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LLIISSTT  OOFF  EEXXEERRCCIISSEESS  
  

Diego Arbó (diego.arbo@uba.ar) 
 
 
Exercise 1: Detailed balance. (a) Consider a close container with atoms and 
radiation in equilibrium at temperature T.  The atomic states are not degenerate with 
energy Ed and Eu, so that Eu > Ed. Derive Einstein’s absorption Bd


u, spontaneous 

emission Au


d, and stimulated emission Bu


d coefficients from the master equation: 
 
 
 
 

where (
ud

) is the energy density of the radiation,                               is the number 

of atoms doing the transition i  j per unit time due to the absorption or emission of 
radiation and n

i
 is the total number of atoms in state i. Hint: Consider the Boltzman 

and Planck distributions for the atomic levels and the radiation, respectively. 
 
(b) Generalized the result in (a) for the case that Ed and/or Eu are degenerated. 
 

Exercise 2: Consider a 10 fs Gaussian pulse for which  

(a) How much is the bandwith ? Answer: 4.4 × 1013 Hz 

(b) How much is the banwidth  for a central wavelength of 800 nm? Answer: 94 
nm. 

 

Exercise 3: From the Maxwell equation 
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Exercise 4: Prove that (Goldstein pgs. 27-28)  
 

 

 

 
 
Exercise 5: Derive the Lorentz force from the Hamilton equations:  
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where  
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Exercise 6: How much is =v/c for an electron excited with a Ti-Sapphire laser? 

 = 800nm,  E
0
 = 5x10

10

 V/m,  m = 9.1x10
-31

 kg  

 

Exercise 7: How does gauge invariance work for the Schrödinger equation?  
 

A A A

t




  

  


  



 

Solution: 
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Exercise 8: Prove that if  
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Exercise 9: (a) How much is the electric field and potential felt by a classical 

electron in the first Bohr’s orbit? What is the intensity due to 1 a.u. of electric field? 

(b) How much is the electric potential felt by a classical electron in the first Bohr’s 

orbit?  

(c) What is the intensity due to 1 a.u. of electric field?  

Exercise 10: How much is the intensity of a Ti-Sapphire laser ( = 800 nm) 

impinging over H so that the Keldysh parameter is  = 1? 

Exercise 11: Calculate the classical action for a sinusoidal linearly polarized 

field 0
ˆ( ) sin( )E t E t z . Solution: 
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Exercise 12: Prove that within the SFA the momentum distribution is symmetrical for 
a cosine-like pulse: 
 
 
 
 
 
Exercise 13: Prove that in the interaction picture: 

 

 

 
 
Exercise 14: Prove the return condition and the ionization condition from the saddle 

equation: 
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Exercise 15: Prove the energy conservation for emission of a harmonic photon from 

the saddle equation: 
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Exercise 16: Considering the relation between the measured angle  and the 

ejection angle without IR, i in LAPE: 
 
 
 
prove that  
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Exercise 17: (Scattering 1D) Consider a rectangular potential barrier of height V0 

and width a, centered at the origin. Calculate the transmission group delay  
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where 1/ is the penetration depth. Use the approximation of a very opaque barrier 

(a>>1). 
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