

Departamento de Fisica .UBA exactas 🙈		Classical electromagnetic radiation field (cont.)			
		Dipole approximation:			
- B A	Spatial dependence of the vector potential: $\vec{A}_{\lambda\vec{k}} \propto e^{\pm i\vec{k}\cdot\vec{r}}$ where $k = \frac{\omega}{c} = \frac{2}{c}$				
	As c is big, we can neglect the wave number k of the photon and, therefore, the spatial dependence of the vector potential (foton momentum) $\hbar k = \frac{\hbar \omega}{c} = \frac{\varepsilon}{c} \ll 1$				
	Example: Ti-sapphire laser $k = \frac{2\pi}{\lambda} = \frac{2\pi}{8 \times 10^2 \times 10^{-9} \text{ m}} = 7.8 \times 10^6 \text{ m}^{-1}$				
	The dimension of the atom is about some Bohr radii				
	$a_0 = 5.3 \times 10^{-11} \text{ m}$ $ka_0 = \frac{2\pi a_0}{\lambda} = 7.8 \times 10^6 \text{ m}^{-1} \times 5.3 \times 10^{-11} \text{ m} \simeq 4 \times 10^{-4} \ll 1$				
	The dip	ole approximation fails when:			
	kr ~	$\sim 1 \implies v > \frac{c}{2\pi r}$ with $\frac{c}{2\pi a_0} = 9 \times 10^{17}$ Hz (hard X and γ rays)			

Departamento de Física		Radia	tion-matter couplin	8		
		Lorentz Force	e: $\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$			
CONTERT B A	Inserting B and E into the Lorentz law: $\vec{F} = q \left(-\vec{\nabla} \phi - \frac{\partial \vec{A}}{\partial t} + \vec{v} \times \vec{\nabla} \times \vec{A} \right)$ (1) Exercise 4: Prove that (Goldstein pgs. 27-28) $\vec{v} \times \vec{\nabla} \times \vec{A} = \vec{\nabla} (\vec{v} \cdot \vec{A}) - \frac{d\vec{A}}{dt} + \frac{\partial \vec{A}}{\partial t}$ (2)					
	where $\frac{dA_x}{dt} = \frac{\partial A_x}{\partial t} + \left(v_x \frac{\partial A_x}{\partial x} + v_y \frac{\partial A_x}{\partial y} + v_z \frac{\partial A_x}{\partial z} \right)_{\vec{y} \cdot \vec{\nabla} A_x}$					
	Replacir	ng (2) in (1)	$\vec{F} = q \left(-\vec{\nabla} \left(\phi - \vec{v} \cdot \vec{A} \right) - \frac{d\vec{A}}{dt} \right)$			
	And rev	writing	$\vec{A} = \vec{\nabla}_{\vec{v}} \left(\vec{v} \cdot \vec{A} \right) = -\vec{\nabla}_{\vec{v}} \left(\phi - \vec{v} \cdot \vec{A} \right)$			

Departmento de Fisica
UBACKACCASA
UBACKACCASA
Exercise 8: Prove that if
$$\vec{A} = \vec{A}(t) \neq 0 \Rightarrow \Psi(\vec{r}, t) = \psi(\vec{r})e^{-\vec{h}S(t)}$$

where $S(t) = \frac{1}{2m_e}\int_{t_0}^{t} dt' \left[\hbar\vec{k} - q\vec{A}(t')\right]^2$ classical action
Let's consider the case of a linearly polarized sinusoidal electric field with adiabatic
switch on and off
 $\vec{E}(t) = \hat{z}E_0 \sin \omega t$
 $\vec{E}(t) = -\frac{\partial \vec{A}}{\partial t} \Rightarrow \vec{A}(t) = -\int_{-\infty}^{t} dt'\vec{E}(t') = -\hat{z}E_0\int_{-\infty}^{t} dt'\sin \omega t' = \hat{z}\frac{E_0}{\omega}\cos \omega t$
For the sinusoidal case we can derive an analytical action:
 $S(t) = \frac{1}{2m_e}\int_{t_0}^{t} dt' \left[\hbar\vec{k} - q\vec{A}(t')\right]^2 = \varepsilon_k(t - t_0) + \hbar\vec{k} \cdot \vec{\alpha}(t) + \beta(t)$

Departments de Frice
Quantum Electron in Electromagnetic Field
(cont.)

$$\vec{a}(t) = \frac{-q}{m_e} \int_{t_0}^{t} dt' \vec{A}(t') = \frac{-q}{m_e} \frac{E_0}{\omega} \hat{z}_{t_0}^{\dagger} dt' \cos \omega t' = \frac{-q}{m_e} \frac{E_0}{\omega^2} \hat{z} \sin \omega t \quad (\text{adiabatic switch on})$$
is the integral of the integral of the force \Rightarrow displacement of the classical electron
 $\langle \vec{\alpha}(t) \rangle = \frac{1}{T} \int_0^T dt \vec{\alpha}(t) = 0$
 $\beta(t) = \frac{q^2}{2m_e} \int_{t_0}^{t} dt' A^2(t') = \frac{q^2}{2m_e} \frac{E_0^2}{\omega^2} \int_{t_0}^{t} dt' \cos^2 \omega t' = \frac{q^2}{4m_e} \frac{E_0^2}{\omega^2} \Big[(t-t_0) + \frac{\sin 2\omega t}{2\omega} \Big]$
where I used adiabatic switch on
 $\langle \beta(t) \rangle = \frac{1}{T} \int_0^T dt \beta(t) = \frac{q^2}{4m_e} \frac{E_0^2}{\omega^2} = U_p$ (ponderomotive energy)
 $q = -e$ for the electron
If E₀ = 0 everything reduces to the free particle