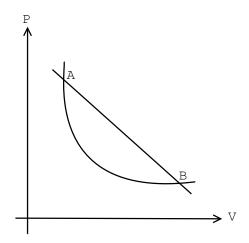

Serie 5

Segundo Principio de la Termodinámica - Entropía

1. Un mol de gas ideal diatómico realiza el siguiente ciclo reversible

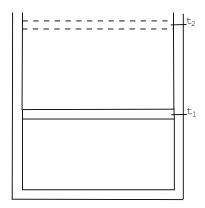
- a) calcular $\int \frac{\delta Q_R}{T}$ para los procesos AB, BC, DA y compruebe que la suma es nula
- b) ¿Cuánto vale S(C) S(A)?
- c) ¿Se puede pasar en forma adiabática de A a C si $T_1 = 500^o K$, $V_1 = 51$ y $T_2 = 300^o K$, $V_2 = 301$?
- 2. ¿Qu se puede decir de la $\int_A^B \frac{\delta Q_R}{T}$ para:
 - a) un proceso reversible
 - b) un proceso irreversible
 - c) un proceso adiabático
- 3. Un mol de gas de van der Waals se expande en forma reversible y a presión constante, desde un volumen inicial V_A hasta un volumen final V_B . Datos: p_A , V_A , T_A , V_B , $p_A = p_B$,


$$\left(p + \frac{a}{v^2}\right) (v - b) = R T$$

$$U(T,V) = C_V T - \frac{a}{V}$$

- a) Hallar T_B
- b) Hallar la variación de energía interna entre los estados A y B
- c) Hallar el calor absorbido durante la expansión
- d) Hallar la variación de entropía entre los estados A y B

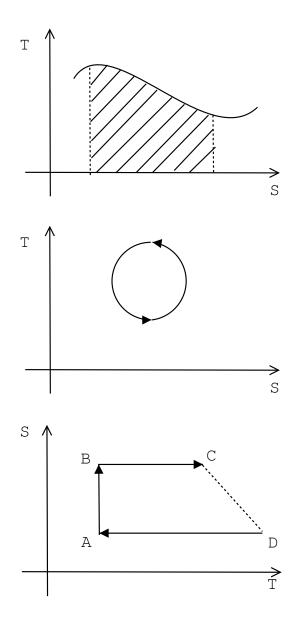
Recomendación: Utilice un camino a temperatura constante hasta llegar al volumen final, completando con un camino a volumen constante.


4. Un gas ideal evoluciona siguiendo el ciclo de la figura

La curva \breve{AB} es una isoterma. Suponer que p_A , V_A , T_A , p_B y V_B son datos.

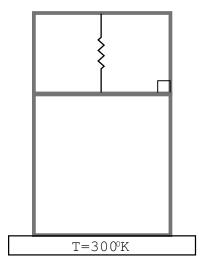
- a) Calcular la variación de entropía cuando el gas se expande reversiblemente siguiendo la recta AB. Hacer el cálculo explícito.
- b) Calcular la variación de entropía cuando el gas se expande reversiblemente siguiendo la isoterma.
- c) Calcular la variación de entropía cuando el gas pasa irreversiblemente de B a A.
- 5. Un mol de gas ideal diatómico ($C_V = 5/2 R$) se halla en un recipiente adiabático provisto de un pistón en el estado A ($V_A = 2 l, T_A = 300^o K$). Se saca la traba que retiene el pistón t_1 y el gas se expande contra la presión exterior constante de 1 atm., hasta el volumen V_B , donde se encuentra otra traba para el pistón t_2 .

Calcular:



- a) W_{AB}
- b) ΔU_{AB}
- c) $T_B = f(V_B)$

La entropía del gas vale:


$$S(T,V) = S(300^{o}K, 2 l) + R ln\left(\frac{V}{2 l}\right) + C_{V} ln\left(\frac{T}{300^{o}K}\right)$$

- d) $S_B SA$
- e) Hallar el valor de V_B que hace máxima la entropía total V_{B^0}
- f) Hallar la presión termodinámica del gas cuando $V_B = V_{B^o}$
- g) ¿Qu puede deducir respecto al volumen final que alcanzaría el gas en el equilibrio si, cuando el gas se hallaba en A se sacan ambas trabas?
- 6. *a*) ¿Qu se obtiene calculando el área bajo la curva, en un diagrama T-S?
 - b) Si se realiza el siguiente ciclo¿Cunto vale la variación de energía interna?
 - c) ¿Cmo es el gráfico en el diagrama T-S de un proceso adiabático y uno isotérmico?
 - d) Dado el siguiente diagrama, con la rama CD irreversible, ¿Cuál es la variación de entropía ΔS_{CD} conociendo ΔS_{AB} ? ¿Cmo se comparan con ΔS_{AB} , las variaciones de entropía de las fuentes para las partes AB y CD del ciclo?

7. Un cilindro aislado térmicamente excepto en su base que se halla en contacto con una fuente a $T=300^{o}K$. Este cilindro está provisto de un pistón adiabático que está unido al extremo de un resorte como indica la figura.

El cilindro contiene un mol de gas ideal monoatómico a una presión inicial de 2 atm. estando el pistón trabado y el resorte no deformado. La presión exterior es constante e igual a 1 atm. Se suelta la traba y se deja que el gas

expanda hasta alcanzar la nueva posición de equilibrio.

- a) ¿ Cunto vale el trabajo entregado por el gas?
- b) ¿ Cunto vale el calor intercambiado con la fuente?
- c) ¿ Cunto vale la variación de entropía del gas?
- d) ¿ Cunto vale la variación de entropía del universo?

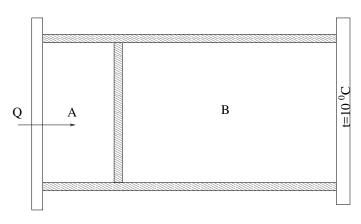
Datos: $k=10\frac{kg}{cm}$ (constante elástica del resorte); $A=100~cm^2$ (área del pistón); $1~atm=10^5~\frac{N}{m^2}$; $g=10~\frac{m}{seg^2}$

- 8. Se tiene un cilindro aislado térmicamente excepto en las bases que son diatérmicas. El cilindro está dividido en dos partes por un pistón adiabático que puede deslizar sin rozamiento y contiene un gas ideal diatómico. La base del compartimiento B está siempre en contacto con una fuente a temperatura $T=10^{o}C$. Se suministra calor a través de la base A, hasta que la temperatura en dicho recinto es de $67^{o}C$.
 - *a*) ¿Cómo se puede realizar el proceso de suministrar calor en forma reversible?
 - b) Calcular Q_A
 - c) Calcular Q_B
 - d) Calcular la variación de entropía del sistema y del universo.

Datos:

$$T_A^o = T_B^o = 10^o C$$

$$T_A^f = 67^o C$$


$$V_A^o = 5 l$$

$$V_B^o = 11,5 l$$

$$V_A^o = 5 l$$

$$V_R^o = 11.5 i$$

$$p_o = 2 atm$$

