FÍSICA 4

SEGUNDO CUATRIMESTRE 2013

Guía 10: Estadísticas Cuánticas

- 1. Considere dos partículas en tres niveles de energía no degenerados ($g_i = 1$; i = 1,2,3). Dibujar las distribuciones posibles según sean partículas que obedezcan las estadísticas de Boltzmann, de Fermi-Dirac o de Bose-Einstein.
- 2. Se tiene un sistema con dos niveles de energía, E_1 y E_2 , cada uno con degeneración 4. Si el sistema consta de cuatro partículas, calcular el número de arreglos posibles:
 - a) Según la estadística de Boltzmann.
 - b) Según la de Bose Einstein.
 - c) Según la de Fermi Dirac.
- 3. Sea un sistema compuesto de osciladores armónicos de frecuencia angular ω , en contacto con una fuente térmica a temperatura T. Calcular la energía media de cada oscilador y el calor específico c_V .
- 4. Sea una cavidad cúbica de lado *l*. Calcular el número de autovalores de energía por unidad de volumen en el espacio de fases para una partícula dentro de esa caja. Deducir:

$$g(p) = \frac{\mathrm{d}^3 n}{\mathrm{d}p^3}, g(E) = \frac{\mathrm{d}n}{\mathrm{d}E}$$

- 5. Sea un gas de electrones en una caja (electrones en un metal).
 - a) Hacer un gráfico de la función de distribución de Fermi-Dirac versus Energía a T = 0 K.
 - b) Obtener una expresión para E_f , la energía del nivel de Fermi a $T=0\,\mathrm{K}$.
 - c) Encontrar la energía media por partícula para este gas a $T = 0 \,\mathrm{K}$.
 - d) Estimar la dependencia del calor específico c_V con la temperatura para temperaturas bajas $(T \approx 0)$.
 - e) Empleando la condición de normalización, obtener una expresión para la energía del nivel de Fermi a temperaturas muy bajas en función de E_f .
- 6. El átomo de Berilio (Be) posee 4 electrones. Suponiendo que los niveles de energía de ese átomo corresponden a los de un átomo hidrogenoide de Z = 4, $(E_n = -Z^2 E_0/n^2)$ dar:
 - a) La distribución de estos electrones a $T = 0 \,\mathrm{K}$, considerando los casos en que son partículas distinguibles o fermiones indistinguibles.
 - b) El número de arreglos posibles para esa distribución en ambos casos.
 - c) Considerando el caso real, fermiones indistinguibles, encontrar explícitamente la ocupación de cada nivel a $T \approx 0$ K. Para ello considerar $E_f(T) = E_2 + \Delta k_B T$ (determinar Δ , k_B es la constante de Boltzman).
- 7. Para un gas de partículas de spin 1/2 en un campo magnético B, encontrar la energía media y el calor específico c_V en función de la temperatura.
- 8. Sea un gas de moléculas diatómicas de masa M en un recipiente cúbico de lado l a temperatura T. En una primera aproximación, el Hamiltoniano de una molécula puede escribirse como:

$$H = H_{tras} + H_{rot} + H_{vib}$$

donde H_{tras} corresponde a la traslación del centro de masa, $H_{rot} = L^2/2I$ corresponde a la energía de rotación de la molécula de momento de inercia I y H_{vib} es la parte vibracional. Suponiendo que no hay mezcla de coordenadas en estos Hamiltonianos parciales calcular:

1

- a) El calor específico a volumen constante c_V^{tras} debido a la parte traslacional. Para ello considere $\theta_t \ll T$ con $\theta_t = \pi \hbar^2/(2Ml^2k_B)$.
- b) El calor específico c_V^{rot} debido a la parte rotacional. Considerar los dos límites, $\theta_r \ll T$ y $\theta_r \gg T$, donde $\theta_r = \hbar^2/(2lk_B)$.
- c) El calor específico debido a la parte vibracional.
- d) Hacer un gráfico cualitativo de c_V vs T y comparar con lo predicho por la teoría clásica (teorema de equipartición). Para el gráfico considerar $\theta_V = \hbar \omega/k_B \ge \theta_t$.
- 9. Considerando un sólido unidimensional como un arreglo periódico de átomos de masa m con interacciones elásticas de constante de fuerza $k = \frac{1}{2}m\omega_0^2$ calcular:
 - a) Las frecuencias de las oscilaciones colectivas (fonones) en función del vector de onda k.
 - b) El calor específico en los límites de alta y baja temperatura.