

Departamento de Fisica Numerical Solution of		Numerical Solution of the TDSE (cont.)		
	We start solving the TISE			
CONTEPT	Pseudospectral method: (Tong & Chu, Chem. Phys. 217, 119 (1997))			
	One cho	poses a grid (r_i, θ_j) in the coordinate space.		
	We can	expand the wave function in Legendre polynomials:		
		$\Psi(r_i, \theta_j, t) = \sum_{l=0}^{l_{\max}} g_l(r_i) P_l(\cos \theta_j)$		
where $g_i(r_i)$ are determined by Gaussian quadratures (Gauss-Legendre)				
		$g_{l}(r_{i}) = \sum_{k=1}^{L+1} w_{k} P_{l}(\cos \theta_{k}) \Psi(r_{i}, \theta_{k}, t)$		
$\left\{\cos\theta_k\right\}$	are the <i>l</i>	$L+1$ zeros of $P_{L+1}(\cos \theta_k)$ and w_k are the corresponding weights		

Departamen .UBA exact	to de Fisica Numerical Solution of the T	DSE (cont.)
	We extend the generalized pseudo-spectral method:	
CONICET	$(0,\infty)$ or $[r_{\min}, r_{\max}] \rightarrow [-1,1]$	
	$r(x) = L \frac{1+x}{1-x+\alpha}; \alpha = \frac{2L}{r_{\max}}; L \text{ mapping}$	parameters
	Example: $r = 0 \implies x = -1$	
	$r = r_{\rm max} \Longrightarrow x = 1$	
	This assure to have more density of grid points near The eigenvalue problem of last slide is equivalent to:	r = 0.
	$H_{0,l}(x)\Phi_l(x) = \varepsilon \Phi_l(x)$	
	$H_{0,l}(x) = -\frac{1}{2} \frac{1}{r'(x)} \frac{d^2}{dx^2} \frac{1}{r'(x)} + \frac{l(l+1)}{2r^2(x)} - \frac{1}{r(x)}$	
	$\Phi_l(x) = \sqrt{r'(x)} \chi_l(r(x))$	l do not continue with the details

