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The relation between entropy, information, and randomness is discussed. Algorithmic information
theory is introduced and used to provide a fundamental definition of entropy. The relation between
algorithmic entropy and the usual Shannon–Gibbs entropy is discussed. ©1999 American Association

of Physics Teachers.
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I. INTRODUCTION

In this article, I review the connections between entro
information, and computation. The advent of mass-mar
computer technology means that students are now com
able with the notion that information is physical and quan
tatively measurable. Students are familiar with the idea t
definite amounts of information may be stored in digital fo
on hard drives and other storage media and in dyna
memory. Thus, information can provide a useful handle
beginning statistical physics students struggling to und
stand the meaning of entropy. A discussion of the relati
ship between information and entropy also gives student
interdisciplinary perspective by showing that concepts c
tral to statistical physics also appear in fields such as ele
cal engineering, computer science, and statistics.

The history of the relationship between entropy, inform
tion, and computation goes back to the first half of the 2
century with Szilard’s analysis of Maxwell’s Demon1 and
Shannon’s work on communication theory.2 Jaynes3 and
Brillouin4 sought to place statistical mechanics on an inf
mation theoretic foundation. Shannon’s definition of info
mation is probabilistic and applies to ensembles of messa
just as the usual definition of entropy applies to statisti
ensembles of microstates. A definition of the informati
content of individual objects was independently develop
by Solomonoff,5 Kolmogorov,6 and Chaitin7,8 and shown to
be intimately related to Shannon’s probabilistic definitio
Based on this equivalence, Bennett9 and Zurek10,11advanced
the notion that the entropy of individual microstates of phy
cal systems could be defined. This viewpoint is adopted
this article.

The foregoing developments are not usually treated in
troductory statistical physics books. An exception is Bai
lein’s text,13 which presents the subject of statistical mech
ics at an elementary level using Shannon information the
as its basis. A recent resource letter in this publication12 pro-
vides a bibliography on information theory in physics.

II. WHAT IS INFORMATION?

The information content, measured in bits, of a text do
ment, audio recording, or data file is the number of ones
zeros needed to store the text, sound, or data using the
efficient digital encoding. As an example, consider a table
climate data. For simplicity, suppose that we have recor
only whether it has rained or not on a given day. A ze
signifies ‘‘no rain’’ and a one signifies ‘‘some rain.’’ Firs
suppose we have a long data set for a rainy location
Seattle. We simplify the example by assuming that every
is independent of the previous days, and there is a 50% p
ability that it will rain on every day. The weather data w
1074 Am. J. Phys.67 ~12!, December 1999
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have recorded might as well have come from coin tosses
8000 days of weather will require 8000 ones and zeros
typical record might look like

0011101100101110001100110000111101101011110100

10010001101000...

We say that the information content of the data set is 80
bits, 1 bit per day. In computer jargon 8 bits is 1 byte, so
would need 1 kilobyte of space on a hard disk to store
data. A crucial point is that because the data is random
without pattern, there is almost certainly no way to compr
it to less than 1 kilobyte.

Next, consider the very different climate of Tucson, A
zona. Let us again suppose that every day is independent
that it rains only 1 day out of 31 on the average. A typic
record might look like

0000000000000000000000001000000000000000000000

000000000000000...

Using the same encoding as before, we would need the s
1 kilobyte for 8000 days of weather. However, a typic
record will be dominated by zeros, and there are more co
pact ways of storing the Tucson data by taking advantag
the knowledge that rain is rare. Here is one approach. Div
the record into 31-day intervals and for each interval indic
in binary on which days, if any, it rained. The binary code
as follows: the word 11111 marks the end of each 31 d
interval, the word 00001 means rain on day one of the in
val, 00010 means rain on day two, 00011 means rain on
3, and so on, out to 11110 which means rain on day 31.
arbitrary weather record can be stored in this way. Beca
there will be 8000/31 month dividers and about 8000/
rainy days, we will need about~8000/31!3532 bits or 0.32
bits per day. This amount is much better than 1 bit per d
although it is not the optimum compression. As we shall s
the best compression is about 0.21 bits/day.

To summarize, we say that the information content o
record is the number of bits~ones or zeros! needed to encode
the record in the most efficient possible way. This definiti
is formalized by algorithmic information theory8 and we will
refer to information measured this way as algorithmic info
mation content. An arbitrary sequences of zeros and ones
has an algorithmic information contentK(s) that is defined
to be the size, in bits, of the smallest computer program
can be run to print out the sequence. The notion of progr
is used broadly here to include both the instructions for
computer and the data file. Thus, in the above weather
ample we should have also included the space taken by
instructions. For the example of Seattle, these instructi
1074© 1999 American Association of Physics Teachers
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are very simple because the data were not compressed
the Tucson example, the instructions involve the decomp
sion of the data according to the stated rules. In both ca
the instructions are a negligible contribution for large d
sets. Although there are ambiguities about the choice
computer used to print out the sequence, for a broad clas
‘‘universal’’ computers, these difference appear as addit
constants and become unimportant for large data sets.

Algorithmic information is sometimes called algorithm
randomness. Some simple examples illustrate the relat
ship between information and randomness. First consid
string of N ones. This string has very little information con
tent because the instructions to the computer are a simpl
loop, ‘‘For i 51 to N, print 1 and then stop.’’ There is n
additional data file to be read. A string ofN ones is com-
pletely ordered and not at all random. On the other hand,
result of N coin tosses has an algorithmic information co
tent that is typically aboutN because there is usually n
compression of the data possible, and it is necessary to s
the entire data file. For a typical random string the instr
tions are simple, ‘‘Fori 51 to N, print recordi in the data
file and then stop,’’ but the data file has a size of orderN.
The results of random processes usually have high infor
tion content. It is possible, however, for a coin to be tosseN
times and yieldN heads or some other ordered pattern w
little information content. Not all sequences that appear to
random have a high algorithmic information content. For e
ample, the firstN bits of the binary expressions forp or e
look random and pass most statistical tests of randomn
but they have little algorithmic information content becau
there are concise algorithms for computing these number
arbitrary precision. On the other hand, any sequence tha
an algorithmic information content comparable to the len
of the sequence will appear to be random and will pass
statistical tests of randomness. Thus, algorithmic informa
is sometimes called algorithmic randomness. Randomn
and information are formally the same thing. If we want
emphasize the utility or value of some data, we speak
information content. If we want to emphasize a lack of p
tern or order in some data, we speak of randomness. A
algorithmic information content does not imply that the da
are meaningful or useful.

There is a second definition of information that is forma
the same as the standard definition of entropy in statist
mechanics. This definition is due to Shannon2 and arose in
his analysis of the capacity of communications chann
Suppose that there areW possible messages labeledsi , i
50,1,...,W21, that can be sent and that the probability th
si is sent ispi . Then, the information contentI per message
transmitted is

I 52 (
i 50

W21

pi log2 pi . ~1!

We call I in Eq. ~1! the Shannon information.
The Shannon information has an additive property. I

message is composed of pieces that are statistically inde
dent, then the information content of the entire messag
the sum of the information content of the pieces. For
example of weather data, each day’s record is statistic
independent, so the information content of the entire rec
is simply 8000 times the information content from 1 day. F
1 day there are two possible messages, 0 for no rain and
1075 Am. J. Phys., Vol. 67, No. 12, December 1999
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some rain, with probabilitiesp0 and p1 . For Seattle,p0

5p151/2, so according to the Shannon formu
I 52@(1/2)log2(1/2)1(1/2)log2(1/2)#51 bit per day. The
Shannon information and the algorithmic information agr
at 1 bit per day. For the Tucson example,p0530/31 and
p151/31, so I 52@(30/31)log2(30/31)1(1/31)log2(1/31)#
50.21 bits per day.

On the face of it, the two definitions of information appe
very different. The Shannon information is calculated from
definite formula involving probabilities. It is not applicabl
to a single sequence of ones and zeros but only to a statis
ensemble of such sequences. Algorithmic information c
tent is applicable to a single sequence, but cannot be ca
lated by a formula or any definite procedure because it
pends on finding the best way to compress the dat14

Nonetheless, there is a close connection between the
definitions. Given an ensemble of possible messages,si with
associated probabilitiespi , a fundamental result of algorith
mic information theory is that

^K&>I , ~2!

where the average algorithmic information is defined by

^K&5(
i

piK~si !, ~3!

andI is the Shannon information defined in Eq.~1!. Equation
~2! is an approximate equality. Differences between the ri
and left sides come from the choice of universal compu
and from a term involving the algorithmic information re
quired to specify the probabilities.15 For equilibrium statisti-
cal mechanics, the probabilities are concisely defined
typical amounts of information are large, and hence Eq.~2!
is essentially exact.

III. WHAT IS ENTROPY?

In thermodynamics, entropy is an extensive quantity as
ciated with a system in equilibrium. Entropy may be add
or removed from a system by adding or removing heat. If
system remains near equilibrium, the entropy change is e
to the heat transfer divided by the absolute temperature,

DS5Q/T, ~4!

whereS is the entropy,Q is the heat transfer into the system
andT is the absolute temperature. For irreversible proces
the entropy must obey the second law which says that
entropy of an isolated system may never decrease.

The conventional ensemble definition of entropy in sta
tical mechanics is due to Gibbs. Suppose a system can b
one of a large number of microstates. In quantum mechan
a microstate is specified by giving a complete list of t
quantum numbers of the system. In classical mechanics,
the location in phase space— the positions and moment
all the particles in the system. Suppose that the probabilit
a system being in microstatei is pi . In the canonical en-
semble, this probability is

pi5
e2Ei /kBT

Z
, ~5!

whereEi is the energy of the microstate,kB is Boltzmann’s
constant, andZ is the partition function, which is needed t
normalize the probabilities. In the microcanonical ensemb
1075J. Machta
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all thepi are equal for microstates withEi in a narrow range
near the thermodynamic energy while outside of that ran
the pi vanish.

The Gibbs entropy is given by

S52kB(
i

pi ln pi , ~6!

where the summation is over all possible microstates av
able to the system. Note that this definition encompasses
earlier definition proposed by Boltzmann for the microc
nonical ensemble,

S5kB ln V, ~7!

where V is the ‘‘statistical weight,’’ the number of mi-
crostates having energies within a narrow range near
thermodynamic energy. Because in the microcanonical
semble, each state in the energy range has the same pro
ity, this probability must be 1/V and because there areV
equal terms in the sum, Eq.~6! reduces to Eq.~7!. Standard
arguments show that the Gibbs entropy has the prope
required of entropy by thermodynamics.

Extensive quantities such as the number of particles or
energy have definite values for individual microstates,
the Gibbs entropy is defined only for statistical ensemb
Indeed, if a macroscopic system could be prepared in a d
nite microstate, the unsettling implication of Eq.~6! is that it
would have zero entropy. Is there a way to define the entr
of an individual microstate of a system?

IV. ENTROPY AND INFORMATION

A comparison of Eqs.~1! and~6! reveal that the Shanno
information and the Gibbs entropy are formally the sa
except for a constant factork5kB / log2 e59.57310224

J/K21 bit21. How should we interpret this coincidence?
Brillouin and Jaynes developed the point of view that e

tropy is a measure of our lack of information about the m
crostate of a system. Probabilities must be assigned to
crostates because we do not know what microstate
system is in. The missing information is the information th
would be gained if a complete measurement is made on
system so that the exact microstate is known. The inform
tion gained in this way is, on average, the Shannon inform
tion or, up to a constant, the Gibbs entropy. The corr
assignment of probabilities should be made in such a w
that no unjustified assumptions about the system are b
into the probabilities. Probabilities are assigned by build
in what is known about the system and then maximizing
missing information. This prescription for assigning pro
abilities is useful in various applications of statistics and h
become known as the maximum entropy principle. As
plied to statistical mechanics, it yields the microcanonica
canonical ensembles. For example, if the Gibbs entrop
maximized holding the average energy fixed, the result
distribution is the canonical ensemble.

The thesis that entropy is missing information is unsa
factory because it makes entropy a subjective rather tha
objective property of physical systems. I favor a viewpo
espoused by Bennett and Zurek that makes entropy an o
tive property of physical systems. Suppose that a comp
description of the microstates of a system has an algorithmi
information contentK(s). Define the algorithmic entropy o
microstate s as kK(s). Equation ~2! insures that the
1076 Am. J. Phys., Vol. 67, No. 12, December 1999
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ensemble-averaged algorithmic entropy will be the same
the Gibbs entropy and thus a faithful representation of
thermodynamic entropy.

The algorithmic entropy is now taken as the fundamen
theoretical definition of entropy. For calculations we will st
use ensemble methods but now with algorithmic entropy a
foundation. Because we have no information about a sys
other than a few thermodynamic variables, we choos
probability distribution according to the maximum entrop
principle. Given these probabilities we calculate average
physical quantities. The average entropy, defined in Eq.~3!,
is evaluated using Eq.~2!. This way of thinking puts entropy
on nearly the same footing as other extensive quantities s
as energy. The entropy has a definite~though uncomputable!
value for a physical system but, because of our lack of
formation, we actually calculate an average value over
ensemble. Because statistical mechanics ensembles for
roscopic systems are very sharply peaked, the average
very accurate estimate of the actual value.

To illustrate these ideas, consider the entropy of an id
monatomic quantum gas obeying Maxwell–Boltzmann s
tistics. The gas consists ofN atoms of massm in a box of
volumeV. The microstates are defined by the occupancie
single particle quantum levels in the box. The Sakur–Tetro
formula for the entropy is

S5kBN lnFV

N S mkBT

2p\2D 3/2G1
5

2
kBN. ~8!

For 1 mole of4He at 300 K confined to one liter, the entrop
is about 100 J/K. The interpretation of this result is tha
complete description of a single microstate would, on av
age, requireS/k5100/9.57310224'1025 bits, or about 17
bits per atom. Note that the natural microscopic unit for e
tropy is the bit. The Sakur–Tetrode formula is usually d
rived from the Gibbs entropy but can also be derived direc
from the algorithmic entropy.10

The algorithmic view is useful in clarifying situation
where some of the degrees of freedom of a physical sys
are ‘‘information bearing.’’ As a specific example, consid
the analysis of a 1-gigabyte hard disk drive. The heart of t
device is a metal disk coated with a film of magnetic ma
rial. Like any macroscopic object, this disk has a huge nu
ber of degrees of freedom. Of these degrees of freedom
tiny fraction, roughly 83109 ~corresponding to 1 gigabyte!,
are information-bearing degrees of freedom which can
read or modified. The information-bearing degrees of fr
dom are collective variables, referring to the magnetizat
of many electrons in a specific region on the disk. Read
~writing! is done by a head that rides over the surface of
disk measuring ~changing! the magnetization. The
information-bearing degrees of freedom contribute to the
gorithmic entropy in exactly the same way as all the oth
degrees of freedom.

Suppose that the hard drive is initially filled with a reco
which is the result of 8 billion coin tosses. The entropy a
sociated with the information-bearing degrees of freed
will be k(83109) bits. Suppose that the disk is erase
meaning that the disk is restored to some simple state w
very little algorithmic information. We conclude that the e
tropy of the drive has decreased. To satisfy the second
an equal or greater increase in entropy must have occu
elsewhere. If the process occurs near equilibrium at temp
ture T, then according to Eq.~4! a tiny amount of heat
1076J. Machta
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k(83109 bits)(300 K!52.3310211J must be released. Thi
release of heat requires an expenditure of the same amou
free energy. In practice, much more free energy than
amount is dissipated when information on a hard drive
erased because many other dissipative processes occur.
ever, as a matter of principle, the analysis shows very g
erally that there is a minimum dissipation ofkT whenever a
bit of information is erased in an environment at temperat
T. This result is known asLandauer’s principle.16,17 Other
aspects of information processing can, at least in princi
be carried out reversibly. Reading, copying, and comput
can all be carried out without dissipation,9 although in prac-
tice, each of these processes dissipates much more thakT
per elementary step.

Having made the argument that information and entro
are fundamentally equivalent, it is useful to distinguish b
tween degrees of freedom that are under our control
easily measured and degrees of freedom that are not u
our control and not easily measured. Although this disti
tion is fuzzy and changes as technology advances, it is n
theless useful to associate the term information with the c
trolled degrees of freedom and the term entropy w
uncontrolled degrees of freedom. Erasing information i
process in which information/entropy is moved from co
trolled to uncontrolled degrees of freedom. Thus, by defi
tion, erasure is an irreversible process.

The algorithmic approach to entropy does not resolve
fundamental questions surrounding the second law and
arrow of time. Algorithmic entropy/information is essential
conserved by classical or quantum dynamics becaus
time-reversal invariance. Small perturbations from outs
the system or other sources of decoherence are require
explain the increase in information/entropy during the equ
bration of an isolated system.

V. SUMMARY

We have seen that the notions of entropy, information,
randomness are equivalent and can be defined for indivi
microstates of physical systems using the ideas of algo
mic information theory. Algorithmic information content i
the number of bits required to store a record in the m
compressed possible form. The algorithmic definition of e
tropy is equivalent to the Gibbs ensemble definition. T
ensemble approach is required for most calculations but
algorithmic viewpoint has some conceptual advantages.
algorithmic approach gives entropy an objective meani
and it clarifies the analysis of systems with information ha
dling abilities. Landauer’s principle applies to such syste
and states thatkT free energy must be dissipated when o
bit of information is erased in an environment at temperat
T.
1077 Am. J. Phys., Vol. 67, No. 12, December 1999
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