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STREAK CAMERA
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Conventional optoelectronic streak camera where the photoelectrons are
deflected by a linearly ramped on electric field and thus time is mapped to
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spatial displacement on the screen. Maximal resolution ~ picoseconds.
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weaa - THE STREAKING PRINCIPLE

o F(t) = Fx(t) + Fi (1)

CONICET
¢ The XUV pulse is responsible for the single-photon ionization

po = v/ 2(hixuy — 1)

The IR laser deflects the photoelectron.
It works as the DC field in streak camera.
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E = po — AL (tl ) Fundamental equation of streaking

Recording a set of spectra for different delay times between the XUV and
IR field yields a streaking spectrogram which is a direct representation of
the vector potential of the IR field.
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B Attosecond oscilloscope: XUV + IR

In 2004 the oscillation of visible light could be directly measured for the
first time by attosecond streaking.

Wi" \W‘S

resolution ~ 100 as

E. Goulielmakis et al, Science 305, 1267 (2004)
Typical streaking laser fields. IR laser field with A = 800nm, a sine-squared
envelope and total duration of 6 fs and an intensity of Ijg =4 - 10''W/cm?.
The XUV pulse has a Gaussian envelope and a FWHM duration of 200 as and
an intensity Iy, = 10'3W/cm?.

Attosecond streaking has become a basic tool for the
characterization of ultrashort light pulses as well as of the duration

and chirp of attosecond pulses.
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i a v = Beyond the SFA: Streaking spectrogram for ionization of helium with and
™™ without excitation of the second electron (lower and upper structure). For
coxicsr reference the vector potential A(T ) is shown in red. Comparison of the shift
¥ " of the spectrogram yields the streaking time shifts (see inset).
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If the electron is emitted delayed by t; it will feel a slightly different vector
potential and the streaking spectrogram will be phase shifted with respect
to the vector potential.

Thus, we can extract the absolute time shifts by a nonlinear least-squares fit
of the modified final momentum k to the vector potential A(t).
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R Attosecond streaking works as a classical clock
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.~ Streaking spectrograms
Ol -axIng spectrog
co~icqy for ionization from the

¢« hydrogen ground state
for different XUV pulse
durations Ty, w = 80 eV () B = A (b) Txuy =210
and I = 10'3W/em?2,
The IR field had a total
duration of 6 fs with a
sine-squared envelope,
A=800nmand ], =
10'?W/cm2.The
duration of one optical (€} Ty = WM (8) Txuy = 700
cycle is 2668 as.The
spectra are taken in
forward direction with
an opening angle
of 10°.

(e} Tsuy = 1O0Ius {f) Tsin 1 TIND s

wréggltiaos dgmcn SER_ A&S‘STE D Q.N lZ_AT!@N

{ a ¢ = Thesampled vector potential is averaged over the temporal width of the
W™ XUV pulse, i.e., the relative momentum shift is to first order given by a
covicsr convolution of the vector potential and the ionization probability
¥ 3 ~x
2 1
AprlT) = T Iﬁ\u\(f— l A (t)df
tot .
—o0
o
/ 2
o = / | Exuv(t — 7)|" dt
—ac

The extracted energy-dependent time delays t5(E) are averaged over the
spectral width of the XUV pulse

20
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(a) Peak position {b) First moment

Momentum shift in forward (solid lines) and in backward (dotted lines)
direction along the laser polarization axis extracted by either the maximum
(2) or the first moment (b) of the streaked spectra. For pulse durations
longer than a quarter IR period (667 as) the peak analysis gets discontinuous,
the first moment, however, follows the vector potential with a reduced
amplitude until an XUV pulse duration of 1500 as.
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Extracted streaking time shifts for ionization from the hydrogen ground state for two
different XUV energies (7w = 80 eV, red/orange points and /i« = 40 eV, blue points) as
a function of the XUV pulse duration. We compare time shifts extracted by the peak
maximum (filled and open triangles, forward and backward direction analysis,
respectively) and by the first moment (filled and open circles) with a theoretical
prediction based on Coulomb EWS time delay and a contribution due to the long-
ranged character of the Coulomb field. Although the errors from the fit get larger, the
first moment analysis is remarkably stable until 1500 as.

The peak analysis already breaks down for 750 as
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t & ¢ = We compare the following three time delays:

O

““=2 (i) The wavepacket delay twp = t — (r(t))/k (extracted from
the extrapolation of the wavepacket trajectory to a linear
slope that starts at t,yp from the origin) as a function of

propagation time,

¥ b

(i) The EWS delay averaged over the spectral width of the
wavepacket

(tews) and

(i) The streaking delays that we extract by a nonlinear least-
squares fit of the first moment of the streaking spectrogram
to the vector potential of the IR field.
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For Yukawa potentials with screening lengths a < 10 a.u. we find that the extracted
streaking time shifts tg for the given laser parameters indeed agree exactly with the
intrinsic atomic time shifts (tgys). The wavepacket delay typ also converges to (tgys)
shortly after the ionizing XUV field is over.
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F TR For sufficiently short-ranged potentials (a few a.u.) the electrons emission
o time (arrival in the continuum) is delayed by the EWS time, i.e., the
o~y ponderomotive momentum A(t) to be shifted by tpyws, At + Zews)-

¥ 3
~

ts = twp = (tews) =~ tgws

IZZ ﬁO_AL(t_tS)Z ﬁO_AL(t_tEWS)

For Yukawa potentials with larger screening lengths (a = 10 a.u.) the
streaking time shifts t5 no longer agree with tgys and tyyp -

The extracted streaking time shifts are always less negative than tgys, and,
moreover, they converge to the streaking time shift for a pure Coulomb
potential, t;, a—<, for screening lengths a = 100 a.u.

Conclusion:
Streaking is only able to extract intrinsic atomic time shifts that are built-up
within a distance of a few atomic units and that for potentials with longer

range, in particular for Coulomb potentials some modifications are necessary.
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Streaking and EWVS time shifts for the Yukawa potentials (= 0.5, 1, 2, 10, 20,
100, 200 a.u.) as a function of the electron energy E. tg agrees with

tews for small a and converges for large a to tg of a Coulomb potential

with Z =2 (grey solid line).
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i a o | Since for easily resolvable energy shifts IR fields with intensities of the order
%™ I, ~ 10''-10'2W/cm? are needed, distortion effects generally cannot be
covicst neglected. 29 v - T v
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t (red dots) agrees well with the classical streaking time shift ¢t (black
boxes) calculated with the CTMC method.
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i a | Since for easily resolvable energy shifts IR fields with intensities of the order
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ts (red dots) agrees well with the classical streaking time shift t° (black

boxes) calculated with the CTMC method.
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i a = We consider a typical trajectory of outgoing electrons. Since the Coulomb
("™ force depends on the trajectory r(4), for an exact treatment we need to solve
co~icsr the differential equation for a trajectory taking off at r(t;) = 0 near the ionic

¥ " core in the combined Coulomb and laser fields,

F(t) =R [r(t)]
F(t) =T (t)+ [ac. [r(t)]dt

K =F (o) =F(t,) + [ac. o [r(t)]dt

In the SFA: Kk =F(t,) +Ta,R (t)dt = P, (t,) — A, (t;)

In absence of the IR laser: P, = F(OO) = ?(to) +Idtac (r@) =, IZ(a)X - |p)
)

UBAGKACIaS A
S K=+ e [P
K =Py + [{ac.n [F)]-ac [FO]} ot

K= By Aly) + [ {ac. [FO]- 20 [FO] - [FO et
f

"t Reyt ) )
/ (ac4+IR fl—“{f'yu" :J('!F(fl aIR Irlfl]l dt

— "sllurt{“Z-L)FlH\"' J <

e
/ (1w IR _—’,'.”]] —ag ii"(f): — QIR Z}"H)J)l/f
Y Heye )

= Casym/\ €, 7, WIR ) le 7).
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teLe = tan™" [wIRCasym(€. Z, wiR )]
“IR

] o Z TR X
Cshore(€. Z, L) = tan ( _IR.‘,_, I ( \/1/- + Lz])
“IR {2¢)% =

l -A-'“{Z ’
= tan = In (e11Rr)
WIR ( (2¢)%/2

ts = tews(€. £. Z) + tercle, Z, wir)

Casym | €. Z.WIR)

teic is universal for Coulomb exit channel interactions, i.e., is independent of

the atomic species and initial state.

iamet fis  COULOMB-LASER COUPLING

UBAEXACIAS A

. 4 o . Since the Coulomb-laser coupling is of classical origin, we can determine t¢,c

x classically by subtracting the classical limit of the EWS time delay from the
o~ classical streaking time determined by the CTMC,

| toro(E) = t§(E, L) — tSus(E. L)

tews (B, L) = .If_ 1“(\5-_—:[5)

OE \ k
= Mew(E.r) + (B0

)
f(?ou][E.’.I') — (_ <£ 111(2/.‘1") +(T[(E)>

> 4 Aty = tqd
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Photoionization of H(1s) by an XUV pulse (/xoy = 1YW /em?, 7,
2 ns) as a function of F (F = Lxpy = 71.) streaked by an IR field
with iy = 10" W /emi®, oy = 0057 as (800 nus). Shown are both the
quantem and classical EWS delay time and the streaking time ¢4 Classical
and quantum £, determined by subtraction (Eq. 4 24) agree with each
other to within the graphical resclution when taking into accoant that the
classical angular momentum corresponding to a quantum wave with well
defined 1 is L = ( + ;. The analytic estimate tls.c. Eq. 4.30, coincides
as well
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wucr Delay in Photoemission

| M. Schultze,™** M. FieB,* N. Karpowlcz, ). Gagnon, L, Korbman. M. Hofsletm 5. mppl,’
| AL Cavalieri,” Y. Kommnos, Th. Menouns CA Nxolaldes, R. Pazourek,” S, Nagele,
). Feist,”® ], Burgdarfer,” A. M. Azzeer,” R. Ernstorfer,” R. Kienberger,®* U. Kleineberg,”

| E. Goulielmakis,” F. Krausz,"* V. S. Yakovley'**

| Photoemission from atoms is assumed to occur instantly in response to incident radiation and

| provides the basis for setting the zero of time in clocking atomic-scale electron motion. We used
attosecond metrology to reveal a delay of 21 < 5 attoseconds in the emission of electrons liberated
| from the 2p orbitals of neon atoms with respect to those released from the 25 orbital by the

| same 100-electron volt light pulse. Small differences in the timing of photoemission from different
| quantum states provide a probe for modeling many-electron dynamics, Theoretical models

| refined with the help of attosecond timing metrology may provide insight into electron correlations
| and allow the setting of the zero of time in atomic-scale chronoscopy with a precision of a

| few attoseconds.
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Fig. 1. A d telay 0 and It ¢ s AN The et degundent Scheddinger equation with the aid of the sate specific

“real” time wale begns st te macmum of the XUV pulse, whereas the  expansion spproach. As time progresses, the wave packets released from the

“apoarent” time wcale in the measurement sarts with ®e retease of an
soctan waw packet and K temporally shifted ty & possibie delay & W
wn, A delay | et the merival timm of Fw aosecond XUV
m:'mnon pube and the nstamt of emesion would falsify the conchesions
reached from measwrements with an stomic cheonoscope, which is triggered
bry the eemiston of an olectron mave packet, A M oicopic owent that oooured
M= iy indicated by this nhunumopo 10 berew appvrently Ragpened at
Y = A, thereby taintng a theory and exge
manmmmxmoml )t 1B The ssriace plots show the spatial
distritagon of the photoekect oo density around % Atomic com at 2, = 300 &
aod 1 = 1500 a3 alter the masinuems of the XUV gulee. evalinied lry solving

25 and 2p subshells bocome spatially separated because of thelr different
welockws. Far from the nouckars, whemm e owrlap with onic otitals is
negligible, theie motion can be destribed sermi-clmsically, Therefore, knowing
the average position and velooty of o wave packet that propagates tomard the
detectar, we can Rlustrate a possitle debay in it emission by tracng 3 casskal
akctron waectory Back 50 the lon, The red solld s Bue dachod lines chos
e cassal trajectories of the 2o and 25 photoslectrons, respictividy. Tw
lines terminate ot a distance 7, = 0 3 A, which is sguol to the radios of the
valence sholl. Az this disance, the trajectones betave as i they started with a
relative delay AL, = 5 6, which Is in roascoatio agreement with the vikwo
obtawned by & wore tgatous Theoretical anslysis
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Fig. 3. The relative delay between photoemission from the 2p and 25 subshells of Ne atoms, induced by
sub-200-as, near—100-eV XUV pulses. The depicted delays are extracted from measured attosecond
streaking spectrograms by fitting a spectrogram, within the strong-field approximation, with param-
eterized NIR and XUV fields. Our optimization procedure matches the first derivatives along the time delay|
dimension of the measured and reconstructed spectrograms, thereby eliminating the influence of un-
streaked background electrons [for details on the fitting algorithm, see (29)]. From the analysis of a set of|
spectrograms, the measured delays and associated retrieval uncertainties are plotted against the amplitude)
of the vector potential applied in the attosecond streak camera. Spectrograms measured in the presence of
a satellite attosecond pulse were found to exhibit a less accurate retrieval of the delay value, When a subseq
of data (red diamonds) that represents scans with less than 3% satellite pulse content was evaluated, 3
mean delay value of 21 as with a standard deviation of ~5 as was found, The green circles represent thel
result of analyzing spectrograms recorded with an XUV pulse with narrower bandwidth in order 1o exclude)
the potential influence of shakeup states contributing to the electron kinetic enéray spectrum.
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A6 = 0Coulcsmb potential + emnneling delay

> An offset angle A6 of photoelectron
momentum distribution can be
measured experimentally.

> This offset angle comes from the
tunneling delay (Buuneting sersy) and
Coulomb potential effect ( O¢oypoms

7> The tunneling delay can be achieved
only if Bcouoms poteatias have been
determined.
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