Departamento de Fisica .UBAexactas

ATTOSECOND PHYSICS

UNIT IV SYSTEM OF UNITS: HARTREE ATOMIC UNITS

Diego Arbó diego.arbo@.uba.ar

Ist Semester 2024, Buenos Aires, Argentin

Departamento de Fisica .UBAexactas

HARTREE ATOMIC UNITS

The atomic units system is used in atomic physics for its simplicity.

The atomic unit of mass is the electron mass:

 $m_e = 9.11 \times 10^{-31} \text{kg}$

The atomic unit of charge is the electron charge: $e = 1.602 \times 10^{-19} C$

The atomic unit of length is the Bohr radius:

 $a_0 = 5.29 \times 10^{-11} \text{ m}$

The atomic unit of angular momentum:

 $h = \frac{h}{2\pi} = 1.05 \times 10^{-34} \text{ J.s}$

According to the Bohr's model, the condition for mechanical stability is:

(attraction force)
$$\frac{e^2}{4\pi\varepsilon_0 r^2} = \frac{m_e v^2}{r}$$
 (centrifugal force)

HARTREE ATOMIC UNITS (cont.)

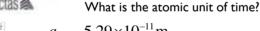
Besides, the angular momentum is: $L = m_e v r = n\hbar \implies v = \frac{n\hbar}{m r}$

$$\frac{e^2}{4\pi\varepsilon_0 r^2} = \frac{m_e n^2 \hbar^2}{r m_e^2 r^2} \Rightarrow r_n = \frac{4\pi\varepsilon_0 n^2 \hbar^2}{m_e e^2} \quad \text{radii of Bohr's orbits}$$

$$a_0 = r_1 = \frac{4\pi\varepsilon_0\hbar^2}{m_e e^2} = 4\pi\varepsilon_0 = 1 \Rightarrow \varepsilon_0 = \frac{1}{4\pi} = 8.85 \times 10^{-12} \frac{\text{C}^2\text{s}^2}{\text{m}^3\text{kg}}$$

We can derive other constants of nature like the speed of light

Fine structure
$$\alpha = \frac{e^2}{4\pi\varepsilon_0\hbar c} = \frac{1}{137.036}$$
 (non-dimensional)
 $\Rightarrow c = 137.036$


How much is a speed of I a.u.?

$$v_0 = 1 = \frac{c}{137} = \frac{3 \times 10^8 \text{ m/s}}{137} = 2.19 \times 10^6 \text{ m/s}$$

 $v_0 = 1$ a.u. is the classical velocity of the electron in the first Bohr's orbit.

Departamento de Fisica UBA exactas

HARTREE ATOMIC UNITS (cont.)

$$t_0 = \frac{a_0}{v_0} = \frac{5.29 \times 10^{-11} \text{m}}{2.19 \times 10^6 \text{ m/s}} = 2.42 \times 10^{-17} \text{s} = 24.2 \text{ as (attoseconds)}$$

How long does a classical electron take to complete the first Bohr's orbit?

$$\frac{\text{space}}{\text{velocity}} = \frac{2\pi a_0}{v_0} = 2\pi \times 2.42 \times 10^{-17} \text{ s} = 152 \text{ as} = 2\pi \text{ a.u.}$$

The atomic unit of frequency is:

$$\frac{1}{t_0} = \frac{v_0}{a_0} = \frac{1}{2.42 \times 10^{-17} \text{s}} = 4.13 \times 10^{16} \text{Hz} \quad (XUV)$$

Excercise 9: (a) How much is the electric field felt by a classical electron in the first Bohr's orbit? V

$$5.14 \times 10^{11} \frac{\text{V}}{\text{m}} = ... = \frac{e}{4\pi\varepsilon_0 a_0^2} = 1 \text{ a.u.}$$

(b) How much is the electric potential felt by a classical electron in the first Bohr's orbit?

27.2 V = ... =
$$\frac{e}{4\pi\varepsilon_0 a_0}$$
 = 1 a.u.

Departamento de Fisica .UBA exactas

HARTREE ATOMIC UNITS (cont.)

(c) What is the intensity due to 1 a.u. of electric field?

$$I = \frac{\varepsilon_0 c E_0^2}{2} = \frac{137}{8\pi} = 5.45 \text{ a.u.}$$

$$= \dots = 3.5 \times 10^{16} \frac{\text{W}}{\text{cm}^2}$$

$$\Rightarrow 1 \text{ a.u.} = \frac{3.5 \times 10^{16} \frac{\text{W}}{\text{cm}^2}}{5.45} = 6.44 \times 10^{15} \frac{\text{W}}{\text{cm}^2}$$

The atomic energy of a hydrogen atom in its ground state is:

$$\frac{1}{2}m_{e}v_{0}^{2} - \frac{e^{2}}{4\pi\varepsilon_{0}a_{0}} = \frac{1}{2}m_{e}\frac{\hbar^{2}}{m_{e}^{2}a_{0}^{2}} - \frac{e^{2}}{4\pi\varepsilon_{0}a_{0}} = \frac{1}{2} - 1 = -\frac{1}{2}$$

$$= \dots = -2.18 \times 10^{-18} \text{ J}$$

$$\Rightarrow 1 \text{ a.u.} = 4.36 \times 10^{-18} \text{ J}$$

The atomic unit of momentum is:

$$m_e v_0 = 1 \text{ a.u.}$$

= $9.11 \times 10^{-31} \text{kg} \times 2.19 \times 10^6 \text{ m/s} = 1.99 \times 10^{-24} \text{kg m/s}$

We can derive other physical magnitudes in a.u.