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We consider now the electron initially bound to one atom. 

For the hydrogen atom: 
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light  

Einstein (1879-1955) 

Photoelectric Effect (Einstein 1905) 

How long do photoelectrons take to exit the metal plate? 

Physicists assumed the effect was instantaneous  

A. Einstein,  Annalen der Physik 322, 132 (1905) 

About a heuristic point of view 

concerning the production and 

transformation of light ; 

1930: Maria-Goeppert Mayer performed her 

PhD in Göttingen, with Max Born as her PhD 

supervisor, predicting the possibility that 2-

photon absorption might be possible.  

However, light sources allowing to validate this 

prediction were unavailable at the time. 

 

In 1963 she became the 2nd female Nobel 

Laureate in physics, for her work on the nuclear 

shell model. Maria-Goeppert Mayer  

P.  Agostini et al., Phys. Rev. Lett. 42, 1127 (1979) 

Above-Threshold Ionization 

6-photon ionization: 

Energy spectra of electrons produced by 

multiphoton ionization of xenon atoms, 

for two photon energies. Triangles: ω = 

1.17 eV; Circles: ω = 2.34 eV;  
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When lasers are weak and frequencies high, the distortion of the atomic 

potential due to the external electric field is negligible. 

Einstein's formula
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In the length gauge, the total potential energy is given 

by the atomic potential energy added to the potential 

energy given by the external laser field 

When lasers are strong and/or frequencies low, the distortion of the 

atomic potential due to the external electric field is appreciable. 
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The atom will ionize if the electron energy is higher than the potential 

barrier: 
2
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This provides a good idea about the importance of ionization: 

 

If I > Ic => atomic ionization is important 

 

If I < Ic => atomic ionization is small (but appreciable). 

Conclusion:  Another mechanism for atomic ionization 
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According to the Virial theorem, the 

kinetic energy is minus the total energy: 
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The electron can cross through the 

potential barrier by tunnel effect. 

 

The ease (or difficulty) for the electron to 

tunnel can be defined as the classical time 

that the electron takes to tunnel through 

the barrier. 
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Therefore, the tunneling time is: 

The adiabaticity or Keldysh parameter is defined as the ratio of 

the tunneling time over half a laser cycle: 

If g < 1   =>   tunneling regime 
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Exercise 10: How much is the intensity of a Ti-Sapphire laser (l = 

800 nm) impinging over H so that the Keldysh parameter is g = 1? 

How long does it take for an 

atom to ionize? 

Tunneling time? 

High intensities: tunneling regime 

(g< 1) 

Ip 

Low intensities: multiphoton regime  

(g > 1) 
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Time-Dependent Schrödinger Equation 

Coulomb-Volkov Approximation 

Impulse Coulomb-Volkov Approximation 

Strong-Field Approximation 

Semiclassical Two-Step Model 

Semiclassical Model 

Simple Man’s Model 

Quantum Trajectory Monte Carlo 

Floquet Theory 

Quantum Orbit Theory 

R-Matrix 

Time-Dependent Density Functional Theory 

Back-propagation method 

Born Approximation 

Lewenstein´s Model 

Coulomb-Corrected Strong-Field Approximation 

Three-Step Model 

For the tunneling regime (g < 1), we suppose that the ionization is 

produced in the following way: 

 

• At t = t0 the electron is tunneled out through the barrier. The 

ionization rate is given by a semiclassical estimation due to Amosov, 

Delone, and Krainov (ADK) J. Opt. Soc. Am. B 8, 1207 (1991): 

*2 3/23/2 2 3 3
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• Right after tunneling (which is considered to be instantaneous at t = t0), 

the electron appears with zero speed at the origin.  

 

• After the ionization (t > t0), the electron behaves classically driven by the 

external electric field and the atomic Coulomb potential is neglected 

(Strong Field Approximation). 
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We use atomic units 

As an example we will apply the Simple Man’s Model to the case of 

an atom in a linearly polarized sinusoidal field 

0
ˆ ˆsin ; :  polarization directionE zE t z
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What do we measure at the detector? 

  

• The detector is at a distance considered infinite in relation to the 

atomic dimensions.  

 

• The laser pulse adiabatically switches off  the electron does not 

oscillate any more and only the drift velocity stays on: 

drift
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What is the maximum kinetic energy of the electron that we can expect? 

We must find the ionization times so that |vdrift| is maximized. 
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The electric field is zero when  

<Tkin>max = 2Up 
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We will develop the S-matrix theory and will apply it to the 

problem of the laser-atom interaction. We consider an atom 

in the Single-Active Electron (SAE) approximation under the 

influence of a linearly polarized electric field.  

 

We suppose an interaction Hamiltonian Hint delimited in 

time, we mean, it starts and finishes : 
intlim 0

t
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since Hint  is not initially acting. 
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For the case of ionization: 
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So far, everything is exact: 
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In this way, to compute Tif some kind of approximation is necessary.  

The quantum mechanics equations of motion are invariant under time inversion:  
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1) First Born Approximation: Perturbative method 

 The exact wave function is replaced by the non-distorted solution of the 

free Hamiltonian H0. Thus, the laser field is neglected in the final channel. 
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For the case of the Hydrogen atom: 

This is a good approximation for weak external electric fields: Hint << H0. 

2) Strong Field Approximation (SFA):  

 The exact wave function is replaced by the solution of the Schrödinger 

equation in the laser field (Volkov function) neglecting the atomic 

potential 
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This is a good approximation for strong external electric fields: Hint >> H0. 

For the case of the Hydrogen atom: 
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A(t): vector potential 

Volkov state: 

Prior: 
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3) Coulomb-Volkov Approximation (CVA):  not perturbative method 

 The exact wave function is replaced by a compromise of the two former 

approximations.  

 We consider the interaction of the active electron with the external laser 

field and the core potential in a non-perturbative way yet approximated.  

 We replace the exact solution by the Coulomb-Volkov wave function. 

This is a good approximation for intermediate external electric fields: Hint ~ H0. 
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4) Eikonal-Volkov distorted wave Approximation (EVA):  not 

perturbative method. 

 It corresponds to the inclusion of the Coulomb phase accumulated in 

straight trajectories, neglecting the deflection on the core field. 

This is a good approximation for strong external electric fields 

but it is more elaborated than the first Born approximation. 
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Lewenstein model: 

It solves the TDSE within the SFA and many other assumptions.  

The result is rather simple and for sinusoidal pulses is analytical. 
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 on (see Volkov states)

We will arrive to the same result of the Lewenstein model starting 

from the continuum distorted wave SFA: 

Exercise 11: Calculate the classical action for a sinusoidal linearly polarized field  
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I suppose a flattop pulse with adiabatic switch on and switch off 

0
0

ˆ ˆ( ) cos( ) ( ) sin( )
F

F t F t z A t t z 


  

 

( , ) ( ) ( )

( ) cos sin(2 )

S t S S t

S t at b t c t

 

 

 

  

( ) ( ) ( )

( ) ( )

S t at S t jT a t jT

S t jT S t ajT

    

   Periodicity properties: 

*

0

( 1)1
*

0

exp[ ( )] ( ) ( ( )) exp[ ( )]   

exp[ ( )] ( ) ( ( )) exp[ ( )]

NT

if

j TN

j jT

T i iS dtE t d k A t iS t

i iS dtE t d k A t iS t








   

   



 

pulse with N cycles NT 

1
*

0 0

exp[ ( )] ( ) ( ( )) exp[ ( )]

TN
iajT

if

j

T i iS e dt E t d k A t iS t




       

 
 

 

 

/2 /2 /2
1

/2 /2 /2
0

( 1) /2

1

1

sin / 2

sin / 2

iaNT iaNT iaNTiaNTN
iajT

iaT iaT iaT iaT
j

ia N T

e e ee
e

e e e e

aNT
e

aT










 

 




1

0

1

1

NN
j

j

r
r

r











Geometrical sum 



6/24/2024 

15 

 

 
( 1) /2

( 1)

*

sin / 2
exp[ ( )] ( )

sin / 2

( ) ( ) ( ( )) exp[ ( )]

ia N T

if

j T

jT

aNT
T i iS e I k

aT

I k dt E t d k A t iS t

 



  

    

The important physical magnitude is the probability: 
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1D SMM:  F0 = 0.05 (I = 8.8 x 1013 W/cm2),  
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Stationary phase or steepest descent method [Arfken, Mathematical Methods for 

Physicists, Academic Press, Inc (1985) pg. 428]: 
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In our case: 

In order to calculate the time 

integral we use the Saddle-Point 

Approximation: 
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Ionization times: 
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How does the photoelectron spectrum change with wavelength?  
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• ATI peaks 

Hydrogen 
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Comparison among different computation methods 

TDSE considers 
•  rescattering proceses 

•  depletion of the ground state 

•  excited bound states 
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(d) TDSE

N = 3 

E0 = 0.0675,    = 0.05 (trapezoidal pulse with half a cycle ramp on and off) 

Nucl. Instr. Meth. B 279, 24 (2012) 
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Coulomb potential  Formation of the bouquet 

 

SFA is accurate for short-range potentials (negative ions) 

Doubly differential momentum distributions 
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Photodetachment of negative ions 

Two-slit interference: 

 

n: minimum number of 

photons to reach the 

continuum 

l: initial state angular 

momentum 

 

Dominant angular momentum 

near threshold: 

n+l is even  s-wave 

n+l is odd   p-wave 
 

Wigner threshold law 

Classical trajectories (negative ions): wiggling around straight lines 

Reichle et al, PRA 68, 063404 (2003) 
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   0( ) ( ) cos cos 2F t F t t t      

Control of sub-cycle interference patterns 
with a sculpted laser field  

Semiclassical method 

F0 = 0.075    = 0.057 F0 = 0.053    = 0.057 

Two-color Laser Theory: Single ionization of H 

SMM    0( ) ( ) cos cos 2F t F t t t      

Phys. Rev. A 89, 043414 (2014) 
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Two-color Laser 
Experiment & Theory: 
Single ionization of He 
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Two-color Laser Experiment & Theory: 
Single ionization of He 

X. Xie et al., Phys. Rev. Lett. 108, 193004 (2012) 

   0( ) ( ) cos cos 2F t F t t t      

measurements TDSE 

F(t) 

l1 = 800 nm, l2 = 400 nm 

I1 = I2 = 1014 W/cm2 

Xie et al, Phys. Rev. Lett. 108,  

193004 (2012) 

Single 
ionization 

 of He 

(a) Measured ion momentum 

spectra of He+ along the laser 

polarization direction for φ = 0 

(blue) and π (red). The thin 

vertical lines mark the position of 

the intercycle peaks.  

 

(b) Same as (a) but for φ = π/2. 

The blue shaded dots mark the 

sub-cycle interference patterns.  

 

(c) Intercycle and sub-cycle 

interference fringes extracted from 

the measured ion momentum 

spectra as a function of the 

longitudinal momentum pz and the 

relative phase φ.  

 

(d) Same as (c) but calculated 

using the TDSE. The upper half of 

the diagram (pz > 0) shows the 

simulated spectrum for a single-

cycle pulse, the lower half (pz < 0) 

for a multi-cycle pulse.  

 

(e) Comparison of normalized 

spectra for φ = π/2, calculated 

using the TDSE for a multi-cycle 

pulse (gray line) and single-cycle 

pulse (red line) with the measured 

spectrum (blue line). 
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r rt t t  

Experiment MPI in Heidelberg: 

Single ionization of Ar 
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I1 = 1014 W/cm2, l1 = 800 nm 

I2 = 1013 W/cm2, l2 = 400 nm 

kz (a.u.) 

k

 (

a.
u
.)

 

Experiment MPI in Heidelberg: 

Single ionization of Ar 

TDSE 

CTMC 
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TDSE 

CTMC 

TDSE CTMC 
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TDSE CTMC 


