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covicer Classical Trajectory Monte Carlo (CTMC) is a non-perturbative method in

t ~ which the classical equations of motion (Hamilton equations) are numerically
solved. Computer experiment.

* The initial state is sampled by a set of points in the phase space (position
and momentum) chosen at random fulfilling the microcanonical ensemble:
2

p, (F,B)=Co(s+1,) = cla[p?w (r)+1 pj
C, : Normalization constant

* N, points in the phase space (F, P) follow the Hamilton equations

describing N, trajectories. 1.0 B i
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L A U % «The electron is allowed to tunnel

o~y
O out through the potential barrier
CONICEY . . .
————— | each time that finds the classical
turning point: p, = 0, with zE(t) <0
with a tunneling probability T given
by the WKB approximation:

¥ "

Vi) +zEtt=t,)
(‘n'e) x

T =[1+exp Zﬁ]gdf (2)-V(z)

The electron is tunneled from the turning point (x,y,,z,) to the other side of the
barrier (x,,y,,z;) in the same energy manifold. The tunneling path through the
potential barrier chosen is the one which maximizes the tunneling probability.
Recapture by tunneling is neglected in the calculations.

If the tunneling probability is switched off (T = 0), then a pure classical calculation
(CTMC) arises. In this case, the only ionization way is over the barrier ionization.

Departamento de Fsica CTM @=T (QQ nt‘_}
UBAEXACIAS A .
\ & o« u *After tunneling, classical trajectories must be followed beyond the end of
o the laser pulse (1) if one wants to calculate the momentum (or angle)
covicer because the interaction of the active electron with the core continues. If one
¥~ wants to calculate the energy distribution this is not necessary since the
energy is a constant of motion.
The energy and momentum distributions are calculated as

® N . dP N, . dP_ N,

de NgAe dpdp, NgAp,Ap,” dl N AL

traj traj

N, : number of trajectories with final energy in the interval (g, s + Ag)
N, : number of trajectories with final momentum

in the interval (p,,, p, +Ap,) N (p,, P, +Ap,)

N, : number of trajectories with final angular momentum
in the interval (L, L+ AL)

CTMC —g—-—classical mechanics

1/2
A_O_ _ Ntraj B Ni

o N

standard deviation

traj ! Vi

6/24/2024



Departamento de Fisica CTM C;!: {eant,
UBAEAAC(as A ME-T (eant.)
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ALY T

covicsr * The electron dynamics before tunneling is neglected.

16

* Initial conditions for each trajectory according to quantum tunneling
probabilities (ADK) are chosen with energy —I, postion x,(t,) = y,(to) = 0
and z,(ty) as the root of -V(z) - zE(t) = -1, .

The tunneling probability is given by the ADK rate
/27 s 1
V=Ipvy ?l[l — T{f‘[r,__

tgy [#U. tn | ) OX ¢ 3F(tg) F(tp)
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AL e

‘\? PADK (to) = JO‘ dtWADK (t)1

r

CONICEY

5 which can be very high when considering a long pulse. In this case the

depletion of the ground state must be considered:

I:)tun (to) = I:)ADK (to)e_PADK ()

* The momentum distributions in p ,and p, are gaussian
This method is much less CPU time consumer than CTMC-T

Delone & Krainov, . Opt. Soc. Am.B 8, 1207 (1991).
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Saddle point approximation:

(k)
¢

T i -T’Z W ’<\,§“T-"-" i 1.';},,[.'_-,““_!.:] %

t=tg
=
AN First step: Tunneling through the potential barrier
\\
\\\
<
A.L e - -
» wo (to, voL) ox e _(;;}":" e V-F,{:"»:'u to = Reft]
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v iy Semiclassical Methods:
A Twe-step Model
ol . OH . OH
comcsr Second step: CTMC+phase P=— —f=
- E " 2 ( [ ar

Il / i)
/jj B z \/‘ o (Hv "l_'l,L )I kbo)

(IP ." j 1’ i ;' TD(F ¢/ y—¢ \- ";
L= T 5 ool b woid v ere ok
{an .

J J

= Z woltd. nr,'-f;,_ ) CTMC

e [.'-J' \"'.) = [f + ,»rchl v Iptl — 0 T — / ot ("‘X),J + Vi

N. I. Shvetsov-Shilovski et al., Phys. Rev.A 94,013415 (2016).

mising in QTMC

The detection process takes place at t >> 1 . Energy and angular momentum are
constant of motion for t > 7, unlike linear momentum p.
Projection of the phase spaceatt=1tot > .
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R Time-Dependent Schrédinger
- Equation (TDSE)

Several methods are usually employed to numerically solve the TDSE.
| will show only one: Pseudo-spectral method (Tong & Chu, Chem. Phys.
217,119 (1997)).

We will see the basics of the method for a hydrogenic system in the
presence of a linearly polarized electric field.

0¥
IE:(HO—i_Him)T
pP 1 ,d> [ 1
Hy="——=—25+o7~
2 dar° 2r° r
Hi = E(t)z

The problem has cylindrical symmetry => 2D problem with L, constant of
motion =» (magnetic quantum number) m = const. = 0

Departamento de Fisica  Numerical Selution of the TDSE (cont.)
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o
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Pseudospectral method: (Tong & Chu, Chem. Phys. 217, 119 (1997))

¥

One chooses a grid (r;,0) in the coordinate space.

We can expand the wave function in Legendre polynomials:

(1,0, =3 0,(7)R (cos6,

where g, (r;) are determined by Gaussian quadratures (Gauss-Legendre)
L+1

g,(r) :Zwkpl (Cosgk)\P(ri'gk't)

{cos@, } are the L+1 zeros of P_, (cosé, ) and w, are the corresponding weights
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'l e We search for an optimal (referring to the grid) discretization method which

o~y
g‘:“l solves the eigenvalue and eigenfunction problem:

HO,I (Nxr)=¢ex(r)
For the Coulombian case V (r) = —%, there are two problems:

a) The singularityatr =10
b) Long range potential: I —> o0

Therefore, we must restrict the semi-infinite domain:
(0 OO)—)[ min m ]
< lau. and r_ > lau.

m|n

For what we need a great amount of grid points.
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[ A"D E
We extend the generalized pseudo-spectral method:
o ) P
SUA UL (0,00) or [rmin’rmax]_)[_lil]
: : 1+x 2L .
r(x)y=L———; a=——; L mapping parameters
1-x+a’ oo

Example:r=0 = x=-1
r=r.=x=1

This assure to have more density of grid points near r = 0.
The eigenvalue problem of last slide is equivalent to:

Ho, ()@, (X) = & D, (X)
Ho (=2 1 d2 1 +|(|+1) 1
’ r'(x) g r'ex)  2r’(x)  r(x)
| do not continue

D, (X)=r'X) x, (I’(X)) with the details

Mumerical Selution of the TDSE (econt.)
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Time evolution

oy
%‘, We make use of the Split Operator Method up to second order to cope

¢ o« with the time evolution of the TDSE.

‘I—’(F,t+At) _ e—iHOAtIZe—iHim(F,t+At/2)Ate—iHOAt/Z\P(F”t) —|—O(At3)

Three steps:
i. The wave function is propagated during half time step in the energy space of H,

WP, (F,1) = e NP (F )

W (r t)=¢e |H0At/2\P(r t) = Z[ —|H0,Atlzgl(r):| (COSQ)

In this equation each g must be propagated independently with each H,,
Cd?oI0+D) 1
R =2 0 ¢

W

= b - - - — R
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L Ui The wave function P, is transformed to the coordinate space and then a
w LY P ” . . . . . .
T kick” (delta function) is applied with all the force shrunk in t + At/2 with
e a momentum transfer given by

t+At

p=-— j dt"E(t') ~ —E(t+4)At
t

¥

iIAp-T iApz
The evolution operator of a kick is: € P =€ P boost operator

This implies a translation in the momentum space:

\PZ (F,t) — e_iE(t+At/2)Atzq]1(F,t)
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[ A l‘; iii. Finally, the wave function ¥, is transformed to the energy space of H,
Ol and then propagated (with no interaction) for another half time step

. P(r,t+At) =e "2, (1)1)

i

A A kick

f/\ A

L~ M A A A

-~
\\_//\\

External field

\ 4

At

Departamento de Fisia NN umeriecal Selution aof the TDSE (eont.)
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L~ U = The wave function eventually runs into the “wall of the box” r=r,_ ,or

max
o also e=¢, oralsol=1,.
ST Todo ryy, €y b Very high, it demands very much CPU time and we
cannot avoid the wave function run into the “walls”.
The wave packet will bounce against the walls which is an unphysical
situation:¥Ve must avoid this unpleasant effect by including absorbing walls.
For example one can chop the wave function many times along time by

multiplying it by a cutoff function f(r) between r’,,,, and r,, .

f(r) r

¥

-

max

max

V(r)

Potential
cutoff function

We must be carefull of the quantum Zeno effect
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Quantum Zeno Effect

A quantum state evolves  \P/(t) = e_th‘P(O)

The decay probability is given by the correlation function:

0= O o) =¥y

We use a series expansion of the evolution operator up to second order:
_i - 2
e 1-iHt+ 5 H?

P(t) =[t-i(H)t-3(H?)t?[

) DI LERS U

~ Numerical Selution of the
coNICE Time-Dependent Schrddinger Equation (TRSE)

An exponential decay: e "' ~ 1Tt +%F2t2 The linear term is absent in P(t)
=> exponential decay is forbidden by quantum mechanics

P(t=0)=0 The decay starts with null slope

().

(e’rt )t:O =-T" The decay starts with slope —T"

DG Ay o S PV A ITT SN e g

t, has been measured for some systems.
But it is extremely difficult since t, << T

For t >> I'"! the exponential decay also fails:
For t > t, (Khalfin) it is polynomial:

PE=0)~ =

Decay Prohability

g i _ﬂl The value of g depends on the system
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O
covicsr e | suppose exact exponential decay and a quantum system measured N
¥ times at regular intervals of time At

P(t)=e""
P(At) = (1-TAt) P(0)

P(2At) = (1-TAt) P(At) = (1-TAt)’ P(0)

P(t = NAL) =(1—%j P(0)

limP(t) =e ™"

N—

The system decays in the same way as with no measurement.

Departamento de Fisica Numerical Selution of the TDSE
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LS | suppose the system decays non-exponentially and i
WL measured N times at regular intervals of time At with

= P(At) = (1-0°At* ) P(0)

P(2At) = (1-o2At? ) P(At) = (1- oAt ) P(0)

242
ot

NZ

P(t=NAt) = (1-o2At?)" P(0) = [1—

lim P(t) =1

N—>x©

The system does not decay!

S
At <<t,

j P(0)

6/24/2024
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\ A o u Using this pseudo-spectral method and the split operator method with the
" help of the masking function we find the wave function at the end of the
CONICE PU|Se-
s » The detection process takes placeatt >> 1.
As the energy is a constant of motion for t > 1,

dP R 2
45~ 2k

|k, I) is the eigenstate of H, with eigenenergy k? and orbital quantum number |

The process of detecting an electron with a specific momentum can be seen
as the projection of the wave function right after the end of the pulse onto
the Coulomb waves (solution of the continuum of HO)

dP i5, (k)

— = e 21 +1R (cos 9) (k, 1|\ (r

= | SR s o,

0,(k) : phase-shift (analytical for the case of hydrogenic atoms)

The projection is necessary for observables which are not constant of
motion of the free evolution once the external field has been switched off.
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m 910 nm o =0.05 BCyC ¢=0
coNtesr o7 0.5 x 104 W/cm2(@) F =0.0377] * Coexistence of multiphoton
£ 001 =134 1 and tunneling.
1E-4 W\/\’\/\,\/ ]
e d \,\’\'\"'\««% ] * U, delimits the two regions.
1E-7 —
1
l 2 (b) F, =0.0533]
0'1.\/\”\/\’\/\ 10t wiemz (0) YO: 0.95 * Excited bound states are not
S WV\/\/W . | responsible for the non-
S 1e4 ] equidistance of photoelectron
~— U 3
R o, peaks.
T Y 2 x 10}4W/em? ((:)‘F0 =0.075 73
© o1} =067
001 1 Tunneling Regime:y < |
1E-3 L,P"
Energy
~
Multiphoton region
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‘DSE (cont.

Ponderomotive
momentum

k, =20,

)
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