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L ADE Spectroscopy: Energy-domain information

O Chronoscopy: Time-domain information
CONICEY

¥ Fundamental question: Does Einstein’s photoelectric effect happen
instantaneously or is there a finite time the electronic wavepacket need to be
formed?
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(A Quantum Theory

co~icer YWhereas time is a good physical magnitude accessible to measurement in
¢« classical mechanics, it is not in quantum mechanics.

In quantum mechanics for a classical observable there is an associated
quantum mechanical operator, the expectation value thereof is connected to

the classical observable.

In contrast to space, momentum, and energy such a well-defined operator
does not exist for time.

s Ew@nbu@w:gn@rémlth time delay

Doiray o L .
Scattering theory:
o & y

CONICEY
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Schematics of cos-dmensonal potential scattering  An incoming plane
wave from the left is scattered at 3 short-ranged potential | (1) and gans
an asympiotic phase shift §( E| Considening o wavepackst consisting of
different energy components {Eq. 2.2) this results in & tsme delay (groop
delay} tews = K200 E) of the wavepacket

>

/ RIS -
Free propagation wavepacket: gl d) = /.4( E)ett 'dE

(]
o

Scattering propagation wavepacket: «°[7.1) / A(E)ebr-tHENg
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iparmens eFiia Eis@nbud-Wigner-Smith time delay
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{ A D E Stationary phase: i%[}‘..’. — o+ l’(E)J 0
iy 000

Eisenbud-Wigner-Smith arrival time of the wavepacket: — 7’ ,.""i’y F 1wy

b
teivs = hoe6(E
EWS lUE (E)

A [ 0
Lifetime operator: IEws = —IST(E) -(-)-ES(E)
d . .
Spherical symmetry: ’EWS(E, f) = ZE(SK(E) S(E): scattering matrix

v A Photeionization

(A0 B No incoming electron

CONICET
. 1

Incoming (t -~ =) Intera :tion Outgoing (t-> +»)

lonization is a half-scattering problem

0

;EWS = —IST(E) F)-ES(E) S(E):scattering matrix
tews (B, ) =92 5,(E)
EWS\&s = dE e
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Departamento de Fisics A= F mr anizat
e Qne=-pheten ienization

TR First Born Approximation: First order perturbative method.

. The final wave function is represented by the non-distorted solution of the

covicer free Hamiltonian Hy. Thus, the laser field is neglected in the final channel.
¥~ This is a good approximation for weak external electric fields: H,,, << H,,.

T, =i+fdt<cpf(t)\r-E(t)|c1>i(t)>

_|Ith(t) o | ze"" | )

Ef+l

=i(g, \z|¢>jth(t)
=i(g, \z|¢i>E(Ef +1,)

lwimeb ki Qne=pheten lenizatien

{ & o u Partial wave expansion of a plane wave:
O -
CONICE k ¢ 7
Eoon et = E (20 + 1)i je(kr)Pe(cosh)

=\

Partial wave expansion of a scattering state:
2
O(r) = E (20 +1)i' g (k) Pe(cos )

=l

|- ((f+1 ; 2
<( - ]—2\~,(/~)+"'-> rogk(r) =0
dr? e
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Departamento de Fisica v b % = T S
nmererea  Short=-range petential
[ AT E Short-range potential: It falls off faster than r'

CONICE o l -
T Oere ~ sin| kr — =Ilx + d

Introducing the partial wave decomposition into the transition amplitude:

Ty =—i(d |2|#)E(E, +1,)

For one-photon absorption from the Is state = /= |

=iy (21+1)i'e" g, (k)R (cos 0) (4, |z|¢,)é(k?2+|pJ

00, (E)
=t =—— "
EWS aE
wiama™  Shert-range potential

DirAc DB

Non-perturbative analysis:
O
CONICEY

¥ D3

5 (1)) = Hle(2),
’;.ﬁ|‘-* }) = H|¢(7))

H— L) + Vo (r) + A

—_

Asymptotically, H = p?/2, with solutions

(x]l) = o
(ot = (| [ a0 (kletey)

- / dP ke tarel VN |(kefur(t )|
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St s Shert-range petential

. » o = Analogously for a ID scattering freely propagating wave packet ei(kr£)

cowert kr— Bt —  kr— Et +4 = ke + arg(k|v'(t7))

J

3E | larg (k| (ty)) + Etg]

we have to subtract the free propagation phase ¢
From T, =i( |z|4)E(E, +1,)

larg(k|Z]¢o)]

tews(k) =

—il:'lj

tews(k) = )(E

Departamento de Frsica s ot = atanti

e Shert-range petential

&-:. Fortschr. Phys. 7, 183 (1959).

covicsr| Co AL AL de Carvallio nnd Ho M, Nussonzveig, Tone delay. Physics Reports
o 364, 83 (2002),

proved that the expectation value of the position of a wave packet

(r) = (W)t +c+0(t™"). t—=o00

).
- /u/‘l (k>‘ ’k"lll
- _n/ ’

(k) ’l arg o (K )d®k

ok
) ) -
== —f.<‘:)l‘. arg v (k)> —h <I (—Fnuu 1 (k)>

5 o
tpn = h <(— arg '.‘(k)> = (tpws)

JF

W, Brenig amd R, Haag.  Allgemeine Quantentheorie der Stofiprozesse
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Doanens i Short-range petential

(A0 Average dwell time

CONICEY

: » Definition: The time a particle spends inside a sphere of
radius r centered at the origin

(T(r)) = / P(r1)dt

0
P(r.t)=1-—4nx /l!'(l',.”'zl":(ll"

The difference between this average dwell time and the corresponding dwell
time (7'y(r)) in the absence of the scatterer, evaluated at large enough r for
the potential to be negligible, is the average dwell time delay. Carvallo and
Nussenzveig demonstrated that the average dwell time is equal to <tgs>.

Departamento de Fisica S tar tanti
UBAEKACIAS A vh@”mr@ngg potential
it a v u| Asymptotic behavior of (@)
x the radial expectation 80
cowicer value

¥ N LM b=
Let's suppose an outgoing —
wavepacket formed by a 3
coherent superposition of a %
band of continuum states
around a central energy E,.

40 D2 4 6

(F(L)] —

Vgll = bwp) =ewe

(¥
The average of the radial =
.. . b {
position is: Efe) _(_) ~AnA A
! Ju ‘.; J d k‘ v
NFa% R . N 20 ic- L‘n if: $c~ i-J ia :vL éo i-a
<'”)> = tg(t — twp), tfau]
(a) Radial expectation value (7(¢)) as a function of propagation time ! after
? ionization from the growund state (1) of a Yukawa potential (Eq. 2.37) with
(_)E scroening length = 05a 0 and Z = 18166, which results in 3 binding
f'(., = = energy of —2an. The onizing pulse has a FWHM duration of 200 qs
? ok T = 800V, and 1 = 107 W /ens®. (r(t)) (red solid line) s for large times

L1y

fittad to the free particle mation Eq. 2 35 (grean dashed bne). The mtercept
with the ¢ axis (insat) gves fyp in excellent sgreement with (1) from
the direct calculation for the scattering phase (Eq. 2.7). (b) The temporal

variation of the XUV pulse
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Rizzx~ _Shoriange polenia

ALY S LRSS U

\_,\ 5 ( a=05au tyys=6.631a% |

CONICET {tews)=6.712as
B n . tus=6.56535
7 o p{oaskassaxsss .
P a=lau, tews=0.487as
£ LEws amemen {tews) =0.762as
o -5 (Cewist mmme= twp=0.613as |
é twp

10 } a=2a.u. tews=-9.157as 1
(tews)=-9.374a%

typ=-9.253as

-15
0 2000 4000 6000 8000 10000
t [as]
Comparison of time shifts for ionization from a Yukawa potential (Eq. 2.37)
for different screening lengths (a =0 500w, «= lun. and ¢ =2a.0.) with

the same laser parameters as in Fig 2.2, The wavepacket time shifts fyp
(red solid lines) are shown as & function of the position (time) when the
fit 1o Eq. 235 s performed. The intervals for the fits are Sas (¢ —
2hasf + 25asl), In companison we also show the EWS time delays 1oy«
(green dotted lines) extracted from the scattering phase 4., (k) and the
averaged EWS defays {¢tpws) (blue dashed lines) which agree perfectly with
the asymptotic hyp

Departamento de Fisica - g tential: assie
e | og-range petential: classical
\ 4 o . Sofar,we have considered short range potentials.
?(T\\.(b, Let’s consider now a classical Coulomb (Kepler) trajectory.
¢ o The effective potential energy is given by
: Z . 1A
Ueg(r) =——+

r 22

For an energy E < 0 the particle has a finite motion in an elliptical orbit (e <
1) and for E 2 0 the motion is infinite, either on a parabola (E = 0) or a
hyperbola (E > 0) with e > I.

The hyperbolic orbit can be expressed via the dependence of r and t on the
parameter ¢, the “mean anomaly” of the Kepler orbit,

r=a(ecosh — 1), t=+y/a*/Z(esinh& —¢)

the “semi-axis” of the hvperbola a = Z/2F

e= \/1 -+ ZZELQ,""ZQ
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t(r) can be written down.

tHr) =

e /-""

¥ 3

Radial expectation value (r(t)) for

2k

5 , 1
7+ kcr =7 a0 @V =
[l r—ZIn (\/Z'-’ = A'Hf’)] C <'>

Leng-range petential: classical

A closed solution for r(t) does not exist. However, the inverse function

ionization from the hydrogen

ground state with a laser pulse of el . A
200 as FWHM duration, iew = 80 * A
eVand I = 10'°W/ecm?. et /,;’,’"
The wiggles in the beginning are ol ,",':/

due to the laser oscillations but as = # e

soon as the laser field is over,

Distance r [au.]
v
-
~
-~

e

/

>4

-

*

excellent agreement is found with . // ruk:t

the analytical solution of the exact = ,/ exact [rE).(E)), L=3
classical equation of motion, and ”.,.." et UGN =1+

the approximation for L = { + 1/2 10 Ll “‘ww,l:w."et“lh 3
which is the (semi-)classical angular “// :aemamad .=|1”+”:
momentum for a quantum wave : 3 - T T v 5 ' A
Wlth [ =1 . Propagation ;nrro' ) |

Departamento de Fisica
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Y, T ¢

covicsEr for t(r)
- E " .

2]1'2I

Leng-range petential: classical

| The time delay of the classical Kepler trajectory with respect to a free-
™™ particle trajectory can be obtained directly from our asymptotic expression

-

| or Z
”l' = = "‘Af 2 A“f‘) = s l—l]l —
k rsoa b VZ2+ k22 /|
The time delay as a function of the propagation time is obtained when we

express r as a function of t.
To first order we take the free particle limit r(t) = kt.

Z 2>t
2 |l e
ke Vi + L2

when we introduce the Coulomb-Sommerfeld parameter ¥}

’:'!(,‘li< E L "= I-f:‘ ~
71k

Z
- L 2 + L?) 4+ Atcou(E. 1 = kt)

k
Af('.,,,l( E r) =

tGou(E, L1 = kt) =

(1 —In(2kr))

5
i
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For the case of a hydrogenic atom, the quantum Coulomb scattering wave is:
ALY S LRSS U =
ik.F
O N N P "
CONICE ch (t) = (DE(I’ :t) =€ ! (272_)3/2 DC(Z, k,t)
D,(Z,K,t) =N, (k)lFl(—i%,l, —ikr—ilZ.F)

e tefsis L ongj-range petential: quantum

zZ

N, (k) =e2T(L+iZ); Z isthe ion charge

The asymptotic behavior of the Coulomb wave is given by

Z (7
FelZ, k) = sin (J"!' + T In(2kr) — - T 7 /.‘,l)

The asymptotic behavior of Coulomb dwell time or the EWS time delay
applied to the (divergent) phase of the Coulomb wave is known to be infinite

with the typical logarithmic divergence.

ae(k) :!lgr(l+/—jf [lulur(l+l—/’f)

o, is the Coulomb analogue to the phase shift §, in standard scattering
theory for short-ranged potentials.

Departamento de Fisica L@ngargng@ p@'@nh@,l‘ qugn’t'gm

UBAEXACIAS A
D L { / \ () Z & / \
o tooul(E, 0, T) = S5E \ 7 In(2kr) + oy(E)
T - -k,(_'oul( E. r) ’i.:'\\'g( LI'
Z
Atconl(E.1) = 3 (1 —In(2kr))
where we use the asymptotic momentum k = 2F

: i ' S
trws(F. () = jﬁ-”flﬁ;'

We want to compare the different extraction methods for the EWS time
delay using the scattering phase tews =96, (E)/OE, or the radial wave packet
(r(t)) = v,(t —twp). t— oo, which are equivalent for short range

potentials

24/06/2024
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e Long-=range petential:
ALY, guantum-classical

O . 0
coNeur \
Eon (l'(f})
. twp=1-—
Sh ,\ tCoul
- 1 .
E tl(ioul B
&
é .10 t={r(t))/k e
-]
E
E
-15 ¢
“&-‘,M
0 5 10 15 20 25 30 35

Propagation time [fs]
Comparison between the time delay determined from the linear extrapola-
tion with the slope taken at increasing propagation times (Eq. 2.43, points)
with the Coulomb time te,u(E.f = 1.»r = kt) (Eq. 2.32, solid line) and

teh (B L = 1,50 = kt) (Eq. 2.45, dashed line) for ionization from the
H(1s} state with an XUV pulse with fo = SOeV.

fga‘régmalaos og‘ i Long-range petential: quantum-glassical

\ & v u Comparing quantum and classical time delays for long-range potentials:
oy .

Ol J Z

wove toou(E. 1) = o2 (T In(2kr) + m(El)

= Atcoul(E,7) + /(B'\\’S(E- ()

fE!oul(E» L. = ,l‘f) —

Z . 5 . 715
o5 In Vi + L2) + Atcou(E. r = kt)

suggest to identify the classical analogue of the intrinsic EWS delay

. Z
tows (B, L) = = In (\/:,'-’ + L‘-’)

24/06/2024
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gl ,l..,; From quantum mechanics we saw that

“——’—\—55——" op(k) = arg T (l + —-ii) - Imlur(l + 4 _jl-)

C 1 . ot oy
Then tE\VS(E‘"] - FR( l‘l’(l + ( — II[)]
where W is the digamma function.

In the (semi) classical limit of large arguments

W(l+0—in)~In(l+ € —in)

N o 1 Z . 5
tews(E. () e 3 In (\/(_l + )2 + ;,-)

Z SO .
= I3 n (\/7‘.'2 + ’/2) = flcg“tl( E.L)

Departamento 6e Fisica. LONG-range petential: quantum-¢lassical
UBAEIACtAS A\

| AP S LR O 35
g
CONICET
30
. @=L t=1) —
25 tsZ=2,1=1) —
= tCue(Z=2.1=2)
= 20 Glz=1,L=1+) =
£ & z=2,L=143)
v .
v 15¢ tepe(Z=2,L=2+1)
=
10 }
’ \\N\&
0 . L = ne )
- A0 60 80 100 120

Final electron energy [eV]

Coulomb EWS times for photoionization from H (Z =1) or He* (Z =2)
as function of the kinetic energy E
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UBAEXACIAS A

ALY T

~ The Coulomb singularity prohibits electrons at =0, however, the expectation

LT for an initial state with well-defined parity is still centered around zero

CONICEY

¥

"

(although the radial expectation value (r(t)) # 0).This implies that the time
delay is nearly independent of the principal quantum number as long as the
initial states have the same angular momentum quantum number.

Since bound states can be chosen to be real, only the phase information of

the final state enters in the definition of the EWS delay. As long as only one
partial wave contributes, which is the case for initial s-states, the EWS time
delay is independent of the principal quantum number n.

No matter where the electron initially was, it ends on the same trajectory as
long as it has the same final kinetic energy (by choosing appropriate photon
energies). The reason is that as long as the initial orbital has a well-defined
parity, no matter how large the extension is, the mean position of departure
is always at the origin.The radial expectation value (r(t)) of the continuum
part with E > 0 depends on the main quantum number only as long as the
ionization process is not finished (for the duration of the laser pulse).

Departamento 6e Fisia LONgG-range petential: quantum-classical

UBAEXACIAS A 100 : . . »
( A DB (a)
O™ 8O t
CONICE
o 60 7
3 P i
o 1s
- 40 ¢+ a .
> AR s
5 T S
% 20 ried <.'{.--.‘ i 4s J
= BT 55
0 "v'vv:vv Yy
(b)
E(r)
-20 -10 0 10 20 30 40 50
Propagation ime t {a.u.]
(a) Radial expectation value (r(t)) of the continuum parts of the wave
function (F 1)) as a function of propagation time ¢ after ionization
from different initial states in hydrogen with ( = (I (sphencally symmetnc)
The photon energy of the iomzing pulse was adjusted so that the final
momentum i the same for all electrons (& = 2.2021.11.). (b} The temporal

variation of the XUV pulse.
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