a function that accomplishes the goal of
turning an inexact differential, such as dg,.,, into an exact
one. This new exact differential f9g,.,=dS,.,, where the sub-
script “gen” stands for “generalized” in a sense that will
become clear later, is now associated with a state function
Seen-

The second law of thermodynamics can be divided into
two important parts, which are summarized by the following
statements:

* (2a) The reciprocal of the absolute temperature 1/7 is an
integrating factor for the differential of the reversibly ex-
changed heat g, for all thermodynamic systems (Car-
not’s theorem), which implies the existence of a new state
function, the entropy S (with the exact differential dS
=T_15CIrev)-

e (2b) In any irreversible adiabatic process, the entropy
increases—as implied by Clausius’ inequality dS= 6q/T,
where the equality holds only for reversible processes.

In the following, we will illustrate that 1/7 is an integrat-
ing factor for the ideal gas and then ask if, for this fluid, there
are other integrating factors for d¢,.,. It can be shown that, if
there is one integrating factor, there are infinitely many
more,’ although most textbooks omit this point. We will
identify these alternative integrating factors, but we will not
be concerned about whether the state functions S, (gener-
alized entropies) based on these alternative integrating fac-
tors really separate probable from improbable processes, that
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Fig. 1. Representation of the Carnot cycle in the pressure-volume plane. An
isothermal expansion (1) at temperature 7}, takes the system from state A to
state B; the system then expands adiabatically (2) to point C and the tem-
perature drops to T.. At this temperature, a compression (3) to state point D
occurs isothermally. An adiabatic compression (4) completes the cycle and
takes the system back to the starting point A at the higher temperature 77,

is, whether an analogous law of increasing entropy Sy, holds
for them. Instead, we will concentrate on the question of the
uniqueness of the integrating factor that turns dg,., into an
exact differential.

Based on Carnot’s observation that the efficiency of a re-
versibly working heat engine depends only on the tempera-
tures of the heat source and the heat sink, Clausius assumed
that the integrating factor is a function of temperature 7" only
and gave 1/T as the solution to the problem of turning 8¢,
into an exact differential.® Many textbooks” use the Carnot
cycle to illustrate that d¢,.,/7T is an exact differential for an
ideal gas: Starting from point A in Fig. 1, the working sub-
stance, a monatomic ideal gas, expands isothermally along
path 1 at temperature 7, to state point B. From there, an
adiabatic expansion takes it to point C at a lower temperature
T, at which the system is, subsequently, compressed isother-
mally to point D. An adiabatic compression returns the sys-
tem to starting point A.

The equations of state for the pressure and the internal
energy of a monatomic ideal gas are

NkT
pP=—, 3
v 3)
3
U= JNKT, (4)

where N is the number of particles and k is Boltzmann’s
constant. During the isothermal expansion 1, the heat trans-
ferred to the system is

q1 :NkTh ln(VB/VA) (5)

There is no heat exchange during the adiabatic processes 2
and 4, and we have ¢,=¢4=0. Upon isothermal compression
3, the heat loss of the system is

q3 =NkTC IH(VD/Vc) (6)
From the adiabat equation, which for the monatomic ideal
gas is TV*3=constant, we can infer that the four volumes are

related by Vp/V,=V/Vp. Using this relation, we obtain
¢/ T,+q5/T.=0, indicating that the sum (integral) over a
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closed cycle is zero, as required for a path-independent
change.

A more formal way of deriving an integrating factor that
does not req7uire using the Carnot cycle considers the first
law directly.” From Eq. (2), the differential of the revers-
ibly exchanged heat is obtained as

8y =dU + PdV. (7)

We regard U as a function of 7 and V and write its exact
differential as

oUu oUu

dU=(—) dT+(—) dv. (8)
ar) v/,

Substituting Eq. (8) into Eq. (7), we obtain
ou
<%mv=CWdT+[<——> +P}dV, 9)
v/,

where the definition C,=(dU/JT)y has been used. The dif-
ferential in Eq. (9) is exact if (and only if):

- , 10
v T (10)

which is not the case for the monatomic ideal gas because
Nk/V#0.
If we now multiply Eq. (9) by a function f(7), such that

o] ]
arncy 1w ),

11
av or (1)

is satisfied, dq,., is turned into an exact differential by the
integrating factor f(7T). For the monatomic ideal gas, Eq. (11)
leads to an ordinary differential equation for f(7):

0=f’(T)P+f(T)<£> , (12)
ar/,
where the prime denotes the derivative of f with respect to
its argument. Because (JP/JT)y=P/T for the ideal gas, the
solution of the differential equation (12), which can be writ-
ten as 0=Tf"(T)+f(T), is

AT) =T, (13)

where ¢ is an arbitrary constant. No other function of T
alone can turn d¢,., into an exact differential; the integrating
factor 1/T is therefore unique among all f(7). (The value of
the constant ¢, is irrelevant as long as ¢, #0, so we may
choose cy=1 for convenience.) The new state function was
termed entropy by Clausius, its differential is dS=dq,.,/T.
The question remains as to whether f(T)=c,T"" is the only
integrating factor for dg,.,. Vemulapalli7 has suggested divid-
ing 0q,., by the pressure instead of the temperature to illus-
trate that there is something special about the integrating
factor 1/T, because multiplication of d¢,., by 1/P does not
yield an exact differential for an ideal gas. Mathematically,
however, it can be shown that Pfaff differential forms in two
variables, such as the right-hand side of Eq. (9), have infi-
nitely many integrating factors,” so that 1/T appears to be
just one of many. In Sec. II, we will identify these more
general integrating factors that, in addition to being functions
of the temperature, may also depend on volume or on pres-
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sure, respectively. The derivation will show that P~%3, unlike
the factor 1/P suggested in Ref. 7, is a valid integrating
factor for the ideal gas that depends only on the pressure.

Note that we assume 1/7 to be an integrating factor by
virtue of the second law. Although 1/7 is valid for the ideal
gas, its validity cannot be extended to general thermody-
namic systems without referring to the second law."" At-
tempts to do so are flawed, but are found, for example, in
Refs. 8 and 9.

II. THE GENERALIZED INTEGRATING FACTORS
A. Volume-dependent integrating factors
We first consider an integrating factor of the form f(7,V).

The condition for an exact differential after multiplying both
sides of Eq. (9) by f(T,V) becomes:
dJfr,vycy] o (aU)

Ve D ATV =] + AT.V)P, 14

Py P )(WTf( ) (14)

which, after differentiation, can be rearranged to give the
following partial differential equation:

ol ) -5 (),
(2] (o) () ]

()
=\ )s

where Schwarz’s theorem (FPU/IVIT)=(U/dTdV) has
been used because U is a state function as we know from the
first law of thermodynamics. Equation (15b) is a homoge-
neous first-order partial differential equation of the general
form

(15a)

(15b)

a(T,V)fy+b(T,V)fr=c(T,V)f, (16)

where f, is a shorthand notation for the partial derivative of
f with respect to the variable x. One way of solving Eq. (16)
is the method of characteristics.'' The idea of this method is
to identify special paths in the (7,V) plane, the characteris-
tics, along which the partial differential equation reduces to
an ordinary differential equation, which can then be solved
relatively easily. This simplification is achieved by a trans-
formation of variables. We introduce &(T', V) and #(T, V) and
use the chain rule to express Eq. (16) as

af by +af,my+bfr+bf ,mr=cf. (17)
With A=aéy+bé&; and B=any+bnr, Eq. (17) becomes
Afe+ Bf ,=cf. (18)

The condition for Eq. (18) to reduce to an ordinary differen-
tial equation with & constant and 7 as the only variable with
respect to which derivatives are taken, is A=a&,+b&;y=0. On
the other hand, if &(T,V) is constant, we have dé=§&,dV
+&/dT=0, and therefore,
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dT _ b(T,V)
av  a(T,v)’

(19)

which represents the defining equation of the desired char-
acteristics in terms of the original variables 7 and V. For Eq.
(15b), the characteristics are given by:

¥
P+|—

dv Cy (20)
These characteristics are nothing but the adiabats defined
by 8¢,,=0; if we use this relation in Eq. (9), we obtain Eq.
(20). The reversible adiabats that we are considering here are
also referred to as isentropes (lines of constant entropy) be-
cause, in a reversible process, there is no change in entropy if
no heat is exchanged.
The ordinary differential equation (with respect to 7),

B(T,V)f,=cf, (21)

is simple to solve if we choose 7 to be a function of just one
of the original variables, T or V. Either is possible, but let us
choose 7=T to retain the empirically valid integrating factor
1/T in a transparent way. The choice 7=V would lead to the
same result. Furthermore, once we know that 1/7 is a valid
integrating factor, it can be shown that the general integrat-
ing factor f(T,V) may be factorized according to f(T,V)
=T 'g(T, V),4’5 where g is a function that we are about to
determine. Because Eq. (21) is a first-order partial differen-
tial equation, we expect only one arbitrary function to occur
in the general solution. Thus, with #,=0 and 7;=1, we ar-
rive at

bf,=cf (22)
or, for Eq. (15b),
AN
_[P-F(‘;V)J 3T—(z9T>Vf' (23)

Equation (23) simplifies to a well-known ordinary differen-
tial equation if

(aU) (aP)
=) =1%] -P. (24)
v/, ar/,

which is the requirement for 1/7 to be an integrating factor.®
If this condition is satisfied, we obtain

9 _
-7 = f, (25)

the solution to which we have seen already: f=c,7~'. This
result comes as no surprise because we have assumed that
Eq. (24) is satisfied, but it goes beyond the result quoted in
Eq. (13) because ¢ is actually an arbitrary function of the
constant &(T,V), and, therefore, a particular combination of
the variables T and V as defined by the characteristics, the
adiabats, in Eq. (20). The integrating factor can thus be writ-
ten as f=T"'g(&T,V)), where g can be any differentiable
function.

For the monatomic ideal gas, the adiabats are defined by
the condition TV23=constant,” and we obtain the generalized
integrating factor f=T"'g(TV??). If we set 7=V in Eq. (21),
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we would find f=V?*3g,(TV??), an equivalent result because
both g and g, are arbitrary functions, so we may choose
g1(x)=g(x)/x to obtain identical expressions.

Now that we have identified the general integrating factors
for the ideal gas, we need to determine if they hold for other
systems as well. For convenience, we consider the simplest
system that shows deviations from ideal gas behavior: The
hard sphere fluid. The interaction between two particles of
this system is infinite if the two spheres overlap, that is, if the
separation of their centers, r, is less than the diameter o of
the spheres; the interaction is equal to zero if r>¢. Due to
the lack of a natural temperature scale for this system (nei-
ther zero nor infinity is suitable for defining a temperature
scale), the virial coefficients B, are determined only by o.
For example, the second virial coefficient is given by B,
=2ma>/3.

The pressure of the hard sphere fluid will be higher than
that of an ideal gas at the same number density p=N/V at
any given temperature due to the excluded volume.'? The
internal energy is the same as for the ideal gas because the
spheres cannot overlap and there is no interaction if they do
not overlap. For low densities, the pressure can be repre-
sented by a virial series: 3

o0

P=kTp+kT>, B,(T)p". (26)
n=2

For the hard sphere fluid, the virial coefficients B, do not
depend on temperature, and we have

o

P=kTp+kT>, B,p", (27)

n=2

3
U= ENkT. (28)

In this case, the adiabats can be calculated explicitly from
Eq. (20):

1 Nn—l

2 (e
V3 exp(— 52 _IWB") = constant. (29)
n=2 10—

Because Eq. (24) is satisfied for the hard sphere fluid (just as
for the ideal gas, implying the validity of 1/7 as an integrat-
ing factor for both of them), the generalized integrating fac-
tor for the hard sphere fluid can be written as:

2en 1 NI
f= Tlh[TVm exp(‘ EE 1 V”"B")]’ (30)
n=2

where & is an arbitrary differentiable function. The only way
that the function f can be the same as for the ideal gas, f
=T"'g(TV??), is if h=g=constant due to the different ways
in which g and & depend on 7 and V. The requirement of
having a universally applicable integrating factor leaves
only T

To illustrate the consequences of this requirement explic-
itly, we define a generalized entropy based on the integrating
factor of the monatomic ideal gas, f=T"'g(TV??). At this
point, the requirement that the entropy based on any integrat-
ing factor should be an extensive quantity (a homogeneous
function of the first degree) rules out all nonintensive inte-
grating factors, that is, all but the one obtained from g=1 (or,
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at least, g=constant). (This argument, however, will not ap-
ply to the pressure-dependent integrating factors of Sec.
II B.) For volume-dependent integrating factors, it is, never-
theless, instructive to ignore this additional requirement for
the time being and to continue by defining:

ngen = T_lg(TVZB)a%'ev' (31)

The application of the Legendre transformation to replace
Sgen by the variable T results in the following generalized
Helmholtz free energy:

T
Agen=U— ——57Seen-
g g(TVZ/S) g

The condition that both the internal energy U and the gener-
alized Helmholtz free energy A,., have to be state functions
and thus have exact differentials yields two Maxwell re-
lations. Introducing the notation x=TV?3g’/g, where the
prime indicates differentiation with respect to the argu-
ment, we write

(32)

[222) (2
v )y \as)y
(a[s(l - x)/g]> ~ ( a[2xTSI(3Vg) - P])
- av - ar V
(34)

which for g=1, implying x=0, reduce to the well-known
Maxwell relations in standard thermodynamics.

For the differential of the generalized entropy, which is
obtained by inserting Eq. (9) into Eq. (31),

g U g| [ oU
dSeen ="\ — | dT+ || —— | +P|dV, (35)
T\dT ]y T L\dV/p

to be exact, we obtain the condition

ou T (oP\ 2 x T(oU
—| =-P+ —| -=—==]. 36
v/ 1-x\or/, 31-xv\dr/,

which, by construction, is satisfied by the monatomic ideal
gas, but not necessarily by other fluids. For x=0 (g
=constant), Eq. (36) reduces to Eq. (24). To check the
validity of Eq. (36) for substances other than the mon-
atomic ideal gas, we need the equations of state, P(T,V)
and U(T,V), of those fluids. The number of particles N is
assumed to remain constant. If we substitute Egs. (27) and
(28) for the hard sphere fluid and match each power of the
density, keeping in mind that dB,/dT=0, we obtain:

1
B,=7_ B (37)
- X

which can be satisfied only if x=0, which implies that g
=constant. We conclude that, of all the mathematically
possible integrating factors, only Clausius’ choice of 1/T
works successfully for both the ideal gas and the hard
sphere fluid.

B. Pressure-dependent integrating factors

In the quest for pressure-dependent integrating factors, it
is more appropriate to start from the exact differential of the
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enthalpy rather than the internal energy. Using the definition
of the enthalpy, H=U+ PV, an infinitesimal amount of re-
versibly exchanged heat can be expressed as

04y =dH — VdP,

=CpdT {(@) V]dP (38)
=erdt i \Gp) T ’

where the exact differential of H(T,P) and Cp=(dH/JT)p
have been used. Adiabats (8¢,.,=0) are defined by

oH
(%),
d_T:_(QP—T (39)
dpP Cp

We multiply both sides of Eq. (38) by a function f(T, P) and
require the product (fdg,.,) to be an exact differential; the
condition for f(7T,P) is

afCc 14 oH
AfCp) _ 9 fK_) —v} . (40)
oP  oT oP) ¢
If we rearrange the terms and use
#H  FH
=, (41)
JPJT  JdTIP

we obtain a partial differential equation for f(7,P):

ol i) ), (F)y

The characteristics of Eq. (42) are the adiabats given by Eq.
(39). Each characteristic defines a path in the (7, P) plane,
which is represented implicitly by &7, P)=constant. We ex-
ploit the constancy of &T, P) and, for convenience and to
ensure the validity of statement (2a) of the second law,
that is, 1/7 is one of the integrating factors, we set =T as
the new variable. Equation (42) then simplifies to

A R P

All thermodynamically acceptable equations of state satisfy

(&H) (av)
— | =v-1{—]) , (44)
oP ), ar )

which is ensured by statement (2a) of the second law of
thermodynamics. Hence, we arrive, once more, at
of

T oT =f, (45)
with the solution f=c,T"!, where ¢, is now a function of T
and P as dictated by the adiabat equation &7, P)=constant.
The complete solution thus reads f=7""'g(&(T,P)), where g
is an arbitrary differentiable function.

For the monatomic ideal gas, we obtain f=T"'g(TP~
Choosing 7n=P in the process of solving the partial differen-
tial equation (42) using the method of characteristics yields
f=P 3¢ (TP~%%), an equivalent result. If Vemulapalli’ had
suggested division by P? instead of just P, he would have
found that P=2> (obtained by setting g(y)=y or g;=1) is a
valid integrating factor for the monatomic ideal gas and that

2/5)'
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in the context of finding valid integrating factors without
referring to the second law of thermodynamics, there is noth-
ing special about the integrating factor 1/7.

The analogous integrating factor f(7,P) for the hard
sphere fluid is much more difficult to obtain in explicit form.
It would involve an arbitrary function & of T and P in a
combination that is determined by the adiabats so as to sat-
isfy Eq. (39), that is, h(&(T,P)), where &=constant is an
implicit representation of the adiabats. This particular com-
bination will be different from the ideal gas combination
TP~5. A universally applicable integrating factor is obtained
only if we require g=h=constant, thus eliminating the
pressure-dependent integrating factors and leaving only 1/7.

Thermodynamically, the properties of a pure substance are
entirely determined by just two state variables if we keep the
number of particles constant. In addition to 7 and V or T and
P, a complete description of the system is also possible in
terms of P and V. If we set up a partial differential equation
to determine the integrating factor f(V,P) in a way that is
analogous to the treatments of f(7,V) and f(T,P), we find
f=V3g(V¥3P¥5)  or, equivalently, f=P g, (V¥3P?>),
where g and g, are arbitrary differentiable functions for the
ideal gas. Both forms involve the adiabat equation for the
monatomic ideal gas, so we cannot expect these integrating
factors to be valid for other systems. Imposing statement (2a)
of the second law on the partial differential equation for the
integrating factors in terms of P and V, which amounts to
insisting on 1/7 being a valid solution, leads to the require-
ment that

v\ [oP TV
Cp - CV =T R = ’ (46)
P \%4

(?_T‘ ar Kp

which is a well-known result derived in a rather unconven-
tional way. Here « is the thermal-expansion coefficient and
k7 denotes the isothermal compressibility.

III. CONCLUSIONS

Based on the method of characteristics for solving partial
differential equations, we have identified integrating factors
that turn the inexact differential of the reversibly exchanged
heat into an exact one. If the integrating factor is restricted to
be a function of temperature alone, Clausius’ integrating fac-
tor f:cT‘l, with ¢ being a nonzero constant, is obtained, as
implied by the second law of thermodynamics. If we allow f
to depend on two variables, temperature and volume or tem-
perature and pressure, then there are infinitely many more
integrating factors, a fact that is known from the properties
of a differential in two variables. If we assume the validity of
the second law, thereby ensuring that 1/7 is an integrating
factor, these more general integrating factors are formed by
multiplying 7~! by an arbitrary differentiable function of the
respective implicit adiabat equation &(T',V)=constant or
&T,P)=constant to give f=T"'g(&). Since the functional re-
lationships implied by the adiabat equations will, in general,
be different for different substances, the only way of having
a universally applicable integrating factor that is valid for all
substances is to require g to be a constant. Thus, Clausius’
result f=1/T is recovered (choosing g=1 is a convention). It
is remarkable that there is no need to refer to statement (2b)
of the second law of thermodynamics to eliminate all the
alternative integrating factors. (In general, it is necessary to
refer to statement (2a) to ensure the existence of an integrat-
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ing factor.) Clausius probably never considered more general
integrating factors because he knew about Carnot’s result
that the efficiency of a heat engine depends only on the tem-
peratures between which the engine operates.

From the equations of state alone, Clausius’ integrating
factor 1/T can be shown to work for all imperfect gases that
have a regular virial expansion (“regular” means that only
integer powers of the density occur in the expansion and that
the virial coefficients exist). The question remains whether it
is a valid integrating factor for all substances because the
equations of state needed to evaluate Egs. (24), (44), and
(46) for an arbitrary substance are not available, in general.
What ensures the general validity of 1/7 as an integrating
factor is the second law of thermodynamics in one of its
standard versions according to Kelvin, Clausius, or
Carathéodory.4’5’14’15

Although mathematics alone ensures the existence of inte-
grating factors for differentials in two variables, there is no
guarantee of the integrability of differentials in three (or
more) variables. The second law ensures that 1/7 is valid
even in these cases by eliminating all potential equations of
state that violate the second law by failing to have 1/7 as an
integrating factor for the differential of the reversibly ex-
changed heat. In particular, Carathéodory’s work focused on
identifying the minimal extra-mathematical assumptions that
would imply the second law of thermodynamics and,
thereby, ensure the existence of an integrating factor for all
thermodynamic systems.45 16=2 Caratheodory s principle, in
combination with the theorem that bears his name, states
that, “to ensure the existence of an integrating factor for a
differential in more than two variables, there have to be
states in the immediate vicinity of any given equilibrium
state that cannot be reached from this state by adiabatic pro-
cesses.” One can then show that the integrating factor may
be chosen to be a function of temperature alone, and refer to
the ideal gas to identify it as 1/7. Without Carathéodory’s or
an equivalent formulation of the second law, the existence of
an 1ntegrat1ng factor for an arbitrary system cannot be taken
for granted. > An exception is the special case of having a
differential in just two variables, which is the case studied in
this paper, because mathematics alone guarantees the exis-
tence of integrating factors.

There have been attempts to demonstrate that the entropy
concept follows from the first law and the process of turning
the inexact dlfferentlal of the rever51bly exchanged heat into
an exact one’ (cf the comment in Ref. 10). An equivalent
procedure is to infer the validity of 1/7 as an 1ntegratm%
factor for all substances from its validity for the ideal gas.
Djurdjevi¢ and Gutman® presented what they claimed to be
proof that 1/7 is an integrating factor for all substances by
constructing a cyclic process in which the nonideal substance
is in contact with an ideal gas, but the proof seems to antici-
pate the result by assuming that there is an integrating factor
for the arbitrary substance without referring explicitly to the
second law, which would then guarantee that 1/7 is one such
integrating factor. Following their line of reasoning, it would
be possible to show that each integrating factor for the ideal
gas works for any arbitrary substance as well. This conclu-
sion is clearly incorrect, as we showed for the hard sphere
fluid.

A different way of phrasing that 1/7 is an integrating fac-
tor for an arbitrary substance rests on the version of the sec-
ond law of thermodynamics that states that all reversibly
working Carnot engines, regardless of their working fluid,
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must have the same efficiency, which depends only on the
temperatures between which the Carnot engine operates. 21t
any two reversibly working engines had different efficien-
cies, we could convert heat completely into work by cou-
pling two engines, using the more efficient one as a heat
engine and the less efficient one as a refrigerator such that
there is no net discharge of heat to the reservoir at the lower
temperature, thereby violating Kelvin’s version of the second
law. The validity of the second law thus guarantees the ex-
istence of the integrating factor 1/T; it is therefore, as Wi-
dom phrased it, a “law of nature, not of mathematics.”*
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