Guia 2

Tomas Ferreira Chase

Julio 2020

1 Ejercicio 9

Nos dan un gas ideal diatómico sometido al siguiente proceso

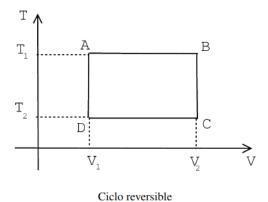


Figure 1: Proceso reversible

a) Nos piden que calculemos $\int \frac{dQ}{T}$ para cada tramo del proceso. Vamos a despejar esta integral del primer principio,

$$dU = dQ + dW \tag{1}$$

Recordemos que para un gas ideal, la energía es una función solo de la temperatura E = E(T). Además, el diferencial de energía lo podemos desarrollar como

$$dU = c_v dT (2)$$

Tramo AB: como $T = T_1 = cte$, tenemos que dU = 0. Luego, el primer principio resulta dQ = -dW. Vamos a dividir por T_1 a ambos lados y a integrar en el tramo

$$\int \frac{dQ}{T_1} = -\int \frac{dW}{T_1} = \int_{V_1}^{V_2} \frac{nR}{V} dV = nR \log \left(\frac{V_2}{V_1}\right)$$
(3)

Tramo BC: como $V = V_2 = cte$, tenemos que dW = 0. Luego, dQ = dU, por lo que dividiendo a ambos lados por T e integrando en dT tenemos que

$$\int \frac{dQ}{T} = \int \frac{dU}{T} = \int_{T_1}^{T_2} \frac{c_v}{T} dT = c_v \log\left(\frac{T_2}{T_1}\right)$$
(4)

Tramo CD: como $T = T_2 = cte$, tenemos que dU = 0. Luego, el primer principio resulta dQ = -dW. Vamos a dividir por T_2 a ambos lados y a integrar en el tramo

$$\int \frac{dQ}{T_2} = -\int \frac{dW}{T_2} = \int_{V_2}^{V_1} \frac{nR}{V} dV = nR \log \left(\frac{V_1}{V_2}\right) = -nR \log \left(\frac{V_2}{V_1}\right)$$
 (5)

Tramo DA: como $V = V_1 = cte$, tenemos que dW = 0. Luego, dQ = dU, por lo que dividiendo a ambos lados por T e integrando en dT tenemos que

$$\int \frac{dQ}{T} = \int \frac{dU}{T} = \int_{T_2}^{T_1} \frac{c_v}{T} dT = c_v \log\left(\frac{T_1}{T_2}\right) = -c_v \log\left(\frac{T_2}{T_1}\right) \tag{6}$$

Podemos ver que la suma de todos los tramos es 0.

b) Nos piden S(C) – S(A). Sabemos que $\Delta S = \int \frac{dQ}{T}$ para algún camino. Vamos a integrar utilizando el camino AB + CD con los resultados del ejercicio anterior, por lo que

$$S(C) - S(A) = \int_{A}^{C} \frac{dQ}{T} = c_v \log\left(\frac{T_2}{T_1}\right) + nR \log\left(\frac{V_2}{V_1}\right)$$
 (7)

Otra forma de resolver este punto es con la entropía del gas ideal,

$$S(T, V) = S_0 + c_v \log\left(\frac{T}{T_0}\right) + R\log\left(\frac{V}{V_0}\right)$$
(8)

Luego, tenemos que

$$S(C) - S(A) = S(T_2, V_2) - S(T_1, V_1) = c_v \log\left(\frac{T_2}{T_1}\right) + R \log\left(\frac{V_2}{V_1}\right)$$
(9)

c) Nos preguntan si podemos pasar del estado (5l,500K) a (30l,300K) de forma adiabática (dQ=0). Si el proceso es reversible y la transformación adiabática, sabemos que $\Delta S=0$. Veamos cuanto da con estos datos

$$S(300K, 30l) - S(500K, 5l) = c_v \log\left(\frac{300}{500}\right) + R\log\left(\frac{30}{5}\right)$$
(10)

$$= R \left[\frac{7}{2} \log \left(\frac{500}{300} \right) + \log \left(\frac{30}{5} \right) \right] \tag{11}$$

$$= 0,0017R \neq 0 \tag{12}$$

2 Ejercicio 13

Tenemos un gas de van der Waals que se comprime isobáricamente $(P = P_0 = cte)$ de V_A a V_B . Nos dicen que los valores (P_0, T_A, V_A, V_B) son datos. Recordemos que para un gas de van der Waals la ecuación de estados y el diferencial de energía están dados por

$$\begin{cases}
(P + \frac{n^2 a}{V^2})(V - nb) = nRT \\
dU = c_v dT + \frac{n^2 a}{V^2} dV
\end{cases}$$
(13)

donde a y b son constantes.

a) Nos piden la temperatura final T_B . Dado que conocemos V_B y $P_B = P_0$, podemos despejar la temperatura final de la ecuación de estados,

$$T_B = \frac{1}{nR} (P_0 + \frac{n^2 a}{V_B^2}) (V_B - nb)$$
 (14)

b) Nos piden la variación de energia interna en el proceso. Usando la forma diferencial de la energía del gas de van der Waals, tenemos que

$$\begin{cases}
\frac{\partial U}{\partial T}\Big|_{V} = c_{v} \longrightarrow \Delta U = c_{v} \Delta T + f(V) \\
\frac{\partial U}{\partial V}\Big|_{T} = \frac{n^{2}a}{V^{2}} \longrightarrow \Delta U = -n^{2}a(\frac{1}{V_{B}} - \frac{1}{V_{A}}) + g(T)
\end{cases}$$
(15)

Como las dos expresiones deben coincidir, llegamos a que

$$\Delta U_{AB} = c_v (T_B - T_A) - n^2 a (\frac{1}{V_B} - \frac{1}{V_A})$$
 (16)

c) Nos piden el calor absorbido. Vamos a calcularlo con el primer principio. Ya tenemos la variación de energía, nos falta la variación de trabajo. Como el proceso es isobárico, tenemos que

$$\Delta W = P_{ext} \Delta V = P_0 \Delta V \tag{17}$$

Luego, el calor absorbido resulta

$$\Delta Q = \Delta U - \Delta W = c_v (T_B - T_A) - n^2 a (\frac{1}{V_B} - \frac{1}{V_A}) - P_0 \Delta V$$
 (18)

d) Nos piden la variación de entropía. Del primer principio y de $dS = \frac{dQ}{T}$ sabemos que

$$dS = \frac{dU}{T} - \frac{P}{T}dV \tag{19}$$

$$=\frac{c_v}{T}dT + \frac{n^2a}{V^2}dV - \frac{P}{T}dV \tag{20}$$

$$= \frac{c_v}{T}dT + \left(\frac{n^2\alpha}{Z'V^2} - \frac{nR}{V - nb} - \frac{n^2\alpha}{Z'V^2}\right)dV \tag{21}$$

Haciendo un razonamiento totalmente análogo al punto b), llegamos a

$$\Delta S_{AB} = c_v \log \left(\frac{T_B}{T_A} \right) - nR \log \left(\frac{V_B - nb}{V_A - nb} \right) \tag{22}$$

3 Ejercicio 15 - Gas de fotones

Este ejercicio está muy bueno para ver lo que decía Carlos la clase pasada acerca de la termodinámica: que tanto podemos decir de un sistema sin conocer en detalle lo que esta pasando dentro.

El único galerazo que vamos a dar acerca del gas de fotones es la expresión que nos da el enunciado para la presión,

$$P = \frac{u(T)}{3} \tag{23}$$

donde $u = \frac{U}{V}$.

Vamos a calcular la ecuación de las adiabáticas para este gas. Vamos a utilizar que dQ = 0 junto con el primer principio

$$dU = dW (24)$$

$$d(3PV) = -PdV \tag{25}$$

$$3PdV + 3VdP = -PdV \tag{26}$$

$$-\frac{3}{4}\frac{dP}{P} = \frac{dV}{V} \tag{27}$$

Luego, integrando a ambos lados tenemos que

$$PV^{\frac{4}{3}} = cte \tag{28}$$

Para calcular la relación entre la energía interna del gas y la temperatura, vamos a considerar un ciclo de Carnot infinitesimal. Es decir, un ciclo de Carnot que funciona entre dos reservorios de temperatura, uno a T y otro a T+dT. Ademas, vamos a considerar que el gas en las isotermas se expande de un volumen 0 a un volumen V, y que en las adiabáticas lo hace desde V hasta V+dV.

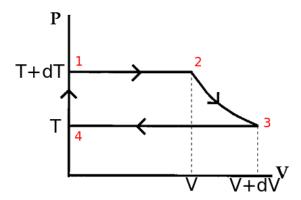


Figure 2: Diagrama P-V del ciclo de Carnot para el gas de fotones. Notemos que las isotermas son tambien isobaras, que la expansión isotérmica se da desde un volumen nulo, y que la adiabática se da solo en dV.

Vamos a calcular la variación de entropía en cada tramo. Para esto, empecemos calculando el calor en cada tramo

$$\Delta Q_{12} = \Delta U_{12} - \Delta W_{12} = u(T + dT)V + \frac{1}{3}PV = \frac{4}{3}u(T + dT)V$$
 (29)

donde usamos la ecuación de estados para escribir a P en terminos de u. Para el tramo 3-4 se tiene algo similar,

$$\Delta Q_{34} = -u(T)(V + dV) - P(V + dV) = -\frac{4}{3}u(T)(V + dV)$$
(30)

Como los tramos 2-3 y 4-1 son adiabáticas, tenemos que

$$\Delta Q_{23} = \Delta Q_{41} = 0 \tag{31}$$

Ahora vamos a usar que el proceso es un ciclo reversible, por lo que ΔS_{total} = 0

$$\Delta S = 0 = \frac{4}{3} \frac{u(T + dT)V}{T + dT} - \frac{4}{3} \frac{u(T)}{T} (V + dV)$$
 (32)

Ahora vamos a hacer un desarrollo en Taylor para el diferencial $dT \sim 0$, por lo que vamos a tener que

$$\begin{cases} u(T+dT) \sim u(T) + \frac{du}{dT}dT \\ \frac{1}{T+dT} \sim \frac{1}{T} - \frac{dT}{T^2} \end{cases}$$
(33)

Reemplazando estas aproximaciones en la variación de la entropía total tenemos que

$$0 = \frac{4}{3} \left[V(u(T) + du) \left(\frac{1}{T} - \frac{dT}{T^2} \right) - \frac{u(T)}{T} (V + dV) \right]$$
 (34)

$$0 = \frac{u(T)}{T}V - V\frac{u(T)}{T^2}dT + V\frac{du}{T} - \frac{u(T)}{T}V - \frac{u(T)}{T}dV + \mathcal{O}(2)$$
 (35)

donde el $\mathcal{O}(2)$ quiere decir todos los términos de orden superior en el desarrollo de Taylor $(dT^2,$

etc.), o los términos $dT \cdot dV$, etc. Vamos a despreciar estos términos frente al resto de la ecuación, por lo que llegamos a que

$$0 = -\frac{u(T)}{T}dT + du - u(T)\frac{dV}{V}$$
(36)

Ahora nos falta escribir a uno de los diferenciales en términos de los otros para llegar a una ecuación diferencial que sepamos resolver. Para esto, vamos a usar que $\Delta U_{total} = 0$ en todo el ciclo, y con esta ecuación vamos a despejar dV.

$$0 = u(T + dT)V - \frac{1}{3} \int_{V}^{V + dV} u(T)dV - u(T)(V + dV)$$
 (37)

$$0 = u(T + dT)V - \frac{u(T)}{3}dV - u(T)V - u(T)dV$$
 (38)

$$-V(u(T+dT)-u(T)) = -\frac{4}{3}u(T)dV$$
 (39)

$$\frac{du}{u(T)} = \frac{4}{3}\frac{dV}{V} \tag{40}$$

por lo que despejando dV tenemos que $\frac{dV}{V} = \frac{3}{4} \frac{du}{u(T)}$. Luego, metiendo este resultado en la ecuación de la variación de entropía total, tenemos que

$$\frac{1}{4}du = \frac{u(T)}{T}dT\tag{41}$$

Resolviendo la ecuación diferencial, llegamos a que

$$u(T) = \sigma \cdot T^4 \tag{42}$$

con σ una constante¹.

$$\sigma = \frac{2\pi^5 k^4}{15c^3 h^3} \tag{43}$$

¹Esta constante es conocida como la *constante de Stephan-Boltzmann*, y su valor numérico se puede deducir a partir de otras constantes de la física haciendo mecánica estadística, resultando en