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UNIT III 

REVIEW OF 

ELECTROMAGNETISM 

Diego Arbó 

diego.arbo@.uba.ar 

1st  Semester 2024, Buenos Aires,  Argentina 

 

System of Units:  We use MKS despite the most used is the Gaussian 

Maxwell Equations 
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 is the vector potent0  ia     lB B A A    
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 is the scalar potential 

Electric and magnetic fields E and B are unaltered if one changes: 

where ( , ) is an arbitrary function
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Proof: 
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Example: Coulomb gauge   2
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Supposing that  ( ) and doing const 0r    
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Lorentz gauge: 
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From the Maxwell equation: 

Exercise 3: From the Maxwell equation 

 

Derive a wave equation for the vector potential 
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Wave equation 
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0 0   (Coulomb gauge)A    

We still have the freedom to resctrict : 

ˆ ˆ0      : two directions

When we introduce  into the wave equation

     dispersion relation
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Solution to the wave equation: 
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Electric field: 

In the non-relativistic regime, as c is big, we can neglect the magnetic field 

(next slide). 
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Magnetic field:    ˆ 2sin
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The volumetric density of energy 

The Poynting vector 
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  Intensity or irradiance: 
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Example 1: What is the intensity of the solar radiation on the Earth? 

0 02 2

kW W V
1.4 0.14 ; 750 ; 2.4μTesla

m cm m
I E B 

Example 2: What is the intensity of the radiation of a He-Ne laser? 

 
2 2

Power ~ 3.2mW; diameter beam ~ 2.5mm
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0.065
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Example 3: What is the intensity of the radiation of a Ti-sapphire laser? 
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Dipole approximation: 

Spatial dependence of the vector potential:  
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As c is big, we can neglect the wave number k of the photon and,  

therefore, the spatial dependence of the vector potential 

(foton momentum) 1k
c c

 
 

Example: Ti-sapphire laser 
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The dimension of the atom is about some Bohr radii 
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The dipole approximation fails when:  
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Inserting B and E into  

the Lorentz law: 
A
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Exercise 4: Prove that (Goldstein pgs. 27-28) 
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Replacing (2) in (1)   dA
F q v A

dt


 
      

 

And rewriting    v v
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Lorentz Force: ( )F q E v B  
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   U is the generalized potential 

Definition of generalized force 

The Lagrangian of a charged particle in an electromagnetic field is given by 
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By means of a Legendre transform the Hamiltonian is defined by: 
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Exercise 5: Derive the Lorentz force from the Hamilton equations: 
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This is called the length gauge: 
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Linearly polarized plane wave (never started and never finished): 
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Lorentz Force: sin

cos supposing adiabatic switch on and off
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Energy an electron has 

because it is oscillating 

driven by E(t) 

Electron position: 
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Only this century it has been possible to build lasers with  ~ 1 

Exercise 6: How much is  for an electron excited with a Ti-Sapphire laser? 

 = 800nm,  E0 = 5x1010 V/m,  me = 9.1x10-31 kg 
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First quantization: ˆ
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Schrödinger equation: 
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Exercise 7: How does gauge invariance work for the Schrödinger equation? 
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In the Coulomb gauge: 
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Velocity gauge: 

Let’s solve the Schrödinger equation in the velocity gauge. 

In the trivial case that there are not electromagnetic fields (A = 0) 

we have the free particle: 
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Exercise 8: Prove that if 
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Let’s consider the case of a linearly polarized sinusoidal electric field with adiabatic 

switch on and off 
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For the sinusoidal case we can derive an analytical action: 
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If E0 = 0 everything reduces to the free particle 
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