LIST OF EXERCISES

Diego Arbó (diego.arbo@uba.ar)

Exercise 1: **Detailed balance.** (a) Consider a close container with atoms and radiation in equilibrium at temperature *T*. The atomic states are not degenerate with energy E_d and E_u , so that $E_u > E_d$. Derive Einstein's absorption $B_{d \rightarrow u}$, spontaneous emission $A_{u \rightarrow d}$, and stimulated emission $B_{u \rightarrow d}$ coefficients from the master equation:

$$\begin{cases} \dot{n}_{d \to u} = B_{d \to u} n_d \rho(\omega_{ud}) \\ \dot{n}_{u \to d} = A_{u \to d} n_u + B_{u \to d} n_u \rho(\omega_{ud}) \end{cases}$$

where $\rho(\omega_{ud})$ is the energy density of the radiation, $\omega_{ji} = (E_j - E_i)/\hbar$, $\dot{n}_{i \rightarrow j}$ is the number of atoms doing the transition $i \rightarrow j$ per unit time due to the absorption or emission of radiation and n_j is the total number of atoms in state *i*. Hint: Consider the Boltzman and Planck distributions for the atomic levels and the radiation, respectively.

(b) Generalized the result in (a) for the case that E_d and/or E_u are degenerated.

Exercise 2: Consider a 10 fs Gaussian pulse for which $\Delta v \tau = 0.44$.

- (a) How much is the bandwith Δv ? Answer: 4.4 × 10¹³ Hz
- (b) How much is the banwidth $\Delta\lambda$ for a central wavelength of 800 nm? Answer: 94 nm.

Exercise 3: From the Maxwell equation

$$\vec{\nabla} \times \vec{B} = \mu_0 \vec{J} + \varepsilon_0 \mu_0 \frac{\partial \vec{E}}{\partial t}$$

Derive a wave equation for the vector potential

$$\vec{\nabla}^2 \vec{A} - \frac{1}{c^2} \frac{\partial^2 \vec{A}}{\partial t^2} = -\mu_0 \vec{J} = 0$$
 in absence of currents

Exercise 4: Prove that (Goldstein pgs. 27-28)

$$\vec{v} \times \vec{\nabla} \times \vec{A} = \vec{\nabla} \left(\vec{v} \cdot \vec{A} \right) - \frac{d\vec{A}}{dt} + \frac{\partial \vec{A}}{\partial t}$$

where $\frac{dA_x}{dt} = \frac{\partial A_x}{\partial t} + \left(v_x \frac{\partial A_x}{\partial x} + v_y \frac{\partial A_x}{\partial y} + v_z \frac{\partial A_x}{\partial z} \right)$

Exercise 5: Derive the Lorentz force from the Hamilton equations:

$$\dot{\vec{r}} = \frac{\partial H}{\partial \vec{p}}; \quad - \dot{\vec{p}} = \frac{\partial H}{\partial \vec{r}}$$

where
$$H(\vec{p},\vec{r},t) = \frac{\left(\vec{p}-q\vec{A}\right)^2}{2m} + q\phi$$

Exercise 6: How much is $\beta = v/c$ for an electron excited with a Ti-Sapphire laser? $\lambda = 800$ nm, $E_0 = 5 \times 10^{10}$ V/m, m = 9.1×10^{-31} kg

Exercise 7: How does gauge invariance work for the Schrödinger equation?

$$\vec{A} \rightarrow \vec{A}' = \vec{A} + \vec{\nabla}\chi$$

$$\phi \rightarrow \phi' = \phi - \frac{\partial\chi}{\partial t}$$

Solution:

$$\psi'(\vec{r},t) = \psi(\vec{r},t)e^{i\frac{q}{\hbar}\chi}$$

in the Coulomb gauge

$$\nabla^2 \chi = 0$$

Exercise 8: Prove that if

$$\vec{A} = \vec{A}(t) \neq 0 \Longrightarrow \Psi(\vec{r}, t) = \psi(\vec{r})e^{-\frac{i}{\hbar}S(t)}$$

where $S(t) = \frac{1}{2m} \int_{t_0}^{t} dt' \left[\hbar \vec{k} - q\vec{A}(t)\right]^2$ classical action

Exercise 9: (a) How much is the electric field and potential felt by a classical electron in the first Bohr's orbit? What is the intensity due to 1 a.u. of electric field?

(b) How much is the electric potential felt by a classical electron in the first Bohr's orbit?

(c) What is the intensity due to 1 a.u. of electric field?

Exercise 10: How much is the intensity of a Ti-Sapphire laser ($\lambda = 800$ nm) impinging over H so that the Keldysh parameter is $\gamma = 1$?

Exercise 11: Calculate the classical action for a sinusoidal linearly polarized field $\vec{E}(t) = E_0 \sin(\omega t)\hat{z}$. Solution:

$$S(t,\tau) = -\left[\frac{k^2\tau}{2} + \frac{F_0^2}{2\omega^2}\left(\frac{\tau}{2} + \frac{\sin 2\omega\tau}{4\omega}\right) + \frac{kF_0}{\omega}\sin\omega\tau + I_p\tau\right] + \left[\frac{k^2t}{2} + \frac{F_0^2}{2\omega^2}\left(\frac{t}{2} + \frac{\sin 2\omega t}{4\omega}\right) + \frac{kF_0}{\omega}\sin\omega t + I_pt\right]$$

Exercise 12: Prove that within the SFA the momentum distribution is symmetrical for a cosine-like pulse: $\vec{F}(t) = F_0 \cos(\omega t + \phi_{CE})\hat{z}$ with $\phi_{CE} = 0$

$$\frac{dP(k_z,k_\rho)}{d\vec{k}} = \frac{dP(-k_z,k_\rho)}{d\vec{k}} \quad \text{iff} \quad F(t) = F(\tau - t)$$

Exercise 13: Prove that in the interaction picture:

$$egin{aligned} &\mathrm{i}\hbarrac{\mathrm{d}}{\mathrm{d}t}|\psi_{\mathrm{I}}(t)
angle = H_{1,\mathrm{I}}(t)|\psi_{\mathrm{I}}(t)
angle, \ &\mathrm{i}\hbarrac{\mathrm{d}}{\mathrm{d}t}A_{\mathrm{I}}(t) = [A_{\mathrm{I}}(t),H_{0,\mathrm{S}}]. \end{aligned}$$

Exercise 14: Prove the return condition and the ionization condition from the saddle equation:

$$\nabla_{\vec{k}} S(\vec{k}, t, t-\tau) = 0 \implies \vec{r}(t) - \vec{r}(t-\tau) = 0$$
$$\frac{\partial}{\partial \tau} S(\vec{k}, t, t-\tau) = 0 \implies \frac{1}{2} \left(\vec{k} + \vec{A}(t-\tau) \right)^2 + I_p = 0$$

Exercise 15: Prove the energy conservation for emission of a harmonic photon from the saddle equation:

$$\frac{\partial}{\partial t}S(\vec{k},t,t-\tau) = 0 \implies \frac{1}{2}\left(\vec{k}+\vec{A}(t)\right)^2 + I_p = q\omega$$

Exercise 16: Considering the relation between the measured angle θ and the ejection angle without IR, θ_i in LAPE:

$$\tan \theta = \frac{v(t)\sin \theta_i}{v(t)\cos \theta_i - A(t)}$$

prove that

$$v(t)\cos\theta_i = A(t)\sin^2\theta \pm \sqrt{A^2(t)\sin^4\theta - A^2(t)\sin^2\theta + v^2(t)\cos^2\theta}$$

Exercise 17: (Scattering 1D) Consider a rectangular potential barrier of height V_0 and width *a*, centered at the origin. Calculate the transmission group delay

$$\Delta t_g = \hbar \frac{d\varphi}{dE} \approx \frac{2m}{\hbar k\kappa} = \frac{2}{\nu\kappa}$$

where $1/\kappa$ is the penetration depth. Use the approximation of a very opaque barrier ($\kappa a >> 1$).