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UNIT X 

ATTOSECOND 

CHRONOSCOPY 

Diego Arbó 

diego.arbo@uba.ar 

1st  Semester 2024, Buenos Aires,  Argentina 

 

Spectroscopy: Energy-domain information 

Chronoscopy: Time-domain information 

Fundamental question: Does Einstein’s photoelectric effect happen 

instantaneously or is there a finite time the electronic wavepacket need to be 

formed? 

light  

1921 

Antecedent: Femtosecond Chemistry (Ahmed Zewail) 

1999 
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Whereas time is a good physical magnitude accessible to measurement in 

classical mechanics,  it is not in quantum mechanics. 

 

In quantum mechanics for a classical observable there is an associated 

quantum mechanical operator, the expectation value thereof is connected to 

the classical observable. 

Quantum Theory 
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In contrast to space, momentum, and energy such a well-defined operator 

does not exist for time. 

Scattering theory:  

Free propagation wavepacket: 

Scattering propagation wavepacket: 
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Stationary phase: 
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Eisenbud-Wigner-Smith arrival time of the wavepacket: 

S(E): scattering matrix 

Lifetime operator: 

Spherical symmetry: 

Exercise 17: Consider a rectangular potential of with a and height V0, where 

V0 may be positive (barrier) or negative (well). For E > V0, calculate the 

transition amplitude and corresponding phase shift. 

S(E): scattering matrix 

Incoming (t -> -∞) Interaction 

 

Outgoing (t-> +∞) 

 

Ionization is a half-scattering problem 

No incoming electron 
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First Born Approximation: First order perturbative method. 

The final wave function is represented by the non-distorted solution of the 

free Hamiltonian H0. Thus, the laser field is neglected in the final channel. 

This is a good approximation for weak external electric fields: Hint << H0. 
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Partial wave expansion of a plane wave: 

Partial wave expansion of a scattering state: 
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Introducing the partial wave decomposition into the transition amplitude: 

For one-photon absorption from the 1s state  l = 1 
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Short-range potential:  It falls off faster than r-1 

Non-perturbative analysis: 

Asymptotically, H = p2/2, with solutions 
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Analogously for a 1D scattering freely propagating wave packet ei(k.r-Et) 

 if f i f pT i z E E I  From  

proved that the expectation value of the position of a wave packet  
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Average dwell time 
 

Definition:  The time a particle spends inside a sphere of 

radius r centered at the origin 

The difference between this average dwell time and the corresponding dwell 

time ⟨𝒯0(𝑟)⟩ in the absence of the scatterer, evaluated at large enough 𝑟 for 

the potential to be negligible, is the average dwell time delay. Carvallo and 

Nussenzveig demonstrated that the average dwell time is equal to <tEWS>. 

Let’s suppose an outgoing 

wavepacket formed by a 

coherent superposition of a 

band of continuum states 

around a central energy E0. 

The average of the radial 

position is: 

Asymptotic behavior of 

the radial expectation 

value 
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So far, we have considered short range potentials. 

 

Let’s consider now a classical Coulomb (Kepler) trajectory. 

The effective potential energy is given by 

For an energy 𝐸 < 0 the particle has a finite motion in an elliptical orbit (𝑒 < 

1) and for 𝐸 ≥ 0 the motion is infinite, either on a parabola (𝐸 = 0) or a 

hyperbola (𝐸 > 0) with 𝑒 > 1. 

 

The hyperbolic orbit can be expressed via the dependence of 𝑟 and 𝑡 on the 

parameter 𝜉, the “mean anomaly” of the Kepler orbit, 
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A closed solution for 𝑟(𝑡) does not exist. However, the inverse function 

𝑡(𝑟) can be written down. 

Radial expectation value ⟨𝑟(𝑡)⟩ for 

ionization from the hydrogen 

ground state with a laser pulse of 

200 as FWHM duration, ħ𝜔 = 80 

eV and 𝐼 = 1010W/cm2.   

The wiggles in the beginning are 

due to the laser oscillations but as 

soon as the laser field is over, 

excellent agreement is found with 

the analytical solution of the exact 

classical equation of motion, and 

the approximation for 𝐿 = ℓ + 1/2 

which is the (semi-)classical angular 

momentum for a quantum wave 

with ℓ = 1. 

The time delay of the classical Kepler trajectory with respect to a free-

particle trajectory can be obtained directly from our asymptotic expression 

for 𝑡(𝑟) 

The time delay as a function of the propagation time is obtained when we 

express r as a function of t.  

To first order we take the free particle limit 𝑟(𝑡) = 𝑘𝑡. 

when we introduce the Coulomb-Sommerfeld parameter 
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For the case of a hydrogenic atom, the quantum Coulomb scattering wave is: 

𝜎ℓ is the Coulomb analogue to the phase shift 𝛿ℓ in standard scattering 

theory for short-ranged potentials. 

The asymptotic behavior of the Coulomb wave is given by 

The asymptotic behavior of Coulomb dwell time or the EWS time delay 

applied to the (divergent) phase of the Coulomb wave is known to be infinite 

with the typical logarithmic divergence. 

We want to compare the different extraction methods for the EWS time 

delay using the scattering phase                          ,  or the radial wave packet 

                                              , which are equivalent for short range 

potentials 

( )EWS lt E E  



24/06/2024 

11 

Comparing quantum  and classical time delays for long-range potentials: 

suggest to identify the classical analogue of the intrinsic EWS delay 
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From quantum mechanics we saw that 

Then 

where Y is the digamma function. 

Coulomb EWS times for photoionization from H (𝑍 =1) or He+ (𝑍 =2) 

as function of the kinetic energy 𝐸 



24/06/2024 

13 

The Coulomb singularity prohibits electrons at 𝑟=0, however, the expectation 

for an initial state with well-defined parity is still centered around zero 

(although the radial expectation value ⟨𝑟(𝑡)⟩ ≠ 0). This implies that the time 

delay is nearly independent of the principal quantum number as long as the 

initial states have the same angular momentum quantum number.   

 

Since bound states can be chosen to be real, only the phase information of 

the final state enters in the definition of the EWS delay.  As long as only one 

partial wave contributes, which is the case for initial 𝑠-states, the EWS time 

delay is independent of the principal quantum number 𝑛. 

 

No matter where the electron initially was, it ends on the same trajectory as 

long as it has the same final kinetic energy (by choosing appropriate photon 

energies). The reason is that as long as the initial orbital has a well-defined 

parity, no matter how large the extension is, the mean position of departure 

is always at the origin. The radial expectation value ⟨𝑟(𝑡)⟩ of the continuum 

part with 𝐸 > 0 depends on the main quantum number only as long as the 

ionization process is not finished (for the duration of the laser pulse). 


