
The quantum Ising chain for beginners

Glen Bigan Mbeng1, Angelo Russomanno2, and Giuseppe E. Santoro3,4,5

1Universität Innsbruck, Technikerstraße 21 a, A-6020 Innsbruck, Austria
2Max-Planck-Institut für Physik Komplexer Systeme, Nöthnitzer Straße 38, D-01187, Dresden, Germany
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Abstract — We present here various techniques to work with clean and disordered

quantum Ising chains, for the benefit of students and non-experts. Starting from the

Jordan-Wigner transformation, which maps spin-1/2 systems into fermionic ones, we

review some of the basic approaches to deal with the superconducting correlations that

naturally emerge in this context. In particular, we analyse the form of the ground

state and excitations of the model, relating them to the symmetry-breaking physics,

and illustrate aspects connected to calculating dynamical quantities, thermal averages,

correlation functions and entanglement entropy. A few problems provide simple appli-

cations of the techniques.
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1 Jordan-Wigner transformation

The quantum Ising chain is an ideal playground for testing many of the ideas of statistical

mechanics, including recent non-equilibrium aspects. As such, it is a standard test case in many

recent papers. These notes are intended for students willing to begin working with quantum Ising

chains. They can be also useful as a practical guide to researchers entering the field. We, unfortu-

nately, do no justice to the immense literature where concepts and techniques were first introduced

or derived, and even less so to the many papers where physical applications are presented: this

would require too much effort for our limited goals. Therefore, our references — except for those

useful for the problems provided — are reduced to the bare minimum, and we apologise for that

with authors whose work is not duly cited. To remedy for this omission, most of the topics include

detailed derivations which should make these notes reasonably self-standing.

The level of our presentation is roughly appropriate to graduate students, but also master

students should be able to follow most of the developments, provided they acquire the necessary

pre-requisites: second quantization [1] to deal with bosons and fermions, and basic knowledge of

quantum mechanics of the spin-1/2 [2].

We start, in Sec. 1, from the Jordan-Wigner transformation. Next, we give in Sec. 2 a fermionic

formulation of the transverse field Ising model in one dimension. Section 3 treats the ordered

case with periodic boundary conditions, where a simple analytical reduction to an assembly of

2 × 2 problem is possible. In Sec. 4 we give the Nambu formalism for the general disordered

case. Section 5 shows how to diagonalise the Hamiltonian in the general disordered case, while

Sec. 6 deals with the dynamics for a time-dependent Hamiltonian. Next, in Sec. 7 we show how

to calculate the overlap between different Fock states for two different Hamiltonians. In Sec. 8

we show how to calculate thermal averages. Sections 9 and 10, finally, contain the technicalities

related to the calculation of correlation functions involving Jordan-Wigner string operators and

the entanglement entropy.

1 Jordan-Wigner transformation

For systems of bosons and fermions, a large assembly of many-body techniques has been devel-

oped [1]. A difficulty in dealing with spin systems is that they are neither bosons nor fermions.

Consider, to start with, a single spin-1/2, and the three components of the spin-operators

represented in terms of the usual Pauli matrices 1 σ̂α with α = x, y, z. The Hilbert space of a

single spin is two-dimensional: for instance you can write a basis as {|↑〉, |↓〉}, in terms of the

eigenstates of σ̂z, with σ̂z| ↑〉 = | ↑〉 and σ̂z| ↓〉 = −|↓〉. Moreover, if σ̂αj denote Pauli matrices

at different lattice sites j, hence acting on “different” (distinguishable) two-dimensional Hilbert

spaces, then [
σ̂αj , σ̂

α′

j′
]

= 0 for j′ 6= j . (1)

But on the same site, the angular momentum commutation rules lead to[
σ̂xj , σ̂

y
j

]
= 2iσ̂zj (2)

and cyclic permutations [2]. Interestingly, by defining the raising and lowering operators σ̂±j =

(σ̂xj ± iσ̂
y
j )/2 which act on the basis states as σ̂+|↓〉 = |↑〉 and σ̂−|↑〉 = |↓〉, you can verify that{

σ̂+
j , σ̂

−
j

}
= 1 , (3)

1Recall that

σ̂x =

(
0 1

1 0

)
σ̂y =

(
0 −i
i 0

)
σ̂z =

(
1 0

0 −1

)
which verify [σ̂x, σ̂y ] = 2iσ̂z on the same site. The physical spin operators have an extra factor ~/2.
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1 Jordan-Wigner transformation

where
{
Â, B̂

}
= ÂB̂+B̂Â denotes the anti-commutator, typical of fermionic commutation rules [1].

Using bosons to describe spins would seem impossible. First of all, if we have a single bo-

son b̂† with associated vacuum state |0〉, such that b̂ |0〉 = 0, then, using the canonical bosonic

commutation rules
[
b̂ , b̂†

]
= 1 you can construct an infinite dimensional Hilbert space [1] with

states

|n〉 =
1√
n!

(b̂†)n|0〉 , where n = 0, 1, · · ·∞ .

However, if we decide to truncate such a Hilbert space to only two states, {|0〉, |1〉}, assuming

(b̂†)2|0〉 = 0, then the Hilbert space of a single spin-1/2 can be easily mimicked. Such a truncation,

which can be thought as adding a large — ideally “infinite” — on-site repulsion term to the boson

Hamiltonian, is known as hard-core boson. We transform the Pauli spin-1/2 operators σ̂αj (with

α = x, y, z, and j a generic site index) into hard-core bosons b̂†j , by identifying 2 at each site

|0〉 ↔ |↑〉 and |1〉 = b̂†|0〉 ↔ |↓〉. Recalling that σ̂± = (σ̂x ± iσ̂y)/2 act as σ̂+| ↓〉 = | ↑〉, and

σ̂−|↑〉 = |↓〉, we must evidently have:
σ̂+
j = b̂j

σ̂−j = b̂†j

σ̂zj = 1− 2b̂†j b̂j

=⇒


σ̂xj = b̂†j + b̂j

σ̂yj = i(b̂†j − b̂j)

σ̂zj = 1− 2b̂†j b̂j

. (4)

These operators b̂†j commute at different sites — as the original σ̂αj do — but are not ordinary

bosonic operators. They anti-commute on the same site 3
{
b̂j , b̂

†
j

}
= 1 and they verify the hard-core

constraint (b̂†j)
2|0〉 = 0, i.e., at most one boson is allowed on each site.

Info: The hard-core boson mapping might be viewed as a possibly useful way of rewriting

spin-1/2 models in a rather general setting. For instance, if you have a Heisenberg model for

spin-1/2 sitting on a lattice, whose sites are denoted by x and with nearest-neighbour pairs

denoted by 〈x,x′〉 we could write, defining n̂x = b̂†xb̂x:

ĤHeis =
J

4

∑
〈x,x′〉

(
σ̂zxσ̂

z
x′+2(σ̂+

x σ̂
−
x′+ σ̂−x σ̂

+
x′)
)
→ J

∑
〈x,x′〉

(
(n̂x− 1

2 )(n̂x′−
1
2 )+ 1

2 (b̂†x′ b̂x + b̂†xb̂x′)
)
.

The second expression shows that we are dealing with hard-core bosons hopping on the lattice

and repelling each other at nearest neighbours. Needless to say, this helps in no way in solving

the problem.

i

The hard-core constraint seems to be ideally representable in terms of spinless fermions ĉ†j ,

where the absence of double occupancy is automatically enforced by the Pauli exclusion principle,

and the anti-commutation on the same site comes for free.

↓ ↓ ↑ ↑ ↓ ↑

1 2 3 4 5 6
= b̂†1 b̂

†
2 b̂
†
5 |0〉 = ĉ†1 ĉ

†
2 ĉ
†
5 |0〉

Figure 1: Top: an L = 6 site spin configuration. Bottom: The corresponding particle configuration.

Unfortunately, whereas the mapping of σ̂αj into hard-core bosons b̂†j is true in any spatial dimen-

sion, writing b̂†j in terms of spinless fermions ĉ†j is straightforwardly useful only in one-dimension

2This identification is not unique, as you can swap the two states.
3Since on the same site

{
σ̂+
j , σ̂

−
j

}
= 1, this implies that

{
b̂j , b̂

†
j

}
= 1, while ordinary bosons would have the

commutator [b̂j , b̂
†
j ] = 1.
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1 Jordan-Wigner transformation

(1D), where a natural ordering of sites is possible, 4 j = 1, 2, · · · , L. In other words, because

fermion operators on different sites must anti-commute, the exact handling of the resulting minus

signs — which are absent in the original spin problem — is very natural only in 1D.

The Jordan-Wigner transformation of hard-core bosons into fermions reads:

b̂j = K̂j ĉj = ĉjK̂j with K̂j = e
iπ
∑j−1

j′=1
n̂
j′ =

j−1∏
j′=1

(1− 2n̂j′) , (5)

where the non-local string operator K̂j is simply a sign, K̂j = ±1, counting the parity of the number

of fermions which sit before site j (i.e., between site 1 and site j − 1), multiplying the fermionic

operator ĉj . Notice that K̂j = K̂†j = K̂−1
j , and K̂2

j = 1. Here n̂j = ĉ†j ĉj is the fermion number

operator, but one can show that the phase-factor K̂j cancels out in n̂j , i.e., n̂j = ĉ†j ĉj = b̂†j b̂j . Let

us prove that everything works fine. More precisely, we will now show that if the ĉj are taken to

be standard fermionic operators, with canonical anti-commutation relations
{
ĉj , ĉ

†
j′

}
= δj,j′ and{

ĉj , ĉj′
}

=
{
ĉ†j , ĉ

†
j′

}
= 0, then the following two properties of the b̂j follow:

P1 :



{
b̂j , b̂

†
j

}
= 1{

b̂j , b̂j

}
= 0{

b̂†j , b̂
†
j

}
= 0

P2 :



[
b̂j , b̂

†
j′

]
= 0[

b̂j , b̂j′
]

= 0[
b̂†j , b̂

†
j′

]
= 0

if j 6= j′ , (6)

which is a formal way of writing that the b̂j are hard-core bosons. Property P1 is straightforward

because the string factor K̂j cancels completely:

b̂†j b̂j = ĉ†jK̂
†
j K̂j ĉj = ĉ†j ĉj ,

and, similarly, b̂j b̂
†
j = ĉj ĉ

†
j . In essence, on each site the b̂j inherit the anti-commutation property

P1 from the fermions ĉj . To prove P2, let us consider
[
b̂j1 , b̂

†
j2

]
, assuming j2 > j1. Using Eq. (5),

it is simple to show that

b̂j1 b̂
†
j2

= ĉj1e−iπ
∑j2−1
j=j1

n̂j ĉ†j2 . (7)

Similarly, you can show that

b̂†j2 b̂j1 = ĉ†j2e−iπ
∑j2−1
j=j1

n̂j ĉj1 = e−iπ
∑j2−1
j=j1

n̂j ĉ†j2 ĉj1

= −e−iπ
∑j2−1
j=j1

n̂j ĉj1 ĉ
†
j2

= +ĉj1e−iπ
∑j2−1
j=j1

n̂j ĉ†j2 , (8)

where the change of sign in the second line is due to the fermionic anti-commutation, while the

crucial final change of sign is due to the fact that n̂j1 = 0 at the beginning of the second line, while

n̂j1 = 1 in the final expression, because of the neighbouring action of ĉj1 . Comparing Eq. (7) with

Eq. (8), you immediately deduce that
[
b̂j1 , b̂

†
j2

]
= 0. All the other commutation relationships in

P2 are proven similarly.

Here is a summary of a few useful expressions where the string operator K̂j disappears exactly:

b̂†j b̂j = ĉ†j ĉj ,

b̂†j b̂
†
j+1 = ĉ†j(1− 2n̂j)ĉ

†
j+1 = ĉ†j ĉ

†
j+1 ,

b̂†j b̂j+1 = ĉ†j(1− 2n̂j)ĉj+1 = ĉ†j ĉj+1

b̂j b̂j+1 = ĉj(1− 2n̂j)ĉj+1 = ĉj(1− 2(1− ĉj ĉ
†
j))ĉj+1 = −ĉj ĉj+1

b̂j b̂
†
j+1 = ĉj(1− 2n̂j)ĉ

†
j+1 = ĉj(1− 2(1− ĉj ĉ

†
j))ĉ

†
j+1 = −ĉj ĉ

†
j+1 . (9)

4We start by assuming a chain of finite size L, and take the thermodynamic limit L→∞ only at the end.
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1 Jordan-Wigner transformation

Notice the minus signs on the right-hand side, which should not be forgotten. Notice also that we

have used
j−1∏
j′=1

(1− 2n̂j′)

j∏
j′=1

(1− 2n̂j′) = 1− 2n̂j . (10)

since (1− 2n̂j′)
2 = 1, and terms with different site-index commute.

Jordan-Wigner transformation. Summarising, spins are mapped into fermions using:
σ̂xj = K̂j (ĉ†j + ĉj)

σ̂yj = K̂j i(ĉ
†
j − ĉj)

σ̂zj = 1− 2n̂j

with K̂j =

j−1∏
j′=1

(1− 2n̂j′) . (11)

Armed with these expressions, it is simple to show that some spin operators transform in a

simple way into local fermionic operators. Here is a summary:

σ̂zj = 1− 2n̂j = (ĉ†j + ĉj)(ĉ
†
j − ĉj)

σ̂xj σ̂
x
j+1 =

(
ĉ†j ĉ
†
j+1 + ĉ†j ĉj+1 + H.c.

)
σ̂yj σ̂

y
j+1 = −

(
ĉ†j ĉ
†
j+1 − ĉ

†
j ĉj+1 + H.c.

)
. (12)

Unfortunately, a longitudinal field term involving a single σ̂xj cannot be translated into a simple

local fermionic operator.

i

One important point to note concerns boundary conditions. One often assumes periodic bound-

ary conditions (PBC) for the spin operators, which means that the model is defined on a ring

geometry with L sites, j = 1, · · · , L, and the understanding that σ̂α0 ≡ σ̂αL and σ̂αL+1 ≡ σ̂α1 . This

immediately implies the same PBC conditions for the hard-core bosons. Hence, for instance:

b̂†Lb̂L+1 ≡ b̂†Lb̂1. But observe what happens when we rewrite a term of this form using spinless

fermions:

b̂†Lb̂1 = eiπ
∑L−1
j=1 n̂j ĉ†Lĉ1 = −eiπ

∑L
j=1 n̂j ĉ†Lĉ1 = −eiπN̂ ĉ†Lĉ1 , (13)

where

N̂ =

L∑
j=1

ĉ†j ĉj =

L∑
j=1

b̂†j b̂j , (14)

is the total number of particles (fermions or bosons, it does not matter), and the second equality

follows because to the left of ĉ†L we certainly have n̂L = 1, and therefore eiπn̂L ≡ −1. Similarly,

you can verify that:

b̂†Lb̂
†
1 = eiπ

∑L−1
j=1 n̂j ĉ†Lĉ

†
1 = −eiπ

∑L
j=1 n̂j ĉ†Lĉ

†
1 = −eiπN̂ ĉ†Lĉ

†
1 . (15)

Warning: This shows that boundary conditions are affected by the fermion parity eiπN̂ =

(−1)N̂ , and PBC become anti-periodic boundary condition (ABC) when N̂ is even. No prob-

lem whatsoever is present, instead, when the boundary conditions are open (OBC), because

there is no link, in the Hamiltonian, between operators at site L and operators at site L+1 ≡ 1.

More about this in a short while.

!

6



2 Transverse field Ising model: fermionic formulation

2 Transverse field Ising model: fermionic formulation

Info: There is a whole class of one-dimensional spin systems where a fermionic re-formulation

can be useful. Probably the most noteworthy is the XXZ Heisenberg chain, which would read

ĤXXZ =
∑
j

(
J⊥j (σ̂xj σ̂

x
j+1 + σ̂yj σ̂

y
j+1) + Jzzj σ̂zj σ̂

z
j+1

)
−
∑
j

hj σ̂
z
j . (16)

The corresponding fermionic formulation would read:

ĤXXZ →
∑
j

(
2J⊥j (ĉ†j ĉj+1 + H.c.) + Jzzj (2n̂j − 1)(2n̂j+1 − 1)

)
+
∑
j

hj(2n̂j − 1) , (17)

which shows that the fermions interact at nearest-neighbours, due to the Jzzj -term.

i

Let us now concentrate on a class of one-dimensional models where the resulting fermionic

Hamiltonian can be exactly diagonalised, because it is quadratic in the fermions: such a class

includes the XY model and the Ising model in a transverse field. After a rotation in spin-space,

we can write the Hamiltonian (allowing for non-uniform, possibly random, couplings) as follows:

Ĥ = −
L∑
j=1

(
Jxj σ̂

x
j σ̂

x
j+1 + Jyj σ̂

y
j σ̂

y
j+1

)
−

L∑
j=1

hj σ̂
z
j , (18)

where σ̂αj are Pauli matrices. The couplings Jx,yj and the transverse fields hj can be chosen, for

instance, as independent random variables with uniform distribution. For a system of finite size L

with open boundary condition (OBC), the first sum runs over j = 1, · · · , L − 1, or, equivalently,

we would set Jx,yL = 0. If periodic boundary conditions (PBC) are chosen, the sum runs over

j = 1, · · · , L and one assumes that σ̂αL+1 ≡ σ̂α1 . For Jyj = 0 we have the Ising model in a transverse

field, for Jyj = Jxj the isotropic XY model.

In terms of hard-core bosons, the Hamiltonian becomes:

Ĥ = −
L∑
j=1

(
J+
j b̂
†
j b̂j+1 + J−j b̂

†
j b̂
†
j+1 + H.c.

)
+

L∑
j=1

hj(2n̂j − 1) , (19)

where we have introduced a shorthand notation 5 J±j = Jxj ± J
y
j .

Next, we switch to spinless fermions, since all terms appearing in the previous expression do

not involve explicitly the string operator Kj . In terms of fermions, the Hamiltonian is essentially

identical. We would remark that in the fermionic context the pair creation and annihilation terms

are characteristic of the BCS theory of superconductivity [3]. The only tricky point has to do

with the boundary conditions. If one uses open boundary conditions, the first sum runs over

j = 1, · · · , L− 1 and there is never a term involving site L+ 1, hence we have:

ĤOBC = −
L−1∑
j=1

(
J+
j ĉ
†
j ĉj+1 + J−j ĉ

†
j ĉ
†
j+1 + H.c.

)
+

L∑
j=1

hj(2n̂j − 1) . (20)

In the PBC-case, terms like b̂†Lb̂L+1 ≡ b̂†Lb̂1 = −(−1)N̂ ĉ†Lĉ1 and b̂†Lb̂
†
L+1 ≡ b̂†Lb̂

†
1 = −(−1)N̂ ĉ†Lĉ

†
1

appear in the Hamiltonian, where N̂ is the number of fermions operator. Therefore:

ĤPBC = ĤOBC + (−1)N̂
(
J+
L ĉ
†
Lĉ1 + J−L ĉ

†
Lĉ
†
1 + H.c.

)
. (21)

5This notation should not generate confusion with the angular momentum ladder operators. Here there is no

imaginary-unit i, and the couplings J±j = Jxj ± J
y
j are just real numbers.

7



2 Transverse field Ising model: fermionic formulation

Info: Notice that, although the number of fermions N̂ is not conserved by Hamiltonian in

Eq. (21), its parity (−1)N̂ = eiπN̂ is a “constant of motion” with value 1 or −1. So, from

the fermionic perspective, it is as if we apply anti-periodic boundary conditions (ABC), hence

ĉL+1 = −ĉ1, if there is an even number of fermions and periodic boundary condition (PBC),

hence ĉL+1 = ĉ1, if there is an odd number of fermions. This symmetry can also be directly seen

from the spin Hamiltonian in Eq. (18), where one should observe that the nearest-neighbour

σ̂xj σ̂
x
j+1 and σ̂yj σ̂

y
j+1 can only flip pairs of spins, hence the parity of the overall magnetisation

along the z direction is unchanged. Such a parity can be easily and equivalently expressed as:

P̂ =

L∏
j=1

σ̂zj =

L∏
j=1

(1− 2n̂j) . (22)

We remark that P̂ flips all the σ̂xj and σ̂yj , i.e., P̂σ̂x,yj P̂ = −σ̂x,yj , in the Hamiltonian in Eq. (18),

leaving it invariant. This parity symmetry is the Z2-symmetry which the system breaks in

the ordered ferromagnetic phase, as we will better discuss later on.

i

Let us define the projectors on the subspaces with even and odd number of particles:

P̂even =
1

2
(1̂ + eiπN̂ ) = P̂0 and P̂odd =

1

2
(1̂− eiπN̂ ) = P̂1 . (23)

With these projectors we can define two fermionic Hamiltonians acting on the 2L−1-dimensional

even/odd parity subspaces of the full Hilbert space:

Ĥ0 = P̂0ĤPBCP̂0 and Ĥ1 = P̂1ĤPBCP̂1 , (24)

in terms of which we might express the full fermionic Hamiltonian in block form as:

ĤPBC =

(
Ĥ0 0

0 Ĥ1

)
. (25)

Observe that if you write a fermionic Hamiltonian of the form:

Ĥp=0,1 = −
L−1∑
j=1

(
J+
j ĉ
†
j ĉj+1 + J−j ĉ

†
j ĉ
†
j+1 + H.c.

)
+ (−1)p

(
J+
L ĉ
†
Lĉ1 + J−L ĉ

†
Lĉ
†
1 + H.c.

)

+

L∑
j=1

hj(2n̂j − 1) , (26)

then you can regard Ĥ1 as a legitimate PBC-fermionic Hamiltonian since

Ĥ1 = −
L∑
j=1

(
J+
j ĉ
†
j ĉj+1 + J−j ĉ

†
j ĉ
†
j+1 + H.c.

)
+

L∑
j=1

hj(2n̂j − 1) , (27)

with the interpretation ĉL+1 ≡ ĉ1. Similarly, Ĥ0 is a legitimate ABC-fermionic Hamiltonian where

you should pose ĉL+1 ≡ −ĉ1. Neither of them, however, expresses the correct fermionic form of

the PBC-spin Hamiltonian. However, they are useful in expressing the fermionic blocks:

Ĥ0 = P̂0Ĥ0P̂0 = Ĥ0P̂0 and Ĥ1 = P̂1Ĥ1P̂1 = Ĥ1P̂1 , (28)

since Ĥp=0,1 conserve the fermionic parity, hence they commute with P̂0,1.

8



3 Uniform Ising model.

Warning: The distinction between Ĥ0,1 and the corresponding Ĥ0,1 might appear pedantic,

but is important, since the former are blocks with 2L−1 eigenvalues, while the latter live in

the full Hilbert space, hence have 2L eigenvalues. This fact, for instance, complicates the

calculation of thermal averages and is further discussed in Sec. 8.

!

Info: In the OBC case, since J±L = 0, the two fermionic Hamiltonians coincide and you can

omit the label: Ĥ0 = Ĥ1 → Ĥ. Because of that, in the OBC case, you can simply set ĤOBC = Ĥ
and work with a single fermionic Hamiltonian.

i

3 Uniform Ising model.

As a warm up, let us study the uniform case, where Jxj = Jx, Jyj = Jy, hj = h. It is customary

to parameterise Jx = J(1 + κ)/2 and Jy = J(1 − κ)/2, so that J+ = J and J− = κJ . The

Hamiltonian is then: 6

ĤOBC = −J
L−1∑
j=1

(
ĉ†j ĉj+1 + κĉ†j ĉ

†
j+1 + H.c.

)
+ h

L∑
j=1

(2ĉ†j ĉj − 1) , (29)

for the OBC case, and:

ĤPBC = ĤOBC + (−1)N̂J
(
ĉ†Lĉ1 + κĉ†Lĉ

†
1 + H.c.

)
. (30)

We assume from now on that the number of sites L is even: this is not a big restriction, and is

useful.

In the spin-PBC case, if the number of fermions N̂ takes an odd value, then we effectively have

ĉL+1 ≡ ĉ1; if, on the contrary, N̂ takes an even value, then the L-th bond has an opposite sign to the

remaining ones, which can also be reformulated as ĉL+1 ≡ −ĉ1. Since the Hamiltonian conserves

the fermion parity, both the even and the odd particle subsectors of the fermionic Hilbert space

have to be considered when diagonalising the model, precisely as in the general case of Eq. (25).

Introducing the two fermionic Hamiltonians as in Eq. (26) we now have:

Ĥp=0,1 = −J
L∑
j=1

(
ĉ†j ĉj+1 + κĉ†j ĉ

†
j+1 + H.c.

)
+ h

L∑
j=1

(2n̂j − 1) , (31)

where we recall that p = 0, 1 is associated with the fermionic parity — p = 0 for even and p = 1 for

odd parity — and that this compact way of writing assumes that the boundary terms are treated

with:

ĉL+1 ≡ (−1)p+1ĉ1 . (32)

6 Notice that one can change the sign of the h-term by making a particle-hole transformation c̃j → (−1)j ĉ†j , which

transforms ñj → 1−n̂j , and 1−2ñj → 2n̂j−1, while leaving the hopping term untouched (same sign of J). With

the current choice of the h-term, the h→ +∞ ground state in the spin representation |↑↑ · · · ↑〉 is mapped into

the fermionic vacuum, which will be useful in discussing the ground state. (Notice that the phase factor (−1)j

exchange the roles of k = 0 and k = π in the discussion of the ground state.) Similarly, the same particle-hole

transformation but without phase factor (−1)j would also invert the sign of the J-term, from ferromagnetic to

antiferromagnetic.
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3 Uniform Ising model.

Let us now introduce the fermion operators in k-space, ĉk and ĉ†k. The direct and inverse

transformations are defined as follows:
ĉk =

e−iφ√
L

L∑
j=1

e−ikj ĉj

ĉj =
eiφ√
L

∑
k

e+ikj ĉk

, (33)

where the overall phase eiφ does not affect the canonical anti-commutation relations, but might be

useful to change the phase of the anomalous BCS pair-creation terms (see below). Which values

of k should be used in the previous transformation depends on p. For p = 1 we have ĉL+1 ≡ ĉ1,

which in turn implies7 that eikL = 1, hence the standard PBC choice for the k’s:

p = 1 =⇒ Kp=1 =
{
k =

2nπ

L
, with n = −L2 + 1, · · · , 0, · · · , L2

}
. (34)

For p = 0 we have ĉL+1 ≡ −ĉ1, which implies that eikL = −1, hence an anti-periodic boundary

conditions (ABC) choice for the k’s:

p = 0 =⇒ Kp=0 =
{
k = ± (2n− 1)π

L
, with n = 1, · · · , L2

}
. (35)

In terms of ĉk and ĉ†k, with the appropriate choice of the k-vectors, Ĥp becomes: 8

Ĥp = −J
Kp∑
k

(
2 cos k ĉ†k ĉk + κ

(
e−2iφeik ĉ†k ĉ

†
−k + H.c.

))
+ h

Kp∑
k

(2ĉ†k ĉk − 1) . (36)

Notice the coupling of −k with k in the (anomalous) pair-creation term, with the exceptions, for

the p = 1 (PBC) case, of k = 0 and k = π, which do not have a separate −k partner. It is useful

to manipulate the (normal) number-conserving terms 9 to rewrite the Hamiltonian as:

Ĥp =

Kp∑
k

(
(h− J cos k)

(
ĉ†k ĉk − ĉ−k ĉ

†
−k

)
− κJ

(
e−2iφeik ĉ†k ĉ

†
−k + H.c.

))
. (37)

The two terms with k = 0 and k = π, present for p = 1 (PBC), taken together can be written as:

Ĥk=0,π = −2J (n̂0 − n̂π) + 2h (n̂0 + n̂π − 2) . (38)

The remaining p = 1 terms, and all terms for p = 0, come into pairs (k,−k). Let us define the

positive k values as follows:

K+
p=1 =

{
k = 2nπ

L , with n = 1, · · · , L2 − 1
}

K+
p=0 =

{
k = (2n−1)π

L , with n = 1, · · · , L2
}
.

(39)

7From the expression for ĉj in terms of ĉk
8We use the standard fact that the sum over j introduces a Kronecker delta for the wave-vectors:

1

L

L∑
j=1

e−i(k−k
′)j = δk,k′ .

9We use that ∑
k

2 cos k ĉ†k ĉk =
∑
k

cos k
(
ĉ†k ĉk − ĉ−k ĉ

†
−k

)
,

where we used the anti-commutation relations and
∑
k cos k = 0, and∑

k

(2ĉ†k ĉk − 1) =
∑
k

(
ĉ†k ĉk − ĉ−k ĉ

†
−k

)
.
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3 Uniform Ising model.

Then we can write the Hamiltonians as:

Ĥ0 =
∑
k∈K+

0

Ĥk Ĥ1 =
∑
k∈K+

1

Ĥk + Ĥk=0,π , (40)

where we have grouped together terms with k and −k in a single Hamiltonian of the form:

Ĥk = 2(h− J cos k)
(
ĉ†k ĉk − ĉ−k ĉ

†
−k

)
− 2κJ sin k

(
ie−2iφĉ†k ĉ

†
−k − ie

2iφĉ−k ĉk

)
. (41)

Interestingly, the Hamiltonians Ĥk live in the 4-dimensional space generated by the states:{
ĉ†k ĉ
†
−k|0〉 , |0〉 , ĉ

†
k|0〉 , ĉ

†
−k|0〉

}
(42)

where they have a 4× 4 matrix of the form:
2(h− J cos k) −2iκJe−2iφ sin k 0 0

2iκJe2iφ sin k −2(h− J cos k) 0 0

0 0 0 0

0 0 0 0

 . (43)

Check of dimensions. Recall that both Ĥp=0,1 have 2L eigenvalues. Indeed, there are
L
2 such terms for Ĥ0, hence a dimension 4

L
2 = 2L. Notice that Ĥk=0,π also works in a 4-

dimensional subspace, {
|0〉 , ĉ†0ĉ†π|0〉 , ĉ

†
0|0〉 , ĉ†π|0〉

}
, (44)

and there are L
2 − 1 wave-vectors in K+

1 , hence again a total dimension for Ĥ1 of 4
L
2 −14 = 2L.

Recall, finally, that the correct eigenvalues are obtained from the block Hamiltonians Ĥp=0,1

which have 2L−1 eigenvalues each, those with even (p = 0) or odd (p = 1) fermion parity.

i

To deal with the necessary combination of states {ĉ†k ĉ
†
−k|0〉 , |0〉} involved in the non-trivial

2× 2 blocks of the Hamiltonian, requiring essentially a Bogoliubov transformation, we now define

a fermionic two-component spinor

Ψ̂k =

(
ĉk
ĉ†−k

)
, Ψ̂†k = (ĉ†k , ĉ−k) (45)

with anti-commutation relations (α = 1, 2 stands for the two components of Ψ̂){
Ψ̂kα, Ψ̂

†
k′α′

}
= δα,α′δk,k′ . (46)

We can then rewrite each Ĥk as:

Ĥk =
∑
α,α′

Ψ̂†kα
(
Hk

)
αα′

Ψ̂kα′ = (ĉ†k , ĉ−k)

(
2(h− J cos k) −2κJie−2iφ sin k

2κJie2iφ sin k −2(h− J cos k)

)
︸ ︷︷ ︸

Hk

(
ĉk
ĉ†−k

)
, (47)

where we have highlighted a 2× 2 Hermitean matrix Hk which can be expressed in terms of new

pseudo-spin Pauli matrices τ̂x,y,z as:

Hk = Rk · τ̂ . (48)

Here we recognise an “effective magnetic field” Rk given by:

Rk = 2
(
− κJ sin 2φ sin k , κJ cos 2φ sin k , (h− J cos k)

)T

. (49)
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3 Uniform Ising model.

Info: Observe now the role of the arbitrary phase φ introduced in the transformation from

real-space to momentum space, Eq. (33). For φ = 0 the effective magnetic field lives in the

y−z plane in pseudo-spin space, while for φ = π
4 it lives in the x−z plane and the pseudo-spin

Hamiltonian is real, as it involves τ̂x and τ̂z.

i

By solving the 2× 2 eigenvalue problem for the pseudo-spin Hamiltonian Hk we find the eigen-

values εk± = ±εk with:

εk =
∣∣Rk

∣∣ = 2J

√(
cos k − h

J

)2

+ κ2 sin2 k (50)

with corresponding eigenvectors (uk± , vk±)T which can be expressed in terms of spin eigenstates in

the direction Rk/|Rk|. From now on we will fix φ = 0, so that the pseudo-spin effective magnetic

field lives in the y− z plane. Define the shorthand Rk = (0 , yk , zk)T with zk = 2(h−J cos k) and

yk = 2κJ sin k. For the positive energy eigenvector, we have:(
uk+

vk+

)
≡
(
uk
vk

)
=

1√
2εk(εk + zk)

(
εk + zk
iyk

)
, (51)

where we have introduced the shorthands uk = uk+ and vk = vk+. Note, in passing, that u−k =

uk, while v−k = −vk, since zk is even in k, while yk is odd. The negative-energy eigenvector

(uk− , vk−)T is related to the previous one by a simple transformation: 10(
uk−
vk−

)
=

(
−v∗k
u∗k

)
=

1√
2εk(εk + zk)

(
iyk

εk + zk

)
. (54)

The unitary matrix Uk having the two previous eigenvectors as columns:

Uk =

(
uk −v∗k
vk u∗k

)
, (55)

diagonalises Hk:

U†k Hk Uk =

(
εk 0

0 −εk

)
. (56)

So, define new fermion two-component operators Φ̂k through

Φ̂k = U†kΨ̂k =

(
u∗k ĉk + v∗k ĉ

†
−k

−vk ĉk + uk ĉ
†
−k

)
=

(
γ̂k
γ̂†−k

)
, (57)

where, in the second term, we have made use of the fact that u−k = uk and v−k = −vk. It

is straightforward to verify that γ̂k is indeed a fermion. 11 In terms of Φ̂k = (γ̂k , γ̂
†
−k)T and

10 Indeed, write the eigenvalue problem for εk+ = +εk:{
zkuk − iykvk = εkuk

iykuk − zkvk = εkvk
. (52)

Now change sign to the first equation, take the complex-conjugate of both, and rewrite them in inverted order,

to get: {
zk(−v∗k)− iyku∗k = −εk(−v∗k) = εk−(−v∗k)

iyk(−v∗k)− zku
∗
k = −εk( u∗k) = εk−(u∗k)

, (53)

which is the eigenvalue equation for (uk− , vk−)T.
11 {

γ̂k, γ̂
†
k

}
=

{
u∗k ĉk + v∗k ĉ

†
−k, uk ĉ

†
k + vk ĉ−k

}
= |uk|2

{
ĉk, ĉ

†
k

}
+ |vk|2

{
ĉ†−k, ĉ−k

}
= |uk|2 + |vk|2 = 1 , (58)

the last equality following from the normalisation condition for the eigenvectors.
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3 Uniform Ising model.

Figure 2: The two bands ±εk plotted by varying the transverse field h in the range [0, 2]. Here J = 1

and κ = 1.

Φ̂†k = Ψ̂†kUk = (γ̂†k , γ̂−k), we have:

Ĥk = Ψ̂†k Uk U†k Hk Uk U†kΨ̂k = Φ̂†k

(
εk 0

0 −εk

)
Φ̂k = εk

(
γ̂†kγ̂k − γ̂−kγ̂

†
−k

)
= εk

(
γ̂†kγ̂k + γ̂†−kγ̂−k − 1

)
. (59)

The form of the two bands ±εk, as a function of k and for several values of h is noteworthy.

Figures 2-3 show some plots that illustrate them.
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Figure 3: The bands ±εk for three different transverse fields h: h/J = 0.5 (left, inside the ferromagnetic

region), h/J = 1 (center, the critical point), h/J = 1.5 (right, inside the paramagnetic phase). Notice the

remarkable behaviour at h = hc = J , clearly visible in the central panel: a gapless linear spectrum. Notice

also how you can hardly distinguish the bands of the two gapped phases. But their topology is distinctly

different: see the discussion related to Fig. 4. Here κ = 1.

13



3 Uniform Ising model.

-2

0

2

4

-2 0 2

yk

zk

h/J=1.5

h/J=0.5
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Figure 4: Curves drawn by the vector Rk as k spans [−π, π), for three values of h. Here J = 1, κ = 1.

Winding and topology. It is instructive to trace the behaviour of the “effective magnetic

field” Rk, of magnitude |Rk| = εk, that the system “sees” as the wave-vector k spans the

Brillouin zone [−π, π). Fixing φ = 0 in Eq. (49), this effective magnetic field lies in the y − z
plane, Rk = (0, yk, zk)T with yk = 2κJ sin k and zk = 2(h−J cos k), where it draws the ellipse

of equation a

y2
k

4κ2J2
+

(zk − 2h)2

4J2
= 1 , (60)

as k spans the interval [−π, π). We show in Fig. 4 three examples of this ellipse (circles,

for κ = 1), one for |h| < J , one for h > J , and that for h = J . For |h| < J we see that

the vector Rk turns around and comes back to its original position, making one complete

revolution around the origin, as k varies in [−π, π). We term the number of revolutions as

the index [4] (or winding number) of the vector, and here it equals 1. As we change h in the

range −J < h < J , the index, for continuity reasons, keeps the constant value 1 (it can only

assume discrete values). In the case h > J , the vector Rk makes no revolution around the

origin and its index is 0: it keeps this value for any h > J , for the same continuity argument

as before. The transition of the index between the two values 1 and 0 occurs at h = J . At

that point, the continuity of the index as a function of the curve is broken, because the index

is not defined for h = J , as the curve passes through the origin for k = 0. The index is a

topological quantity, invariant under continuous transformations. Because it takes different

values for |h| < J and h > J we say that these two phases have different topology. We see

that Rk = 0 corresponds to a degeneracy point of the 2 × 2 Hamiltonian Hk — realised for

k = 0 and h = J (but also for k = π and h = −J) — and the discontinuity of the index

corresponds to the closing of the gap in the single-quasiparticle spectrum shown in Fig. 3.

aThe ellipse degenerates into a segment for κ = 0, corresponding to the XY model. Hence, our argument

requires κ 6= 0.

i
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3 Uniform Ising model.

3.1 Ground state and excited states of the Ising model.

The expression for Hk in Eq. (59) allows to immediately conclude that the ground state of the

Hamiltonian must be the state |∅γ〉 which annihilates the γ̂k for all k, positive and negative, the

so-called Bogoliubov vacuum:

γ̂k |∅γ〉 = 0 ∀k . (61)

In principle, one can define two such states, one in the p = 0 (even, ABC) sector, and one in the

p = 1 (odd, PBC) sector. However, one finds that the winner between the two, i.e., the actual

global ground state, is the one in the p = 0 (even) sector, with an energy

EABC

0 = −
ABC∑
k>0

εk . (62)

The ground state can be written explicitly as:

|∅γ〉ABC ∝
ABC∏
k>0

γ̂−kγ̂k|0〉 , (63)

where |0〉 is the vacuum for the original fermions, ĉk|0〉 = 0. We get∏
k>0

γ̂−kγ̂k|0〉 =
∏
k>0

(
u∗−k ĉ−k + v∗−k ĉ

†
k

)(
u∗k ĉk + v∗k ĉ

†
−k

)
|0〉

=
∏
k>0

v∗k

(
u∗−k + v∗−k ĉ

†
k ĉ
†
−k

)
|0〉 =

∏
k>0

v∗k

(
u∗k − v∗k ĉ

†
k ĉ
†
−k

)
|0〉 , (64)

where we used that u−k = uk and v−k = −vk. By normalising the state, we arrive at the BCS

form:

|∅γ〉ABC =

ABC∏
k>0

(
u∗k − v∗k ĉ

†
k ĉ
†
−k

)
|0〉 =

ABC∏
k>0

(
uk + vk ĉ

†
k ĉ
†
−k

)
|0〉 , (65)

where the second more standard [3] expression applies to the case where φ = 0, with the choice of

phase in which uk is real and vk purely imaginary.

The PBC-sector ground state must contain an odd number of particles. Since a BCS-paired state

is always fermion-even, the unpaired Hamiltonian terms Ĥk=0,π must contribute with exactly one

fermion in the ground state. It is simple to verify that, with our choice of the sign of h > 0, the

ground state has n̂k=0 → 1 and n̂k=π → 0, resulting in an extra term of the form

δE0,π = min(Ĥ0,π) = −2J . (66)

The PBC-ground state is, therefore:

|∅γ〉PBC = ĉ†k=0

PBC∏
0<k<π

(
u∗k − v∗k ĉ

†
k ĉ
†
−k

)
|0〉 = γ̂0

PBC∏
0<k<π

(
u∗k − v∗k ĉ

†
k ĉ
†
−k

)
|0〉 , (67)

where we defined γ̂0 = ĉ†k=0 and γ̂π = ĉk=π for the unpaired states. The corresponding energy is:

EPBC

0 = −2J −
PBC∑

0<k<π

εk . (68)

And here comes an amusing subtlety of the thermodynamic limit L → ∞. You would naively

expect that, when you consider the energy-per-site e0 = E0/L, then the ground state energy should

simply tend to an integral:

e0 = − lim
L→∞

1

L

ABC∑
k>0

εk = −
∫ π

0

dk

2π
εk . (69)
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Figure 5: The gap between the ground state in the PBC and ABC sectors versus the transverse field h/J .

The two lower insets illustrate the exponential drop to 0 of the gap in the ferromagnetic region (left), and

the power-law behaviour at the critical point (right). Here κ = 1.

It turns out that the whole subtlety is hidden in the way one treats the boundary points at 0

and π: notice in particular that Eq. (62) for EABC
0 involves L/2 k-points in the interval (0, π),

while Eq. (68) for EPBC
0 involves L/2 − 1 points in the interval (0, π) and an extra term −2J . If

you refrain from being too cavalier with the L → ∞ limit, you discover that the energy splitting

∆E0 = EPBC
0 − EABC

0 is, in the whole ferromagnetically ordered region −J < h < J , a quantity

that goes to zero exponentially fast when L→∞: in other words, the two sectors ABC and PBC

provide the required double degeneracy of the ferromagnetic phase: you can see that easily for

h = 0. Less trivial, but true, for all |h| < J . On the contrary, ∆E0 is finite in the quantum

disordered regions |h| > J , ∆E0 = 2(|h|−J), 12 and goes to zero as a power-law, more precisely as

π/(2L), at the critical points hc = ±J . In Fig. 5 we illustrate these facts by numerically evaluating

∆E0.

Regarding the excited states, let us start from the p = 0 (even, ABC) sector. Consider, as a

warm-up, the state γ̂†k1 |∅γ〉
ABC. A simple calculation shows that, regardless of the sign of k1:

γ̂†k1 |∅γ〉
ABC = ĉ†k1

ABC∏
k>0
k 6=|k1|

(
u∗k − v∗k ĉ

†
k ĉ
†
−k

)
|0〉 . (70)

In essence, the application of γ̂†k1 transforms the Cooper-pair at momentum (|k1|,−|k1|) into an

unpaired fermion in the state ĉ†k1 |0〉. This would cost an extra energy +εk1 over the ground state:

the gain −εk1 obtained from pairing is indeed transformed into a no-gain (energy 0) for the unpaired

state ĉ†k1 |0〉, consistently with the 4× 4 structure of Eq. (43) predicting two eigenvalues 0 for the

unpaired states. There is a problem with parity, however: a single unpaired fermion changes the

overall fermion parity of the state. Hence, the lowest allowed states must involve two creation

12Again, the convergence in L is exponentially fast to such finite value in the whole quantum disordered region.
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3 Uniform Ising model.

operators, γ̂†k1 γ̂
†
k2

with k1 6= |k2|:

γ̂†k1 γ̂
†
k2
|∅γ〉ABC = ĉ†k1 ĉ

†
k2

ABC∏
k>0

k 6=|k1|,|k2|

(
u∗k − v∗k ĉ

†
k ĉ
†
−k

)
|0〉 . (71)

The energy of such an excitation is EABC
0 + εk1 + εk2 , because we loose two Cooper pairs. Quite

amusingly, if you consider the special case γ̂†k1 γ̂
†
−k1 you find that:

γ̂†k1 γ̂
†
−k1 |∅γ〉

ABC =
(
vk1 + uk1 ĉ

†
k1
ĉ†−k1

) ABC∏
k>0
k 6=|k1|

(
u∗k − v∗k ĉ

†
k ĉ
†
−k

)
|0〉 . (72)

This means that γ̂†k1 γ̂
†
−k1 transforms the Cooper pair at momentum (|k1|,−|k1|) into the corre-

sponding anti-bonding pair:(
u∗k1 − v

∗
k1 ĉ
†
k1
ĉ†−k1

)
|0〉

γ̂†k1
γ̂†−k1−→

(
vk1 + uk1 ĉ

†
k1
ĉ†−k1

)
|0〉 .

This costs an energy 2εk1 , consistent with the previous expression EABC
0 + εk1 + εk2 , if you consider

that ε−k1 = εk1 .

Generalising, we can construct all the excited states in the even-fermion sector, by applying an

even number of γ̂†k to |∅γ〉ABC, each γ̂†k costing an energy εk. In the occupation number (Fock)

representation we have therefore:

|ψ{nk}〉 =

ABC∏
k

(
γ̂†k

)nk
|∅γ〉ABC with nk = 0, 1 &

ABC∑
k

nk = even

E{nk} = EABC

0 +

ABC∑
k

nkεk . (73)

We see that there are 2L−1 such states, as required.

Remark: An important remark and check is here in order. First: the counting of the

excitation number is evidently correct, if the k in Eq. (73) are allowed to range among the L

positive and negative wave-vectors allowed by ABC: 2L Fock states if the parity check is not

enforced, 2L−1 if we enforce parity. Second: recall that we can transform a Cooper pair of

energy −εk into the corresponding anti-paired state, of energy +εk. The state that realises

that is γ̂†kγ̂
†
−k|∅〉ABC. Its energy is 2εk above that of the ground state, consistently with the

formula given in Eq. (73), since ε−k + εk = 2εk.

!

In the p = 1 (odd, PBC) sector, some care must be exercised. One should apply an even number

of γ̂†k to the ground state |∅γ〉PBC, including in the choice the unpaired operators γ̂†0, amounting to

removing the fermion from the k = 0 state, and γ̂†π, amounting to creating a fermion in the k = π

state.

3.2 Relationship with the spin representation

It is instructive to comment on the relationship between the spectrum we have found in the

fermionic representation and the corresponding physics in the original spin representation. In this

section we will focus on the Ising case, fixing the anisotropy parameter to κ = 1.
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3 Uniform Ising model.

Let us start with the classical Ising model (h = 0)

Ĥclassical = −J
L∑
j=1

σ̂xj σ̂
x
j+1 , (74)

and consider the two degenerate ground states that you can easily construct in this case:

|+,+, · · · ,+〉 and |−,−, · · · ,−〉 , (75)

where |±〉 = 1√
2
(1,±1)T denote the two eigenstates of σ̂x with eigenvalues ±1. Recall that the

parity operators reads, in terms of spins, as P̂ =
∏L
j=1 σ̂

z
j , and that σ̂z|±〉 = |∓〉. Hence, you easily

deduce that:

P̂|+,+, · · · ,+〉 = |−,−, · · · ,−〉 and P̂|−,−, · · · ,−〉 = |+,+, · · · ,+〉 . (76)

This implies that the two eigenstates of the parity operator must be:

|ψ±〉 =
1√
2

(
|+,+, · · · ,+〉 ± |−,−, · · · ,−〉

)
=⇒ P̂|ψ±〉 = ∓|ψ±〉 . (77)

These two opposite parity states must be represented by the two fermionic ground states belonging

to the ABC and PBC sectors. They are exactly degenerate for h = 0. The states in this doublet

are crucial for the symmetry-breaking in the thermodynamic limit.

Now consider the effect of a small h, taking for simplicity of argument the Ising Hamiltonian

with OBC:

ĤOBC = −J
L−1∑
j=1

σ̂xj σ̂
x
j+1 − h

L∑
j=1

σ̂zj . (78)

Let us consider the limit |h| � J . The two lowest-energy states have exactly the form in Eq. (75),

or Eq. (77), at lowest-perturbative order in |h|/J . To construct higher-energy excitations, consider

domain-wall configurations of the form

|l〉 = | −,−, · · · ,−︸ ︷︷ ︸
sites 1→l

, +, · · · ,+〉 with l = 1 · · ·L− 1 . (79)

For h = 0, these L− 1 lowest-energy domain-wall excitations are degenerate, and separated from

the two ground states by a gap 2J . Therefore, we can study the effect of a small transverse-field

term, for |h| � J , using standard textbook degenerate perturbation theory [2]. The Hamiltonian

restricted to the L− 1-dimensional subspace of the domain-wall excitations has the form

Ĥeff = 2J

L−1∑
l=1

|l〉 〈l| − h
L−2∑
l=1

(
|l〉 〈l + 1|+ H.c.

)
. (80)

This Hamiltonian is quite easy to diagonalise, as it resembles a standard tight-binding problem with

open boundary conditions. As in the quantum mechanical example of an infinite square well [2],

it is simple to verify that the appropriate sine combination of two opposite momenta plane-waves

of momentum k satisfy the correct boundary conditions:

|ψk〉 =
1

Nk

L−1∑
l=1

sin(kl) |l〉 with k =
nπ

L
, (81)

for n = 1, . . . , L−1, and Nk a normalization factor. These delocalised domain-walls have an energy:

µk = 2J − 2h cos k . (82)

We notice that if we expand the excitation energies εk in Eq. (50) up to lowest order in h/J we

obtain εk ≈ µk + O((h/J)2). So, we see that a state with a single quasiparticle γ̂†k has the same
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4 Nambu formalism for the general disordered case

energy as the delocalised domain-wall state in Eq. (81). This justifies the picture that quasiparticles

are indeed delocalised domain walls. 13

Let us continue our perturbative reasoning to see how we can estimate the separation between the

two ground states originating from the h = 0 doublet discussed above, when h > 0. As mentioned

above, the states |+,+, · · · ,+〉 and |−,−, · · · ,−〉 are degenerate for h = 0, and this doublet

is separated from the other states by a gap ≥ 2J . The degenerate states |+〉 = |+,+, · · · ,+〉
and |−〉 = |−,−, · · · ,−〉 are coupled only at order L in perturbation theory: we need to flip L

spins, with the σ̂zj operators, to couple one to the other. Hence, we expect their splitting to be

∆E0 ∼ (h/J)
L

, i.e., exponentially small in the system size L for small |h|: the resulting eigenstates

|ψ±(h)〉, even and odd under parity, approach the two eigenstates in Eq. (77) for h → 0. 14 This

energy splitting is exactly the quantity ∆E0 discussed in Sec. 3.1. So, in the thermodynamic limit,

we break the Z2 symmetry. At any finite size we have the symmetry preserving ground states

|ψ±(h)〉 which tend to Eq. (77) for h→ 0. These states can be regarded as superpositions of two

macroscopically ordered 15 states |±〉h = 1√
2
(|ψ+(h)〉 ± |ψ−(h)〉). So, in the subspace generated

by |ψ±(h)〉 there can be an explicit symmetry-breaking 16 of Z2 only in the thermodynamic limit,

where the two states are degenerate and the slightest local perturbation selects one of the two

macroscopically ordered superpositions |±〉h.

4 Nambu formalism for the general disordered case

As we have seen, in the ordered case the Hamiltonian can be diagonalised by a Fourier trans-

formation, reducing the problem to a collection of 2× 2 “pseudo-spin-1/2” problems, followed by

a Bogoliubov transformation, as first shown by Lieb, Schultz and Mattis [5, 6]. In the disordered

case, we can proceed in similarly, but we cannot reduce ourselves to 2 × 2 problems in a simple

way. 17 By using the Nambu formalism, we define a column vector Ψ̂ and its Hermitean conjugate

row vector Ψ̂†, each of length 2L, by

Ψ̂ =



ĉ1
...

ĉL
ĉ†1
...

ĉ†L


=

(
ĉ

ĉ†

)
Ψ̂† =

(
ĉ†1 , · · · , ĉ

†
L , ĉ1 , · · · , ĉL

)
=
(
ĉ† , ĉ

)
, (83)

13We performed our analysis for the case of OBC. The case with PBC is similar, the only difference being that the

lowest-energy excitations for h = 0 have two domain walls. Nevertheless, with an analysis very similar to the

one above, one can show that the excited states for |h| � J have energy 2µk and can be interpreted as states

with two quasiparticles.
14We notice that the gap of order J between the ground-state doublet and the higher excited states is essential

to get this result. The excited states at h = 0 appear in massively degenerate multiplets and therefore this

construction is impossible for them. The doublet structure appears only for the two quasi-degenerate ground

states and the two quasi-degenerate highest-energy states.
15“Macroscopically ordered” means that the longitudinal magnetization operator M̂x =

∑
j σ̂

x
j has an expectation

value which is extensive in L.
16 Nevertheless, all the states in this doublet, |φ〉 = α|ψ+(h)〉 + β|ψ−(h)〉 with |α|2 + |β|2 = 1, show long-range

correlations also at finite size. Indeed, the correlator 〈φ|σ̂xj σ̂xj+l|φ〉 is always finite (equal to 1 in the limit h→ 0),

and

lim
l→∞

lim
L→∞

|〈φ|σ̂xj σ̂xj+l|φ〉| 6= 0 ,

expressing the long-range order associated with symmetry-breaking. See the related problem in Sec. 9.
17For the time-independent case, a theorem due to Bloch and Messiah guarantees that there is always an appropriate

basis in which the problem reduces to 2×2 blocks, but this is not very useful if you are willing to tackle dynamical

problems. See Sec. 7.
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4 Nambu formalism for the general disordered case

or Ψ̂j = ĉj , Ψ̂j+L = ĉ†j and Ψ̂†j = ĉ†j , Ψ̂†j+L = ĉj for j ≤ L. 18

Warning: Notice that the Ψ̂ satisfy quite standard fermionic anti-commutation relations

{Ψ̂j , Ψ̂
†
j′} = δj,j′ , (84)

for j, j′ = 1, ..., 2L, except that {Ψ̂j , Ψ̂j+L} = 1 for all j ≤ L, which brings about certain

factors 2 in the Heisenberg’s equations of motion (see later).

!

It is useful, for later purposes, to introduce the 2L× 2L swap matrix S so defined: 19

S =

(
0L×L 1L×L
1L×L 0L×L

)
. (85)

Consider now a general fermionic quadratic form 20 expressed in terms of Ψ̂ as:

Ĥ = Ψ̂†H Ψ̂ =
(
ĉ† , ĉ

)( A B

−B∗ −A∗

)(
ĉ

ĉ†

)
. (87)

For a general quadratic fermion Hamiltonian, the 2L × 2L matrix H should be Hermitean and

its L × L blocks A and B should be, respectively, Hermitean (A = A†) and anti-symmetric

(B = −BT).

There is an intrinsic particle-hole symmetry in a fermionic Hamiltonian having this form. This

symmetry is connected with the fact that:

HS = −SH∗ . (88)

In the Ising case all couplings are real and we have two different fermionic Hamiltonians, one

for each parity sector p = 0, 1, which we report here for convenience: 21

Ĥp=0,1 = −
L∑
j=1

(
J+
j ĉ
†
j ĉj+1 + J−j ĉ

†
j ĉ
†
j+1 + H.c.

)
+

L∑
j=1

hj(ĉ
†
j ĉj − ĉj ĉ

†
j) , (89)

with the boundary condition:

ĉL+1 = (−1)p+1ĉ1 . (90)

18The notation for ĉ might be a bit confusing and should be intended as a shorthand, rather than a column vector.

We are not consistently assuming, for instance, that ĉ† is a row vector. The same shorthanded but imperfect

notations will be assumed later on for the Bogoliubov rotated operators γ̂ and γ̂†.
19Interestingly, you can write:

Ψ̂† = (SΨ̂ )T .

20Indeed one can show that the most general quadratic form in the fermion operators

Ĥ =
∑
j′j

2Aj′j ĉ
†
j′ ĉj +

∑
jj′

(
Bj′j ĉ

†
j′ ĉ
†
j + B∗j′j ĉj ĉj′

)
, (86)

where Aj′j = A∗jj′ (A = A† is Hermitean) and Bjj′ = −Bj′j (B = −BT is anti-symmetric, because ĉj ĉj′ is

anti-symmetric under exchange of the two operators, and any symmetric part of B would not contribute) has

exactly the form given in Eq. (87), plus a constant term Tr A.
21For convenience we also re-write

2n̂j − 1 = ĉ†j ĉj − ĉj ĉ
†
j .
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5 Diagonalisation of Ĥ: the time-independent case.

The corresponding 2L×2L matrices Hp are now real and symmetric. Hence A is real and symmetric

(A = A∗ = AT), and B is real and anti-symmetric (B = B∗ = −BT):

H =

(
A B

−B∗ −A∗

)
Ising−→ Hp =

(
A B

−B −A

)
. (91)

The structure of the two blocks A and B is given, in the Ising case, by: Aj,j = hj

Aj,j+1 = Aj+1,j = −
J+
j

2
= −Jj

2

 Bj,j = 0

Bj,j+1 = −Bj+1,j = −
J−j
2

= −κJj
2

, (92)

where we have assumed, once again, that Jxj = Jj(1+κ)/2 and Jyj = Jj(1−κ)/2. In the PBC-spin

case, we have additional matrix elements:

AL,1 = A1,L = (−1)p J
+
L

2
= (−1)p JL

2
, (93)

and

BL,1 = −B1,L = (−1)p J
−
L

2
= (−1)pκJL

2
, (94)

both depending on the fermion parity p. The OBC case is recovered by simply setting JL = 0,

which makes H1 = H0.

5 Diagonalisation of Ĥ: the time-independent case.

We start considering the eigenvalue problem for a general Hermitean 2L × 2L matrix showing

that intrinsic particle-hole symmetry of the problem leads to the Bogoliubov-de Gennes (BdG)

equations.

5.1 The Bogoliubov-de Gennes equations.

Let us consider the eigenvalue problem for a general Hermitean 2L× 2L matrix H

H

(
uµ
vµ

)
=

(
A B

−B∗ −A∗

)(
uµ
vµ

)
= εµ

(
uµ
vµ

)
(95)

where u,v are L-dimensional vectors and µ index refers to µ-th eigenvector. By explicitly writing

the previous system, we find the so-called Bogoliubov-de Gennes equations:{
A uµ + B vµ = εµuµ

−B∗uµ −A∗vµ = εµvµ
. (96)

It is easy to verify that if (uµ , vµ)
T

is eigenvector with eigenvalue εµ, then
(
v∗µ , u∗µ

)T
is an

eigenvector with eigenvalue −εµ. 22 In the Ising case, A = A∗ and B = B∗, and we can always

take the solutions to be real. 23

22 Indeed:  A v∗µ + B u∗µ = −εµv∗µ

−B∗v∗µ −A∗u∗µ = −εµu∗µ
,

coincides exactly with Eq. (96), after taking a complex conjugation, exchanging the two equations and reshuffling

the terms. An alternative derivation uses the fact that

S

(
u

v

)
=

(
v

u

)
,

and that HS = −SH∗, see Eq. (88).
23Since H is a real and symmetric matrix, it can be diagonalised by a real orthogonal matrix.
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5 Diagonalisation of Ĥ: the time-independent case.

We can organise the eigenvectors in a unitary (orthogonal, if the solutions are real) 2L × 2L

matrix

U =

(
u1 · · · uL v∗1 · · · v∗L
v1 · · · vL u∗1 · · · u∗L

)
=

(
U V∗

V U∗

)
(97)

U and V being L×L matrices (real, as we can choose to be, in the Ising case) with the uj and vj
as columns. As a consequence:

U†HU =



ε1 0 · · · 0 0 0 · · · 0

0 ε2 · · · 0 0 0 · · · 0
...

... · · ·
...

...
... · · ·

...

0 0 · · · εL 0 0 · · · 0

0 0 · · · 0 −ε1 0 · · · 0

0 0 · · · 0 0 −ε2 · · · 0
...

... · · ·
...

...
... · · ·

...

0 0 · · · 0 0 0 · · · −εL


≡ diag(εµ,−εµ) = Ediag . (98)

If we define new Nambu fermion 24 operators Φ̂ and Φ̂† in such way that

Ψ̂ = U Φ̂ (99)

we can write Ĥ in diagonal form

Ĥ = Ψ̂†H Ψ̂ = Φ̂†U† HU Φ̂ = Φ̂† Ediag Φ̂ . (100)

Similarly to Ψ̂ , we can define new fermion operators γ̂ such that

Φ̂ =

(
γ̂

γ̂†

)
= U† Ψ̂ =

(
U† V†

VT UT

) (
ĉ

ĉ†

)
. (101)

More explicitly, we can write: 25


γ̂µ =

L∑
j=1

(U∗jµĉj + V∗jµĉ
†
j)

γ̂†µ =

L∑
j=1

(Vjµĉj + Ujµĉ
†
j)

, (104)

24We have: {
Φ̂µ, Φ̂

†
µ′
}

=
{∑
j′

U†
µj′Ψ̂j′ ,

∑
j

Ψ̂†jUjµ′
}

=
∑
jj′

U†
µj′Ujµ′

{
Ψ̂
j′ , Ψ̂

†
j

}
=

∑
j

U†µjUjµ′ = (U†U)µµ′ = δµµ′ .

25 The conditions for the transformation in Eq. (104) to be canonical are:

U†U =

(
U†U + V†V U†V∗ + V†U∗

VTU + UTV VTV∗ + UTU∗

)
=

(
1 0

0 1

)
⇒

{
U†U + V†V = 1

VTU + UTV = 0
(102)

since you realise that the block 22 is simply the ∗ of block 11 and block 12 is the † of block 21. Interestingly, the

condition VTU + UTV = 0 tells us that VTU is anti-symmetric, and the same happens for UTV. Similarly,

one must have:

UU† =

(
UU† + V∗VT UV† + V∗UT

VU† + U∗VT VV† + U∗UT

)
=

(
1 0

0 1

)
⇒

{
UU† + V∗VT = 1

UV† + V∗UT = 0
(103)

which again implies the anti-symmetry of both UV† and V∗UT.
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5 Diagonalisation of Ĥ: the time-independent case.

which can be easily inverted, remembering that Ψ̂ = U Φ̂, to express the ĉj operators in terms of

the γ̂µ: 
ĉj =

∑
µ

(Ujµγ̂µ + V∗jµγ̂
†
µ)

ĉ†j =
∑
µ

(Vjµγ̂µ + U∗jµγ̂
†
µ)

. (105)

Finally Ĥ in terms of the γ̂ operators reads, assuming we have taken εµ > 0:

Ĥ =

L∑
µ=1

(
εµγ̂
†
µγ̂µ − εµγ̂µγ̂†µ

)
=

L∑
µ=1

2εµ

(
γ̂†µγ̂µ −

1

2

)
(106)

and the ground state is the state annihilated by all γ̂µ, which we denote by |∅γ〉:

γ̂µ|∅γ〉 = 0 ∀µ =⇒ Ĥ|∅γ〉 = E0|∅γ〉 with E0 = −
L∑
µ=1

εµ . (107)

The 2L Fock states can be expressed as:

|ψ{nµ}〉 =

L∏
µ=1

(
γ̂†µ
)nµ |∅γ〉 with nµ = 0, 1

E{nµ} = E0 + 2
∑
µ

nµεµ . (108)

Warning: The previous discussion applies to a generic quadratic fermion Hamiltonian Ĥ.

Consequently, it also applies to the two different parity Hamiltonians Ĥp relevant for the Ising

case, which one could express as:

Ĥp =

L∑
µ=1

(
εp,µγ̂

†
p,µγ̂p,µ − εp,µγ̂p,µγ̂

†
p,µ

)
=

L∑
µ=1

2εp,µ

(
γ̂†p,µγ̂p,µ −

1

2

)
. (109)

This implies that there are two distinct Bogoliubov vacuum states |∅p〉, one for each set of

operators γ̂p,µ. Recall, however, that the block Hamiltonian Ĥp = P̂pĤpP̂p involves projectors

on the appropriate sub-sectors, which must be handled appropriately. Moreover, the possible

presence of zero-energy eigenvalues must be appropriately taken care of: see below. This is

important in calculating thermal averages, as further discussed in Sec. 8.

!

Before ending, one note about zero-energy eigenvalues, which has a practical relevance when

calculating thermal averages. If you calculate the eigenvalues {εµ} by a numerical diagonalisation

routine, the presence of zero-energy eigenvalues complicates the story. Indeed, the zero-energy

eigenvalues, if present, must come in an even number. This is rather clear from the fact that total

dimension is 2L and that every non-zero positive eigenvalue εµ > 0 must have a negative partner

−εµ < 0. Unfortunately, the computer will produce eigenvectors associated with the degenerate

zero-energy eigenvalues which do not have the structure alluded at in Eq. (97). To enforce such a

structure you can exploit the swap matrix S.
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5 Diagonalisation of Ĥ: the time-independent case.

Info: Let us consider the Ising case, where H is real and particle-hole symmetry reads reads

HS = −SH. Hence if (uµ , vµ)
T

is a zero-energy state, so is S (uµ , vµ)
T

= (vµ , uµ)
T
. Hence

the zero-energy subspace — the so-called KerH, whose even dimension we denote by N0 — is

invariant for S. Hence you can restrict S to such N0-dimensional subspace, and diagonalise it

there. But S is such that S2 = 1, hence its eigenvalues can be only ±1, the eigenstates of S
being even or odd under swap of the first and last L components. Even more: you can show

that S must have exactly as many +1 as −1 eigenvalues in that subspace. Now, if (u , u)
T

is

a zero-energy even-swap eigenstate, and (v , −v)
T

a zero-energy odd-swap eigenstate — both

normalised and orthogonal — then the two combinations:

1√
2

(
u + v

u− v

)
and

1√
2

(
u− v

u + v

)
, (110)

are both normalised, orthogonal, and have precisely the structure shown in Eq. (97). These

states should be used to enforce the required structure of Eq. (97), crucial to fulfilling the

correct anti-commutation rules.

i

Show that the static Bogoliubov-de Gennes equations in Eq. (96) are equivalent, for general

couplings, to the diagonalization of the following tight-binding problem for the two-component

spinor Wjµ
def
=

(
Ujµ

Vjµ

)
:

− Jj
2

(τ̂z + iκτ̂y) Wj+1,µ −
Jj−1

2
(τ̂z − iκτ̂y) Wj−1,µ + hj τ̂

zWjµ = εµWjµ ,

where τ̂ are pseudo-spin Pauli matrices acting on the two components of Wjµ.

Next, consider the uniform case Jj = J and hj = h. Use Fourier transforms Wjµ =
1
L

∑
k eikjWkµ (where the k-vectors used depend, as usual, from the boundary conditions) to

show that:

(Hk − 2εµ) Wkµ = 0 ,

where Hk = (2κJ sin k)τ̂y + 2(h − J cos k)τ̂z as in Eq. (47). This shows that the correct

correspondence between the general BdG approach of Sec. 5 and the k-space approach of

Sec. 3, is given by 2εµ ≡ εk.

Problem 1 Tight-binding formulation of the BdG equations.
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5 Diagonalisation of Ĥ: the time-independent case.

Consider now a uniform Ising chain with κ = 1 and a single impurity on site j = l. More in

detail, take Jj ≡ J > 0, hj = h− himp δjl, with 0 < himp � h, himp � J, J 6= ±h. Show that

the impurity induces two bound-state excitations, one above and one below the continuum

[2|J − h|, 2|J + h|] of the extended excitations of the uniform chain.

Answer: 2ε±µ=2|J±h|± hJ
|J±h|

(
himp
J

)2
+o
(
himp
J

)2
.

Hint: Assuming that 2εµ is outside of the spectrum of the unperturbed uniform chain, and us-

ing Fourier transforms, show that you arrive at the following equation determining the non-trivial

solutions εµ: (
1− 2himp

L

∑
k

(Hk − 2εµ)−1 τ̂z
)
Wlµ = 0 .

Assuming himp � h, show that, for L → ∞, 1 ' 2himp

∫ 2π

0
dk
2π

Tr
(

(Hk − 2εµ)−1 τ̂z
)

. Calculate the

trace using Hk = εkeiθk τ̂
x/2 τ̂z e−iθk τ̂

x/2 with tan θk = J sin k
h−J cos k

, and perform the integral over k.

Give an expression for εµ approximated to second order in himp/J .

Problem 2 Bound-state excitations for an Ising chain with an impurity.

Consider the model with disorder in both Jj and hj . Assume that Jj ∈ [Jmin, 1] and hj ∈
[0, hmax] are uniformly distributed, with Jmin > 0. Numerically solve the Bogoliubov-de

Gennes equations Eq. (96) and show that, whatever the choice of hmax and Jmin, the spinor

eigenfunctions Wjµ
def
=

(
Ujµ

Vjµ

)
are localised in space. This means that these eigenfunctions

are uniformly bounded by a function exponentially decaying over a characteristic length-scale

ξloc, the so-called localisation length. More formally, fixing hmax and Jmin, there exists a ξloc

such that √
|Ujµ|2 + |Vjµ|2 ≤ C e−|j−lµ|/ξloc ∀µ , (111)

where lµ depends on µ and C is a constant. This phenomenon can be clearly seen when the

system size exceeds the localisation length, L > ξloc. Study localisation also using the inverse

participation ratio [7, 8]

IPRµ =
∑
j

∣∣|Wjµ|2
∣∣2 =

∑
j

∣∣|Ujµ|2 + |Vjµ|2
∣∣2 . (112)

Average IPRµ over µ and verify that it tends towards a constant value, for increasing L. a

aObserve that plane-wave delocalised states have IPR = 1/L, while fully localised states have IPR = 1.

Problem 3 Anderson localisation of states for the disordered Ising chain.

The space localisation phenomenon discussed in the previous problem is an example of Anderson

localisation, see Refs. [7, 8]. In the fermionic representation, the non-interacting quasiparticle

excitations γ̂†µ are space localised. In the spin representation, this is equivalent to saying that the

non-interacting dressed domain-wall excitations are localised. This can be seen using a heuristic

argument which amounts to applying the Jordan-Wigner transformation, Eq. (11), to the definition

of γ̂†µ, Eq. (104). One obtains

γ̂†µ =

L∑
j=1

K̂j(Vjµσ̂
+
j + Ujµσ̂

−
j ) . (113)
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5 Diagonalisation of Ĥ: the time-independent case.

Let us consider the case hmax � Jmin, where the ground-state doublet is well approximated by the

states in Eq. (77), see also discussion below. By applying the operator in Eq. (113) to the ground

state, K̂j essentially acts only on the site lµ where Ujµ and Vjµ are localised. Its action consists

of flipping all the spins for j < lµ thereby creating a domain wall.

The fact that excitations are localised domain walls has an important physical consequence: the

excitations cannot destroy the long-range order of the ground state in the ferromagnetic phase.

They can alter the state only locally, and long-range order is preserved. Indeed, in the thermody-

namic limit the correlator liml→∞ |〈σ̂xj σ̂xj+l〉| is always finite. 26

In order to see that for hmax � Jmin all the spectrum shows long-range order, we proceed by

means of a perturbative argument similar to that of Sec. 3.2. For hj ≡ 0 the eigenstates are

all the possible spin configurations of the form |+ + − + . . .〉. Since the Jj are disordered, the

only degeneracies are between pairs of spin configurations connected by the Z2 symmetry. So,

each configuration |+ + − + . . .〉 is degenerate only with that where all the spins are flipped

|− − + − . . .〉. Switching on the magnetic fields, we get the lowest-order corrections by applying

degenerate perturbation theory in these doublets. Similarly to the ground state considered in

Sec. 3.2, the states in each doublet are connected at order L in perturbation theory. So, the resulting

eigenstates are organised in doublets of the form |ψ±〉 = 1√
2

(|+ + − + . . .〉 ± |− − + − . . .〉) with

a splitting ∆ which is exponentially small in the system size:

∆ ∼ h1h2h3 . . . hL
J1J2J3 . . . JL−1

∼ eL[〈log h〉−〈log J〉]+O(
√
L) (114)

where 〈· · · 〉 denotes the average over the distribution of the random Jj and hj , and the corrections

of order O(
√
L) result from the central limit theorem (assuming the hj and Jj independently

distributed). 27

So, in this disordered ferromagnetic case, the whole spectrum behaves as the ground state of

the clean model discussed in Sec. 3.2. All the eigenstates are linear superpositions 28 of macro-

scopically ordered states, and break the Z2 symmetry in the thermodynamic limit. In particular,

any eigenstate shows long-range order, since |〈ψ±|σ̂xj σ̂xj+l|ψ±〉| = 1 for any value of j and l, as can

be easily verified. The present analysis is valid in the limit hmax � Jmin, but long-range order of

excited eigenstates was found also beyond this limit [10].

5.2 Open boundary conditions and Majorana fermions

The case of a chain with open boundary conditions is particularly interesting, because Majorana

fermions, and the associated zero-energy modes, emerge quite naturally from the discussion [11].

In this section, we work out explicitly the case of a chain with open boundary conditions, introduce

the Majorana fermions first as a formal device to perform the diagonalization and then discuss

the physical role they have as boundary excitations at vanishing energy in the broken symmetry

phase.

For illustration purposes, let us consider the case in which the spin chain has L = 4 sites, and

couplings J1, J2, J3 > 0, while J4 = 0 (as dictated by OBC). 29 The 2L× 2L Hamiltonian matrix

26See Sec. 9 for the evaluation of this correlator.
27We can naively expect that the phase with all the spectrum breaking the Z2 symmetry in the thermodynamic

limit is destroyed when ∆ ∼ 1, that is to say when 〈log h〉 = 〈log J〉. Remarkably, the result of this naive

argument is confirmed (at least for the ground state) by a very accurate renormalization-group analysis [9].
28The so-called “cat states”.
29If you want to do numerical tests, we suggest you take different values for Jj , for instance, J1 = 1, J2 = 2 and

J3 = 3, to avoid degeneracies, which might lead to a mixing of the corresponding eigenvectors.
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5 Diagonalisation of Ĥ: the time-independent case.

(in this case, an 8× 8 matrix) will have the form (we fix the anisotropy parameter κ = 1):

H =
1

2



2h −J1 0 0 0 −J1 0 0

−J1 2h −J2 0 J1 0 −J2 0

0 −J2 2h −J3 0 J2 0 −J3

0 0 −J3 2h 0 0 J3 0

0 J1 0 0 −2h J1 0 0

−J1 0 J2 0 J1 −2h J2 0

0 −J2 0 J3 0 J2 −2h J3

0 0 −J3 0 0 0 J3 −2h


. (115)

Let us consider first the case with h = 0, corresponding to the classical Ising model with the given

couplings. The corresponding eigenvalues/eigenvectors (disregarding the ordering of the non-zero

eigenvalues) are found to be:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

J1 J2 J3 0 −J1 −J2 −J3 0

− 1
2 0 0 1√

2
1
2 0 0 0

1
2 − 1

2 0 0 1
2

1
2 0 0

0 1
2 − 1

2 0 0 1
2

1
2 0

0 0 1
2 0 0 0 1

2 − 1√
2

1
2 0 0 1√

2
− 1

2 0 0 0
1
2

1
2 0 0 1

2 − 1
2 0 0

0 1
2

1
2 0 0 1

2 − 1
2 0

0 0 1
2 0 0 0 1

2
1√
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(116)

where you should observe that the structure of Eq. (97) is correctly respected, except for the two

zero eigenvalues, which the diagonalisation routine has decided to give us in this particular form.

This form itself is particularly interesting. It suggests that the following fermionic combinations

naturally emerge:

ε1 = J1 → Φ̂1 = γ̂1 = 1
2 (ĉ†2 + ĉ2) + 1

2 (ĉ†1 − ĉ1)

ε2 = J2 → Φ̂2 = γ̂2 = 1
2 (ĉ†3 + ĉ3) + 1

2 (ĉ†2 − ĉ2)

ε3 = J3 → Φ̂3 = γ̂3 = 1
2 (ĉ†4 + ĉ4) + 1

2 (ĉ†3 − ĉ3)

ε4 = 0 → Φ̂′4 = 1√
2
(ĉ†1 + ĉ1)

−ε1 = −J1 → Φ̂5 = γ̂†1 = 1
2 (ĉ†2 + ĉ2)− 1

2 (ĉ†1 − ĉ1)

−ε2 = −J2 → Φ̂6 = γ̂†2 = 1
2 (ĉ†3 + ĉ3)− 1

2 (ĉ†2 − ĉ2)

−ε3 = −J3 → Φ̂7 = γ̂†3 = 1
2 (ĉ†4 + ĉ4)− 1

2 (ĉ†3 − ĉ3)

−ε4 = 0 → Φ̂′8 = 1√
2
(ĉ†4 − ĉ4)

. (117)

Several things strike our attention. First: Φ̂′4 is Hermitean and Φ̂′8 is anti-Hermitean, and they are

not Hermitean conjugate pairs, contrary to all other (Φ̂j , Φ̂j+4) pairs. If you want to construct

ordinary fermionic operators, then you should redefine:

Φ̂′4 → Φ̂4 = γ̂4 = 1
2 (ĉ†1 + ĉ1) + 1

2 (ĉ†4 − ĉ4)

Φ̂′8 → Φ̂8 = γ̂†4 = 1
2 (ĉ†1 + ĉ1)− 1

2 (ĉ†4 − ĉ4)
(118)

with an orthogonal transformation which leaves the subspace of two degenerate eigenvalues 0 in-

variant, precisely as alluded at in the last info-box of 5.1. Second: certain Hermitean combinations
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5 Diagonalisation of Ĥ: the time-independent case.

seem to play a peculiar role. In particular, let us define the Majorana fermions: 30

čj,1 = (ĉ†j + ĉj) and čj,2 = i(ĉ†j − ĉj) . (120)

These operators are manifestly Hermitean. They allow to express the original fermions as:

ĉj = 1
2 (čj,1 + ičj,2) and ĉ†j = 1

2 (čj,1 − ičj,2) , (121)

and satisfy the anti-commutation relations:

{čj,α, čj′,α′} = 2δj,j′δα,α′ . (122)

Notice, in particular, that this implies that different Majorana anti-commute, but (čj,α)2 = 1.

In terms of these operators we have:

Φ̂1 = γ̂1 = 1
2 (ĉ†2 + ĉ2) + 1

2 (ĉ†1 − ĉ1) = 1
2 (č2,1 − ič1,2)

Φ̂2 = γ̂2 = 1
2 (ĉ†3 + ĉ3) + 1

2 (ĉ†2 − ĉ2) = 1
2 (č3,1 − ič2,2)

Φ̂3 = γ̂3 = 1
2 (ĉ†4 + ĉ4) + 1

2 (ĉ†3 − ĉ3) = 1
2 (č4,1 − ič3,2)

Φ̂4 = γ̂4 = 1
2 (ĉ†1 + ĉ1) + 1

2 (ĉ†4 − ĉ4) = 1
2 (č1,1 − ič4,2)

Φ̂5 = γ̂†1 = 1
2 (ĉ†2 + ĉ2)− 1

2 (ĉ†1 − ĉ1) = 1
2 (č2,1 + ič1,2)

Φ̂6 = γ̂†2 = 1
2 (ĉ†3 + ĉ3)− 1

2 (ĉ†2 − ĉ2) = 1
2 (č3,1 + ič2,2)

Φ̂7 = γ̂†3 = 1
2 (ĉ†4 + ĉ4)− 1

2 (ĉ†3 − ĉ3) = 1
2 (č4,1 + ič3,2)

Φ̂8 = γ̂†4 = 1
2 (ĉ†1 + ĉ1)− 1

2 (ĉ†4 − ĉ4) = 1
2 (č1,1 + ič4,2)

(123)

There is something simple behind the previous story. If you rewrite the original Ising coupling

in terms of fermions, you realise that, for instance:

−Jj σ̂xj σ̂xj+1 → −Jj(ĉ
†
j ĉj+1 + ĉ†j ĉ

†
j+1 + H.c.) = −Jj(ĉ†j − ĉj)(ĉ

†
j+1 + ĉj+1)

≡ −iJj čj,2čj+1,1 , (124)

i.e., the Ising term couples in a precise way neighbouring Majorana operators. All we have done,

to diagonalise it, is to introduce the appropriate combination γ̂j = 1
2 (čj+1,1 − ičj,2) and γ̂†j =

1
2 (čj+1,1 + ičj,2) and re-express the coupling term as:

− Jj σ̂xj σ̂xj+1 → −iJj čj,2čj+1,1 = Jj(γ̂
†
j γ̂j − γ̂j γ̂

†
j ) , (125)

which suggests that the ground state is the vacuum of those γ̂j operators. 31

There is a second simple case we can deal with. Take all hj > 0 and Jj = 0, so that the

Hamiltonian is now:

Ĥ =

L∑
j=1

hj(2n̂j − 1) =

L∑
j=1

hj(ĉ
†
j ĉj − ĉj ĉ

†
j)→ i

L∑
j=1

hj čj,1čj,2 . (126)

This shows that the ground state, now the vacuum of the ĉj , still involves a “pairing” of Majorana

fermions, but now on the same site j. The two different Majorana pairings are sketched in Fig. 6.

30This definition is non-standard. The standard definition used by Kitaev [11] duplicates the sites and defines the

Majorana fermions as living on even/odd sites as:

č2j−1 = (ĉ†j + ĉj) and č2j = i(ĉ†j − ĉj) . (119)

31Interestingly, in the vacuum we gain an energy −Jj from each bond. Breaking that, we would get a contribution

+Jj from the bond, hence an energy cost, referred to the vacuum, of 2Jj : this explains, for instance, the factor

2 in front of εµ in Eq. (106).
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γ̂1 γ̂2 γ̂3

1 2 3 4

ĉ1 ĉ2 ĉ3 ĉ4

1 2 3 4

Figure 6: Left: an L = 4 open chain with the off-site Majorana pairing leading to the Bogoliubov vacuum.

Right: The on-site Majorana pairing leading to the ordinary vacuum for hj > 0.

Returning to the previous case with hj = 0, the ground states certainly verify

γ̂j |∅〉 = 0 for j = 1, · · · , L− 1(= 3) . (127)

But there are two states satisfying such a condition, a degeneracy that is ultimately related to the

presence of unpaired Majorana operators at the end of the chain, as emerging from Fig. 6 (left).

Indeed, one such state is also the vacuum of γ̂L=4:

γ̂j |∅0〉 = 0 for j = 1, · · · , L(= 4) . (128)

On such state, we have (generalising now to arbitrary even L)

γ̂Lγ̂
†
L|∅0〉 = |∅0〉 =⇒ ič1,1čL,2|∅0〉 = |∅0〉 . (129)

The second possible ground state is |∅1〉 = γ̂†L|∅0〉 for which:

γ̂†Lγ̂L|∅1〉 = |∅1〉 =⇒ ič1,1čL,2|∅1〉 = −|∅1〉 . (130)

These two ground states have opposite fermion parity, 32 because they differ by the application of

γ̂†L.

32Notice, incidentally, that the fermionic parity can be expressed as:

P̂ =

L∏
j=1

(1− 2n̂j) =

L∏
j=1

(
(ĉ†j + ĉj)(ĉ

†
j − ĉj)

)
=

L∏
j=1

(−ičj,1čj,2) , (131)
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εµ/J

h/J

Figure 7: The spectrum of eigenvalues εµ = 2εµ ≥ 0 of an ordered Ising chain with OBC, versus the

transverse field h. (We show only half of the particle-hole symmetric spectrum ±εµ. ) Here L = 256.

Notice the zero-energy eigenvalue for h < hc = J . This eigenvalue is exponentially small in the length L

for all h < hc.

Info: As discussed by Kitaev [11], the two zero-modes survive for 0 < h < J , with a splitting

which is exponentially small in the length of the chain, as long the broken symmetry leads to

two possible ground states.

The existence of these modes is deeply related to the topological considerations done when

discussing Fig. 4. Indeed, a fermionic chain with |h| < J and OBC is equivalent to surrounding

the chain with the fermionic vacuum — in turn equivalent to an Ising chain with h → ∞.

But one cannot go continuously from a phase with winding index 1 to a phase with index

0. Therefore, at the border between two phases with different index, the gap must close

to enforce this discontinuity (we saw when discussing Fig. 4, the deep connection between

the discontinuity of the index and the closing of the gap). Hence, the gap must close at

the boundary, and this effect appears as two zero-energy boundary modes which behave as

Majorana excitations. As we saw above, there are only two ways of combining them into

fermionic excitations, which are indeed very non-local objects. For any finite system size

L, the two Majorana fermions have an overlap exponentially small in L. If we combine

them into fermionic excitations, we find a gap between them which is exponentially small

in the system size. This is the same gap we found in Secs. 3.1 and 3.2, that vanishes in

the thermodynamic limit and leads to symmetry-breaking. Now we appreciate its intimate

connection with topology.

To visualise these facts, we show in Fig. 7 the spectrum of eigenvalues εµ ≥ 0 (evaluated

numerically) of an ordered Ising chain with OBC. We mark in red one of the two zero-energy

modes we have discussed above, surviving for all h ≤ hc = J . Actually, the mode is not

exactly at zero, but, rather, exponentially small in L. Finite-size effects (here L = 256) lead

to a visible rounding effect in the proximity of hc.

i
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5.3 The BCS-form of the ground state.

The next problem we would like to solve is how to write the Bogoliubov vacuum |∅γ〉 in terms

of the ĉ†j in the general non-homogeneous case, in a way that generalizes the simple BCS form we

have in k-space:

|∅γ〉ABC =

ABC∏
k>0

(
u∗k − v∗k ĉ

†
k ĉ
†
−k

)
|0〉 . (132)

For that purpose, let us make the Ansatz that |∅γ〉 can be written as a Gaussian state of the form:

|∅γ〉 = N exp
(1

2

∑
j1j2

Zj1j2 ĉ
†
j1
ĉ†j2

)
|0〉 ≡ N eZ |0〉 , (133)

where Z will be our shorthand notation for the quadratic fermion form we exponentiate. Clearly,

since ĉ†j1 ĉ
†
j2

= −ĉ†j2 ĉ
†
j1

we can take the matrix Z to be antisymmetric (but complex, in general):

any symmetric part of Z would give 0 contribution. The conditions that Z has to satisfy should

be inferred from the fact that we pretend that γ̂µ|∅γ〉 = 0, hence:

N

L∑
j=1

(
U∗jµĉj + V∗jµĉ

†
j

)
eZ |0〉 = 0 ∀µ . (134)

Since Z is made of pairs of ĉ†s, it commutes with ĉ†j , hence, ĉ†je
Z|0〉 = eZĉ†j |0〉. The first term,

containing ĉje
Z|0〉, is more problematic. We would like to commute ĉj through eZ to bring it

towards the |0〉, where it annihilates. To do so, let us start calculating:[
ĉj ,Z

]
=

1

2

[
ĉj ,
∑
j1j2

Zj1j2 ĉ
†
j1
ĉ†j2

]
=
∑
j′

Zjj′ ĉ
†
j′ , (135)

where we have used the antisymmetry of Z. We see, therefore, that [ĉj ,Z], being a combination of

ĉ†j′ commutes with Z and with any function of Z. It takes then little algebra 33 to show that:[
ĉj , e

Z
]

=
[
ĉj ,Z

]
eZ = eZ

[
ĉj ,Z

]
⇒ ĉje

Z = eZ
(
ĉj + [ĉj ,Z]

)
. (136)

The conditions in Eq. (134) therefore read:

N eZ
L∑
j=1

(
U∗jµ

(
ĉj + [ĉj ,Z]

)
+ V∗jµĉ

†
j

)
|0〉 = 0 ∀µ . (137)

Noticing that ĉj |0〉 = 0, substituting Eq. (135), and omitting irrelevant prefactors we therefore

have: (∑
jj′

U∗j′µZj′j ĉ
†
j +

∑
j

V∗jµĉ
†
j

)
|0〉 = 0 ∀µ , (138)

where we have exchanged the dummy indices j and j′ in the first term. Next, we collect the two

terms by writing: ∑
j

(
(U†Z)µj + (V†)µj

)
ĉ†j |0〉 = 0 ⇒ Z = −(U†)−1V† . (139)

33Simply expand the exponential in the usual way, realise that

[ĉj ,Z
n] = n [ĉj ,Z]Zn−1 ,

because [ĉj ,Z] commutes with all powers of Z, and reconstruct the exponential to get the result.
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This is the condition that Z has to verify for the state |∅γ〉 to be annihilated by all γ̂µ. This is the

so-called Thouless formula [12]. It takes very little algebra 34 to verify that, indeed, such a form

of Z is antisymmetric.

According to a theorem of linear algebra, any antisymmetric matrix can always be reduced to a

“standard canonical” form by applying a unitary matrix D as follows: [12]

Z = DΛDT with Λ =


0 λ1 0 0 · · ·
−λ1 0 0 0 · · ·

0 0 0 λ2 · · ·
0 0 −λ2 0 · · ·
...

...
...

...
...


L×L

, (141)

where in general the λp are complex. If L is even, there are L
2 blocks 2×2 with some λp, while if L is

odd, Λ has an extra row/column of zeroes. The unitary matrix D allows us to define combinations

of the fermions c†j which form natural “BCS-paired” orbitals,

d̂†p =
∑
j

(DT)pj ĉ
†
j =

∑
j

Djpĉ
†
j . (142)

Labelling the consecutive columns of D as 1, 1, 2, 2, · · · , p, p, · · · , with p up to L/2, one can

readily check that in terms of the d†s the Bogoliubov vacuum |∅γ〉 reads:

|∅γ〉 = N exp
( L/2∑
p=1

λpd̂
†
pd̂
†
p

)
|0〉 = N

L/2∏
p=1

(
1 + λpd̂

†
pd̂
†
p

)
|0〉 . (143)

It remains to evaluate the normalisation constant N. Now we calculate: 35

1 = 〈∅γ |∅γ〉 = |N|2 〈0|
L/2∏
p=1

(
1 + λ∗pd̂pd̂p

) (
1 + λpd̂

†
pd̂
†
p

)
|0〉

= |N|2
L/2∏
p=1

(
1 + |λp|2

)
= |N|2

[
det
(
1 + ΛΛ†

)]1/2
= |N|2

[
det
(
1 + ZZ†

)]1/2
= |N|2

[
det
(
1 + (U†)−1V†VU−1

)]1/2
= |N|2

[
det
(

(U†)−1(U†U + V†V)U−1
)]1/2

= |N|2
[
det
(

(UU†)−1
)]1/2

= |N|2 1

|det(U)|
⇒ |N| =

√
|det(U)| . (144)

Summarising, we have derived the so-called Onishi formula [12], which states that:

34 Observe that:

ZT = −(V†)T
(

(U†)−1
)T

= −V∗
(

(U†)T
)−1

= −V∗ (U∗)−1 .

However, from block 12 in Eq. (102) we get:

U†V∗ = −V†U∗ ⇒ ZT = −V∗(U∗)−1 = (U†)−1V† = −Z . (140)

35In the derivation we use that:

ΛΛ† =


|λ1|2 0 0 0 · · ·

0 |λ1|2 0 0 · · ·
0 0 |λ2|2 0 · · ·
0 0 0 |λ2|2 · · ·
...

...
...

...
...


L×L

.
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∣∣∣〈0|∅γ〉∣∣∣2 = |N|2 = |det(U)| . (145)

If we express the Bogoliubov vacuum in terms of the λp we have:

|∅γ〉 =

L/2∏
p=1

1√
1 + |λp|2

(
1 + λpd̂

†
pd̂
†
p

)
|0〉 =

L/2∏
p=1

(
up + vpd̂

†
pd̂
†
p

)
|0〉 , (146)

where we have defined up = 1/
√

1 + |λp|2 and vp = λp/
√

1 + |λp|2, which verify |up|2 + |vp|2 = 1.

6 Dynamics in the time-dependent case

A time dependence can come from many different sources. The simplest case, which is used

in the so-called quantum annealing approach, consists in assuming that the transverse fields are

time-dependent hj(t), for instance they might be slowly annealed from a very large value towards

zero, or changed in some time-periodic fashion. In this way, the diagonal elements of matrix A

become time-dependent and consequently Ĥ → Ĥ(t). 36 We proceed now in general, assuming

A(t) and B(t).

Start from Schrödinger’s equation:

i~
d

dt
|ψ(t)〉 = Ĥ(t)|ψ(t)〉 . (147)

Since the norm of |ψ(t)〉 must be conserved, this implies the existence of a unitary evolution

operator Û(t, t0) such that |ψ(t)〉 = Û(t, t0)|ψ(t0)〉, which satisfies the same equation:

i~
d

dt
Û(t, t0) = Ĥ(t)Û(t, t0) with Û(t, t0) = 1̂ . (148)

Next, consider the expectation value of a time-dependent operator Ô(t) in the Schrödinger’s picture

〈Ô(t)〉 ≡ 〈ψ(t)|Ô(t)|ψ(t)〉 = 〈ψ(t0)|Û†(t, t0)Ô(t)Û(t, t0)|ψ(t0)〉
≡ 〈ψ(t0)|ÔH(t)|ψ(t0)〉 , (149)

where we have introduced the Heisenberg’s picture operator

ÔH(t) ≡ Û†(t, t0)Ô(t)Û(t, t0) . (150)

Therefore the equation of motion of an operator in Heisenberg’s picture for the general case of a

time-dependent Hamiltonian reads: 37

i~
d

dt
ÔH(t) = Û†(t, t0)

([
Ô(t), Ĥ(t)

]
+ i~

∂

∂t
Ô(t)

)
Û(t, t0) . (152)

36Alternatively, a time-dependence is found when doing time-dependent mean-field approaches.
37 Here we use:

i~
d

dt
Û(t, t0) = Ĥ(t)Û(t, t0) and − i~

d

dt
Û†(t, t0) = Û†(t, t0)Ĥ(t) .

Notice that if Ĥ and Ô are time-independent[
Û , Ĥ

]
=
[
Û†, Ĥ

]
= 0 and i~

∂

∂t
Ô = 0 ,

then Eq. (152) takes the well known form:

i~
d

dt
ÔH =

[
ÔH, Ĥ

]
. (151)
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6 Dynamics in the time-dependent case

6.1 The time-dependent Bogoliubov-de Gennes equations.

Let’s write the Heisenberg’s equation of motion for operator ĉj

i~
d

dt
ĉjH(t) = Û†(t, t0)

[
ĉj , Ĥ(t)

]
Û(t, t0) (153)

By calculating the commutator[
ĉj , Ĥ(t)

]
=

2L∑
l,l′=1

Hll′(t)
[
ĉj , Ψ̂

†
l Ψ̂l′

]

=

2L∑
l,l′=1

Hll′(t)
({
ĉj , Ψ̂

†
l

}
Ψ̂l′ − Ψ̂†l

{
ĉj , Ψ̂l′

})

=

2L∑
l,l′=1

Hll′(t)
(
δl,jΨ̂l′ − Ψ̂†l δl′,j+L

)

= 2

L∑
j′=1

(
Ajj′(t)ĉj′ + Bjj′(t)ĉ

†
j′

)
(154)

we see that we have a linear equation of motion

i~
d

dt
ĉjH(t) = 2

L∑
j′=1

(
Ajj′(t) ĉj′H(t) + Bjj′(t) ĉ

†
j′H(t)

)
(155)

and analogously for the operator ĉ†j . With a more compact notation, one can write the linear

Heisenberg equations of motion for the elementary fermionic operators as:

i~
d

dt
Ψ̂H(t) = 2H(t) Ψ̂H(t) , (156)

the factor 2 on the right-hand side originating from the off-diagonal {Ψ̂j , Ψ̂j+L} = 1 for j = 1 · · ·L.

The initial condition for these equations can be written as:

Ψ̂H(t = t0) ≡ Ψ̂ = U0

(
γ̂

γ̂†

)
= U0 Φ̂ , (157)

where γ̂ are the Bogoliubov fermions that diagonalise Ĥ(t0), and U0 the corresponding rotation

matrix.

We are not quite done: We have an explicit linear equation for Ψ̂H(t), but we need an explicit

solution for this equation, obtained by some “simple enough” integration of a finite-dimensional

linear problem. There are now at least two ways of getting the desired result.

First route. We make the Ansatz that |ψ(t)〉, the time-evolved state of the system, is a Bogoliubov

vacuum annihilated by a set of time-dependent quasi-particle annihilation operators γ̂µ(t)

γ̂µ(t) |ψ(t)〉 = 0 ∀µ ∀t . (158)

This requirement immediately implies, by taking a total time-derivative, that:

0 = i~
d

dt

(
γ̂µ(t) |ψ(t)〉

)
=

(
i~
∂

∂t
γ̂µ(t)

)
|ψ(t)〉+ γ̂µ(t)

(
i~
d

dt
|ψ(t)〉

)
=

(
i~
∂

∂t
γ̂µ(t) + γ̂µ(t)Ĥ(t)− Ĥ(t)γ̂µ(t)

)
|ψ(t)〉 (159)
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6 Dynamics in the time-dependent case

where we have added, in the last step, a term γ̂µ(t) |ψ(t)〉 = 0. The last expression implies: 38

i~
∂

∂t
γ̂µ(t) = −

[
γ̂µ(t), Ĥ(t)

]
. (160)

By considering the equation of motion of the Heisenberg operator γ̂µH(t) we have

i~
d

dt
γ̂µH(t) = Û†(t, t0)

([
γ̂µ(t), Ĥ(t)

]
+ i~

∂

∂t
γ̂µ(t)

)
Û(t, t0) ≡ 0 , (161)

where we have used Eq. (160) in the last step. So, since γ̂µH does not depend on t, it must coincide

with its t = t0 value. Let’s call this value γ̂µ = γ̂µH = γ̂µ(t = t0).

Let us assume now, inspired by Eq. (105), that the ĉjH(t) are indeed expressed by

ĉjH(t) =

L∑
µ=1

(
Ujµ(t) γ̂µ + V∗jµ(t) γ̂†µ

)
, (162)

and let us see if this expression solves the required Heisenberg equations in Eq. (155) for an

appropriate choice of the time-dependent coefficients Ujµ(t) and Vjµ(t). Substituting in Eq. (155)

we get:

L∑
µ=1

(
i~
(
d

dt
Ujµ(t)

)
γ̂µ + i~

(
d

dt
V∗jµ(t)

)
γ̂†µ

)
= 2

L∑
j=1

Aij(t)
(
Ujµ(t)γ̂µ + V∗jµ(t)γ̂†µ

)

+ 2

L∑
j=1

Bij(t)
(
Vjµ(t)γ̂µ + U∗jµ(t)γ̂†µ

)
. (163)

By equating the coefficients of γ̂µ and γ̂†µ we obtain the time-dependent Bogoliubov-De Gennes

equations: 
i~
d

dt
Ujµ(t) = 2

L∑
j′=1

(
Ajj′(t)Uj′µ(t) + Bjj′(t)Vj′µ(t)

)
i~
d

dt
Vjµ(t) = −2

L∑
j′=1

(
B∗jj′(t)Uj′µ(t) + A∗jj′(t)Vj′µ(t)

) (164)

or more compactly, collecting together µ = 1, · · · , L solutions in L× L blocks U and V: 39

i~
d

dt

(
U(t)

V(t)

)
= 2 H(t)

(
U(t)

V(t)

)
. (166)

Notice that if (uµ(t) , vµ(t))
T

is solution of Eq. (164) then
(
v∗µ(t) , u∗µ(t)

)T
is also a solution, so

we need to find only µ = 1, · · · , L solutions, as indeed alluded by the compact form (166), not 2L.

Once we have the first L, it is automatically guaranteed that:

38A mathematician would complain, here, that this is not a valid implication: an arbitrary linear combination of

γ̂µ(t) could be added that, acting on |ψ(t)〉, gives 0. We are a bit swift here, but the result is correct. We will

get to the same result by a second route in a short while.
39 In the time-independent case, the solution is equivalent to solving the time-independent Bogoliubov-De Gennes

equations. Indeed in this case the time evolution of the solution is

H

(
uµ
vµ

)
= εµ

(
uµ
vµ

)
⇒

(
uµ(t)

vµ(t)

)
= e−2iεµt/~

(
uµ
vµ

)
(165)

and, as you can easily verify, the same result can be obtained by using directly Eq. (166) with H(t) = H.
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6 Dynamics in the time-dependent case

i~
d

dt

(
U(t) V∗(t)

V(t) U∗(t)

)
= 2 H(t)

(
U(t) V∗(t)

V(t) U∗(t)

)
. (167)

Second route. It is reassuring to get to the same time-dependent Bogoliubov-de Gennes equations

by a second, quicker, route. Let us recall the linear equation we want to solve, with its initial

condition:

i~
d

dt
Ψ̂H(t) = 2 H(t)Ψ̂H(t)

Ψ̂H(t = t0) ≡ Ψ̂ = U0

(
γ̂

γ̂†

)
= U0 Φ̂

where γ̂ are the Bogoliubov fermions that diagonalise Ĥ(t0), and U0 the corresponding 2L × 2L

rotation matrix. Inspired by the form of the initial condition, let us search for a solution of the

same form:

Ψ̂H(t) = U(t)

(
γ̂

γ̂†

)
= U(t) Φ̂ (168)

with the same Φ̂ used to diagonalise the initial t = t0 problem. In order for this to be a solution,

the time-dependent coefficients U(t) must satisfy the linear Bogoliubov-de Gennes time-dependent

equations:

i~
d

dt
U(t) = 2H(t)U(t) (169)

with initial conditions U(t = t0) = U0. The latter form is just a compact way of expressing

Eq. (167).

It is easy to verify that this implies that the operators γ̂µ(t) in the Schrödinger picture are time-

dependent and annihilate the state |ψ(t)〉: this was indeed the starting point of the Bogoliubov

Ansatz presented in the first route. Indeed, since(
γ̂H

γ̂†H

)
= U†(t)

(
ĉH(t)

ĉ†H(t)

)
⇒

(
γ̂ (t)

γ̂†(t)

)
= U†(t)

(
ĉ

ĉ†

)
(170)

we can immediately write, in the Schrödinger picture:

γ̂µ(t) =

L∑
j=1

(
U∗jµ(t) ĉj + V∗jµ(t) ĉ†j

)
. (171)

If we go back to Sec. 5.3, we realise that the algebra carried out there is perfectly applicable here,

and allows us to write the time-dependent state |ψ(t)〉 in the explicit Gaussian form:

|ψ(t)〉 = N(t) exp
(1

2

∑
j1j2

Zj1j2(t)ĉ†j1 ĉ
†
j2

)
|0〉 , (172)

with the anti-symmetric matrix Z(t) given by:

Z(t) = −
(
U†(t)

)−1

V†(t) . (173)

It is not very hard to explicitly verify that such a state satisfies the Schrödinger equation:

i~
d

dt
|ψ(t)〉 = Ĥ(t)|ψ(t)〉 , (174)

provided U(t) and V(t) satisfy the time-dependent BdG equations in Eq. (166). Indeed, the time

derivative of the state |ψ(t)〉 is simply:

i~
d

dt
|ψ(t)〉 = i~

(
1

2
(ĉ†)TŻ(t)(ĉ†) +

Ṅ(t)

N(t)

)
|ψ(t)〉 .
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6 Dynamics in the time-dependent case

On the right-hand side, the Hamiltonian terms can be rewritten by using that, for instance:∑
jj′

ĉ†j′Aj′j ĉje
Z(t)|0〉 =

∑
jj′

ĉ†j′(AZ)j′j ĉ
†
je

Z(t)|0〉 .

Rewriting similarly all the Hamiltonian terms we get:

Ĥ(t)|ψ(t)〉 =
(

(ĉ†)T

(
B + AZ + ZA + ZB∗Z

)
(ĉ†)− TrA− TrB∗Z

)
|ψ(t)〉 .

By explicitly calculating the derivative of Z(t) using the BdG equations one can check, after some

lengthy algebra, that the two expressions indeed coincide. 40

Consider the uniform model with anisotropy κ = 1. Take J = 1 (constant in time, and taken

as our unit of energy), and consider a time-dependent transverse magnetic field h(t). Show

that, in analogy with the form of the ABC ground state in Eq. (65), the time-dependent state

|ψ(t)〉 =

ABC∏
k>0

(
uk(t) + vk(t)ĉ†k ĉ

†
−k

)
|0〉 ,

solves the time-dependent Schrödinger equation i~|ψ̇(t)〉 = Ĥ0(t)|ψ(t)〉 in the fermionic ABC

sector provided uk(t) and vk(t) satisfy, for all k, the following BdG equations:

i~ψ̇k(t) = Hk(t)ψk(t) with ψk(t) =

(
vk(t)

uk(t)

)
.

Problem 4 Time-dependent BdG equations for a uniform chain.

Consider now a slow annealing of the transverse field h(t) from the initial value hi � J at time

t = 0, to the final value hf = 0 at time t = τ , for instance linearly: h(t) = hi(1−t/τ). Initialise

the system in the ground state of Ĥk(t = 0), and numerically study the BdG evolution for all

k, for a sufficiently large L. Consider now the expectation value of the density of defects over

the ferromagnetic ground state at the end of the non-equilibrium protocol

ρdef(τ) =
1

2L

L∑
j=1

〈ψ(τ)|(1− σ̂xj σ̂xj+1)|ψ(τ)〉 .

Show that ρdef(τ) ∼ τ−1/2 for sufficiently large τ , provided L is large enough. a This is the

so-called Kibble-Zurek scaling, see Ref. [13] for further references on this topic.

aThe power-law scaling of ρdef(τ) holds for τ � τ∗L ∝ L
2. For larger τ , the finite-size critical gap at hc/J = 1

becomes relevant, and the density of defects starts decaying faster.

Problem 5 Crossing the critical point with an out-of-equilibrium protocol.

6.2 Calculating time-dependent expectation values.

Once we have a solution to the time-dependent BdG equations, we can calculate time-dependent

expectations of operators quite easily. Consider, for instance, the elementary one-body Green’s

40 Indeed, the equation for Ż(t) is interesting: it is non-linear, and can be written without much difficulty in the

case of imaginary-time dynamics as well.
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6 Dynamics in the time-dependent case

function:

Gjj′(t) ≡ 〈ψ(t)|ĉj ĉ
†
j′ |ψ(t)〉 = 〈ψ(t0)|ĉjH(t)ĉ†j′H(t)|ψ(t0)〉

Fjj′(t) ≡ 〈ψ(t)|ĉj ĉj′ |ψ(t)〉 = 〈ψ(t0)|ĉjH(t)ĉj′H(t)|ψ(t0)〉 . (175)

We assume that the initial state |ψ(t0)〉 is the Bogoliubov vacuum of the operators γ which diag-

onalise Ĥ(t0), i.e., |ψ(t0)〉 = |∅γ〉. The algebra is most directly carried out by working with the

2L× 2L Nambu one-body Green’s function matrix

Gjj′(t) ≡ 〈ψ(t)|Ψ̂jΨ̂
†
j′ |ψ(t)〉 = 〈ψ(t0)|Ψ̂jH(t)Ψ̂†j′H(t)|ψ(t0)〉 , (176)

by using the fact that the corresponding transformed Green’s function is simple, since |ψ(t0)〉 =

|∅γ〉:

Gγµµ′ ≡ 〈ψ(t0)|Φ̂µΦ̂†µ′ |ψ(t0)〉 =

(
1 0

0 0

)
. (177)

In matrix form, we immediately calculate:

G(t) = 〈ψ(t0)|Ψ̂H(t)Ψ̂†H(t)|ψ(t0)〉 = U(t) 〈ψ(t0)|Φ̂ Φ̂†|ψ(t0)〉U†(t)

= U(t)

(
1 0

0 0

)
U†(t) =

(
U(t)U†(t) U(t)V†(t)

V(t)U†(t) V(t)V†(t)

)
(178)

Summarising, the four L× L blocks of G read:

G(t) =

(
G(t) F(t)

F†(t) 1−GT(t)

)
=

(
U(t)U†(t) U(t)V†(t)

V(t)U†(t) V(t)V†(t)

)
. (179)

Info: Notice that, quite generally, G is Hermitean, while F, as a consequence of the fermionic

anti-commutations, see also Eq. (103), is anti-symmetric:

G(t) = U(t)U†(t) = G†(t) and F(t) = U(t)V†(t) = −FT(t) . (180)

i

Expectations of more complicated operators can be reduced to sums of products of Green’s

functions through the application of Wick’s theorem [1]. Moreover, time-correlation functions

with Heisenberg operators at different times can be calculated similarly.

6.3 Floquet time-dependent case.

A particular case of dynamics is that in which the Hamiltonian is periodic in time, i.e., a period

τ exists such that Ĥ(t+ τ) = Ĥ(t). The Floquet theorem [14, 15] guarantees the existence in the

Hilbert space of a complete basis of solutions of the time-dependent Schrödinger equation which

are periodic “up to a phase factor”, i.e., such that:

|ψFα(t)〉 = e−iEαt/~ |ψPα(t)〉 with |ψPα(t)〉 = |ψPα(t+ τ)〉 . (181)

This way of writing is closely reminiscent of the time-independent case, except that the state

|ψPα(t)〉, known as Floquet mode, is now periodic in time rather than a time-independent eigenstate

of the Hamiltonian; the Eα, which plays the role of the eigenenergy, is known as Floquet quasi-

energy. There are 2L, as many as the dimension of the Hilbert space, Floquet solutions of this

type, and these solutions can be used as a convenient time-dependent basis to expand states. Their

usefulness consists in the fact that if we expand a general initial state as

|ψ(0)〉 =
∑
α

|ψPα(0)〉〈ψPα(0)|ψ(0)〉 ,
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6 Dynamics in the time-dependent case

then the time-evolution can be written, for free, in a form that is reminiscent of the time-

independent case, i.e.:

|ψ(t)〉 =

2L∑
α=1

e−iEαt/~ |ψPα(t)〉 〈ψPα(0)︸ ︷︷ ︸
Û(t)

|ψ(0)〉 . (182)

An explicit construction of the many-body Floquet states can be obtained through a Floquet

analysis of the time-dependent Bogoljubov-de Gennes (BdG) equations, in a way similar to that

used to construct the energy eigenstates from the solution of the static BdG equations (see Sec. 5).

To do that, let us write the BdG equations (169)

i~
d

dt

(
U(t)

V(t)

)
= 2H(t)

(
U(t)

V(t)

)
. (183)

Since H(t+ τ) = H(t) is a periodic 2L× 2L matrix, the Floquet theorem guarantees the existence

of a complete set of 2L solutions which are periodic up to a phase. L of them have the form:

e−iεµt/~
(

uPµ(t)

vPµ(t)

)
for µ = 1 · · ·L with

{
uPµ(t+ τ) = uPµ(t)

vPµ(t+ τ) = vPµ(t)
,

and the remaining L, by particle-hole symmetry, are automatically obtained as

eiεµt/~
(

v∗Pµ(t)

u∗Pµ(t)

)
.

Collecting all the quasi-energies εµ into a diagonal matrix ε = diag(εµ), and the various column

vectors uPµ(t) and vPµ(t) into a L × L matrices UP(t) and VP(t), it is straightforward to show

that the structure of the Floquet solutions of the BdG solutions is 41

UF(t) =

(
UF(t) V∗F(t)

VF(t) U∗F(t)

)
=

(
UP(t) e−iεt/~ V∗P(t) eiεt/~

VP(t) e−iεt/~ U∗P(t) eiεt/~

)
. (184)

Using these solutions, we can construct the Bogoljubov operators γ̂Fµ(t) which annihilate a vacuum

Floquet state |∅F(t)〉 through the standard method employed in the general time-dependent case

(see Eq. 104): (
γ̂F(t)

γ̂†F(t)

)
= U†F(t)

(
ĉ

ĉ†

)
, (185)

or, more explicitly, for µ = 1, · · · , L:

γ̂Fµ(t) = eiεµt/~
L∑
j=1

(
(U∗P(t))jµĉj + (V∗P(t))jµĉ

†
j

)
⇒ γ̂Fµ(t+ τ) = eiεµτ/~γ̂Fµ(t) ∀t . (186)

The Floquet vacuum state |∅F(t)〉 annihilated by all the γ̂Fµ(t) has the Gaussian form (see Eq. (172)):

|∅F(t)〉 = NF(t) exp
(1

2

∑
j1j2

(ZF(t))j1j2 ĉ
†
j1
ĉ†j2

)
|0〉 , (187)

where, see Secs. 5 and 6, the Thouless and Onishi formulas hold:

ZF(t) = −(U†F(t))−1V†F(t) and NF(t) =
√
|det(UF(t))| . (188)

41Notice that the quasi-energy phase factors have to stay on the right of the periodic part, in order for the ordinary

rules of matrix multiplication to give the correct phase-factor to each column of the matrix.
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7 Overlap between BCS states

Let us show that the Floquet vacuum state is periodic, i.e.,

|∅F(t+ τ)〉 = |∅F(t)〉 ,

or, to put it differently, its many-body quasi-energy is E0 = 0. To this aim, it suffices to show that

ZF(t) and NF(t) are both periodic. From VF = VP e−iεt/~ and UF = UP e−iεt/~ we immediately

derive that V†F(t) = eiεt/~ V†P(t) and (U†F(t))−1 = (U†P(t))−1 e−iεt/~. From these relationships, in

turn, it follows immediately that the quasi-energy phase-factors cancel in ZF, i.e.:

ZF(t) = −(U†F(t))−1V†F(t) = −(U†P(t))−1V†P(t) , (189)

which is manifestly periodic in time, ZF(t + τ) = ZF(t), because both UP and VP are periodic.

The periodicity of NF(t) follows because∣∣det(UF(t))
∣∣ =

∣∣det(UP(t)) det(e−iεt/~)
∣∣ =

∣∣det(UP(t))
∣∣ ∣∣e−i∑µ εµt/~

∣∣ =
∣∣det(UP(t))

∣∣ ,
i.e., once again something manifestly periodic in time. At this point, we can easily, in principle,

construct all the 2L many-body Floquet states by simply applying any product of γ̂†Fµ(t) to |∅F(t)〉:
42

|ψF{nµ}(t)〉 =

L∏
µ=1

(
γ̂†Fµ(t)

)nµ |∅F(t)〉 , (190)

where nµ = 0 or 1 is the occupation number of the γ̂†Fµ(t) operator. From Eq. (186) and the

periodicity of the Floquet vacuum, it follows that the quasi-energy of |ψF{nµ}(t)〉 is given by:

E{nµ} =

L∑
µ=1

nµεµ . (191)

7 Overlap between BCS states

Sometimes, for instance in the context of quantum quenches, where the Hamiltonian is abruptly

changed, it is important to know how to calculate the overlap between BCS states belonging to

two different Ising Hamiltonians Ĥ0 and Ĥ1. Let us start considering the two BCS ground states

of Ĥ0 and Ĥ1. These two states are Bogoliubov vacua with respect to the fermionic operators γ̂0µ

and γ̂1µ, and we denote them, for a more compact notation, as |∅γ0〉 = |∅0〉 and |∅γ1〉 = |∅1〉 We

will first compute |〈∅1 |∅0〉 |2, and then we will extend the result to the overlap of general excited

states. The two sets of fermions can be written in terms of the original Jordan-Wigner fermions

as: (
γ̂0(1)

γ̂†0(1)

)
= U†0(1)Ψ̂ =

(
U†0(1) V†0(1)

VT

0(1) UT

0(1)

)(
ĉ

ĉ†

)
. (192)

We can write the direct unitary transformation from one set to the other as follow:(
γ̂1

γ̂†1

)
= U†1U0

(
γ̂0

γ̂†0

)
= U†

(
γ̂0

γ̂†0

)
=

(
U† V†

VT UT

)(
γ̂0

γ̂†0

)
, (193)

where:

U ≡
(

U V∗

V U∗

)
, (194)

42Some care should be exercised if the boundary conditions depend on the fermionic parity. In that case, one should

work separately in the two subsectors with even and odd fermionic parity, starting from the corresponding vacuum

state.
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7 Overlap between BCS states

with:

U = U†0U1 + V†0V1 V = VT

0U1 + UT

0V1 . (195)

We will prove that, if |∅0〉 and |∅1〉 are not orthogonal, then:

|〈∅1|∅0〉|2 = |det(U)| , (196)

a relationship which is known as Onishi formula. Indeed, we have already given a proof of this

relationship in Sec. 5.3, for the special case in which one of the two sets of fermions where the

original Jordan-Wigner fermions ĉj with associated vacuum state |0〉. There we showed that, with

the present notation:

|∅0(1)〉 = N0(1) exp
(1

2

∑
j1j2

(Z0(1))j1j2 ĉ
†
j1
ĉ†j2

)
|0〉 , (197)

with:

Z0(1) = −(U†0(1))
−1V†0(1) , (198)

and |〈0|∅0(1)〉|2 = |N0(1)|2 = |det(U0(1))|. With exactly the same algebra, we could establish, for

instance, that:

|∅1〉 = N eZ|∅0〉 = N exp
(1

2

∑
j1j2

Zj1j2 γ̂
†
0,j1

γ̂†0,j2

)
|∅0〉 , (199)

with:

Z = −(U†)−1V† , (200)

and |〈∅0|∅1〉|2 = |N|2 = |det(U)|. But there are several points where we were a bit swift, in this

derivation: for instance, we assumed that U is invertible, which is not guaranteed. The issue of

possible orthogonality was also not raised. Moreover, the case in which the resulting ground state

is a pure Slater determinant without BCS-pairing, a case which is relevant for the XY model, is

not discussed in this way.

We will now give an alternative proof which makes use of an interesting theorem due to Bloch

and Messiah [12,16], and which clarifies all these issues. We will perform an intermediate canonical

transformation which first allows us to write an explicit equation for |∅1〉 in terms of |∅0〉, and then

to compute easily 〈∅1| ∅0〉. The theorem that Bloch and Messiah proved [16] shows that matrices

with the structure of U above can be decomposed into a product of three unitary transformations

as follows:

U =

(
D 0

0 D∗

)(
U V

V U

)(
C 0

0 C∗

)
, (201)

where D, C are L× L unitary matrices and U, V are L× L real matrices of the form:

U =



0
. . .

0

u1 0

0 u1

. . .

un 0

0 un
1

. . .

1



(202)
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7 Overlap between BCS states

V =



1
. . .

1

0 v1

−v1 0
. . .

0 vn
−vn 0

0
. . .

0



(203)

in which up > 0, vp > 0 and u2
p + v2

p = 1. From these relations we have:

U = DUC V = D∗VC . (204)

The idea is the following. Since:(
γ̂0

γ̂†0

)
= U

(
γ̂1

γ̂†1

)
=

(
D 0

0 D∗

)(
U V

V U

)(
C 0

0 C∗

)(
γ̂1

γ̂†1

)
(205)

we can think of the transformation as the product of (1) a first unitary transformation C which

does not mix particles and holes for fermions γ̂1, defined by(
α̂1

α̂†1

)
=

(
C 0

0 C∗

)(
γ̂1

γ̂†1

)
(206)

followed by (2) a simple “canonical form” of a transformation leading to new fermions:(
α̂0

α̂†0

)
=

(
U V

V U

)(
α̂1

α̂†1

)
. (207)

The final transformation (3) leading to the fermions γ̂0 is again a unitary D which does not mix

particles and holes: (
γ̂0

γ̂†0

)
=

(
D 0

0 D∗

)(
α̂0

α̂†0

)
. (208)

In essence, what the theorem guarantees is that one can always find a basis such that the trans-

formed fermions, α̂0 and α̂1, are coupled by a particularly simple matrix in which there are only

three possibilities: (i) for some indices, which we denote by l, there is no transformation at all

(the ones in the diagonal of U), i.e., α̂1l = α̂0l; (ii) for some other indices, which we denote by

k, the transformation is a pure particle-hole α̂†1k = α̂0k: these indices correspond to the zeroes in

the diagonal of U, and the ones in the diagonal of V; (iii) all other indices, denoted by (p, p), are

BCS-paired in a simple way, and they form 2× 2 blocks in the matrices U and V with coefficients

up and vp, such that:

α̂†1p = upα̂
†
0p − vpα̂0p

α̂†1p = upα̂
†
0p + vpα̂0p . (209)

We must stress that the theorem does not tell us how many indices belong to the three cate-

gories above: in some cases, all the indices might be 2 × 2-paired, but it is also possible that the

transformation is a pure particle-hole transformation without any pairing at all.
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7 Overlap between BCS states

The construction of the relationship between |∅0〉 and |∅1〉 becomes particularly simple in terms

for the fermions α̂0(1). The key idea is the α̂0(1) is related to γ̂0(1) by a transformation which does

not mix particles and holes, and therefore it is still true that α̂0n |∅0〉 = 0 and α̂1n |∅1〉 = 0. Since

|∅1〉 is the state which is annihilated by any α̂1n we can write it as:

|∅1〉 = N
∏
n

α̂1n |∅0〉 =
∏
k

α̂†0k

∏
p

(
up + vpα̂

†
0pα̂
†
0p

)
|∅0〉 , (210)

where N is a normalization constant. Notice that we included only BCS-paired indices and particle-

hole transformed k-indices but not l-indices, since α̂1l = α̂0l and the inclusion of such terms would

give zero, since α̂0l |∅0〉 = 0. Since, by hypothesis, the two states |∅0〉 and |∅1〉 are not orthogonal

there should not be pure particles-holes k-indices either, and therefore:

〈∅0 |∅1〉 = 〈∅0|
∏
p

(
up + vpα̂

†
0pα̂
†
0p

)
|∅0〉 =

∏
p

up =

√∏
p

u2
p =

√
det(U) . (211)

Finally, since U = D†UC†, and D, and C are unitary transformations:

|〈∅0 |∅1〉 |2 = |det(D†UC†)| = |det(U)| , (212)

which is what we wanted to show.

The extension to the calculation of the overlap between |∅0〉 and any eigenstate |{n1µ}〉 =∏
µ∈I γ̂

†
1µ |∅1〉, where I is the set of occupied states (n1µ = 1), is in principle straightforward. Here

is a possible way to tackle the problem. This state can be thought as the vacuum of the following

new set of fermions:

β̂†µ = γ̂†1µ if µ /∈ I β̂†µ = γ̂1µ if µ ∈ I , (213)

in which we have performed a particle-hole transformation for the occupied modes. Now we can

use the equation obtained for the scalar product between empty states, i.e.,

|〈∅0| {n1µ}〉|2 =
∣∣det(U′)

∣∣ , (214)

where the matrix U′ is:

U′ = U†0U
′
1 + V†0V

′
1 , (215)

in which:

(U′1)jµ = (U1)jµ if µ /∈ I (U′1)jµ = (V∗1)jµ if µ ∈ I
(V′1)jµ = (V1)jµ if µ /∈ I (V′1)jµ = (U∗1)jµ if µ ∈ I . (216)

A second approach to calculate these overlaps with excited states makes explicit use of the

Gaussian nature of the states. The relevant algebra follows directly from that of Sec. 5.3. Let us

start by considering the overlap bewteen γ̂†0µ1
γ̂†0µ2
|∅0〉 and |∅1〉 = NeZ|∅0〉. This is given by:

〈∅0|γ̂0µ2
γ̂0µ1
|∅1〉 = N〈∅0|γ̂0µ2

γ̂0µ1
eZ|∅0〉

= N〈∅0|eZ
(
γ̂0µ2

+
∑
µ′2

Zµ2µ′2
γ̂†0µ′2

)(
γ̂0µ1

+
∑
µ′1

Zµ1µ′1
γ̂†0µ′1

)
|∅0〉

= N〈∅0|eZγ̂0µ2

(∑
µ′1

Zµ1µ′1
γ̂†0µ′1

)
|∅0〉 = 〈∅0|∅1〉 Zµ1µ2 ,

where in the second step we have made use of the commutation property:

γ̂0µe
Z = eZ

(
γ̂0µ + [γ̂0µ,Z]

)
= eZ

(
γ̂0µ +

∑
µ′

Zµµ′ γ̂
†
0µ′

)
. (217)
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8 Thermal averages

Notice that, in order for the overlap to be non-vanishing, we were forced to contract γ̂0µ2
against

γ̂†0µ′1
in the final step. A similar calculation shows that, if we have an even number 2n of operator,

the result is highly reminiscent of a Wick’s theorem sum-of-products of contractions:

〈∅0|γ̂0µ2n
· · · γ̂0µ1

|∅1〉 = N〈∅0|eZ
(
γ̂0µ2n

+
∑
µ′2n

Zµ2nµ′2n
γ̂†0µ′2n

)
· · ·
(
γ̂0µ1

+
∑
µ′1

Zµ1µ′1
γ̂†0µ′1

)
|∅0〉

= 〈∅0|∅1〉
∑
P

(−1)PZµP1
µP2

ZµP3
µP4
· · ·ZµP2n−1

µP2n

= 〈∅0|∅1〉 Pf (Z)2n×2n , (218)

while the overlap vanishes for an odd number of γ̂0µi
. In the last expression, the Wick’s sum is

rewritten in terms of the so-called Pfaffian of the anti-symmetric matrix Z (or more properly, of

the 2n× 2n elements of Z required by the indices µ1 · · ·µ2n):

Pf (Z)2n×2n = Pf


0 Zµ1µ2

Zµ1µ3
· · · Zµ1µ2n

Zµ2µ1
0 Zµ2µ3

· · · Zµ2µ2n

...
...

...
...

...

Zµ2nµ1
Zµ2nµ2

Zµ2nµ3
· · · 0


def
=

∑
P

(−1)P ZµP1
µP2

ZµP3
µP4
· · ·ZµP2n−1

µP2n︸ ︷︷ ︸
n factors

. (219)

Notice that the Pfaffian is defined by a Wick’s sum which contains n products of Z-matrix elements,

and not 2n, as the familiar det (Z)2n×2n. However, a remarkable identity exists [17] which links

the two objects:

det (Z)2n×2n =
∑
P

(−1)P Zµ1µP1
Zµ2µP2

· · ·Zµ2nµP2n︸ ︷︷ ︸
2n factors

=
(
Pf (Z)2n×2n

)2
. (220)

Notice, however, that the link exists only if the dimension of the antisymmetric matrix we are

considering is even: The determinant of an odd-dimension anti-symmetric matrix is simply zero,

while the Pfaffian is not defined. Summarising, we have obtained the generalization of the Onishi

formula in the form:

〈∅0|γ̂0µ2n
· · · γ̂0µ1

|∅1〉 = 〈∅0|∅1〉 Pf (Z)2n×2n = 〈∅0|∅1〉
(
det (Z)2n×2n

)1/2
. (221)

8 Thermal averages

Let us recall a few basic facts about the general structure of the Ising model Hamiltonian. The

full Hamiltonian, when PBC are imposed to the spins reads:

ĤPBC =

(
Ĥ0 0

0 Ĥ1

)
. (222)

The two blocks of even and odd parity can be written as:

Ĥ0 = P̂0Ĥ0P̂0 = Ĥ0P̂0 and Ĥ1 = P̂1Ĥ1P̂1 = Ĥ1P̂1 (223)

where Ĥp=0,1 both conserve the fermionic parity, hence they commute with P̂0,1, and are given by:

Ĥp=0,1 = −
L∑
j=1

(
J+
j ĉ
†
j ĉj+1 + J−j ĉ

†
j ĉ
†
j+1 + H.c.

)
+

L∑
j=1

hj(2n̂j − 1) , (224)

with the boundary condition set by the requirement ĉL+1 ≡ (−1)p+1ĉ1.
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8 Thermal averages

Warning: Neither Ĥp=0 nor Ĥp=1, alone, expresses the correct fermionic form of the PBC-

spin Hamiltonian. Indeed, after the BdG diagonalisation, we can write:

Ĥp =

L∑
µ=1

2εp,µ

(
γ̂†p,µγ̂p,µ −

1

2

)
, (225)

hence we have, in general, two different vacuum states |∅p〉 such that γ̂p,µ|∅p〉 = 0, and 2L

corresponding Fock states, with different eigenvalues, unless the spins have OBC, in which

case JL = 0 and therefore Ĥp=1 = Ĥp=0. But we should keep only 2L−1 even and 2L−1 odd

eigenvalues! How to do correctly the sums involved in the thermal averages is the next issue

we are going to consider.

!

Consider calculating the thermal average of an operator Ô. We should calculate:

Tr
(
Ô e−βĤ

)
=

∑
p=0,1

Tr
(

P̂pÔ e−βĤ
)

=
∑

p=0,1

Tr
(

P̂pÔ e−βĤ P̂p

)
=

=
∑
p,p′

Tr
(

P̂pÔ P̂p′e
−βĤ P̂p

)
=
∑

p

Tr
(

P̂pÔ P̂pe−βĤpP̂p

)
=

=
∑

p

Tr
(

P̂pÔ P̂pe−βĤpP̂p

)
=
∑

p

Tr
(

P̂pÔ P̂pe−βĤp

)
=

[Ô,P̂p]=0
=

∑
p

Tr
(
Ô P̂pe−βĤp

)
. (226)

This derivation uses standard properties of projectors and of the trace, and, in the final step, the

assumption that Ô commutes with the parity. The thing to remark is that now the fermionic

Hamiltonians Ĥp appear, accompanied by a single projector P̂p. Next we recall that

P̂p =
1

2
(1̂ + (−1)peiπN̂ ) . (227)

Hence we arrive at:

Tr
(
Ô e−βĤ

)
=

1

2

∑
p=0,1

(
Tr
(
Ô e−βĤp

)
+ (−1)p Tr

(
Ô eiπN̂e−βĤp

))
. (228)

The next thing to consider is how to deal with the term eiπN̂ , which we can always re-express

as:

eiπN̂ = 〈∅p|eiπN̂ |∅p〉 eiπ
∑L
µ=1 γ̂

†
p,µγ̂p,µ . (229)

Info: The meaning of such expression should be reasonably transparent. Parity is a good

quantum number. Once you determine it on the Bogoliubov vacuum, calculating 〈∅p|eiπN̂ |∅p〉 =

±1 — see Eq. (249) in Sec. 9 to learn how to calculate it —, then the parity of each Fock

state simply amounts to counting the number of γ̂† operators applied to the Bogoliubov vac-

uum. There is a slight ambiguity in the meaning of |∅p〉 that is good to clarify here. We have

not defined |∅p〉 to be the ground state in the sub-sector with parity p — in which case you

would directly anticipate that 〈∅p|eiπN̂ |∅p〉 = (−1)p, but rather the Bogoliubov vacuum state

associated with Ĥp. So, depending on the couplings and boundary conditions, the parity of

|∅p〉 might differ from (−1)p. There are cases where, for instance, there is a single Ĥ with a

single associated |∅〉, but also cases where such a single Ĥ can have two degenerate vacuum

states |∅p〉, as discussed in Sec. 5.2.

i
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8 Thermal averages

Figure 8: (a) Comparison between Jordan-Wigner (JW) and numerical Exact Diagonalization (ED) results

for the average energy density, on a small ordered Ising chain (L = 10). (Right panel) Open boundary

condition (OBC) and periodic boundary conditions (PBC) are compared for a larger chain (L = 100),

where ED cannot be performed. The system considered is always a Ising chain with Jj = J = 1 and

hj = h = 0.5J , with κ = 1. For OBC we set JL = 0.

Hence, defining:

ηp = (−1)p〈∅p|eiπN̂ |∅p〉 , (230)

we finally get:

Tr
(
Ô e−βĤ

)
=

1

2

∑
p=0,1

(
Tr
(
Ô e−βĤp

)
+ ηp Tr

(
Ô e−βĤp+iπ

∑L
µ=1 γ̂

†
p,µγ̂p,µ

))
. (231)

In particular, the partition function can be expressed as:

Z = Tr
(

e−βĤ
)

=
1

2

∑
p=0,1

(
Tr
(

e−βĤp

)
+ ηp Tr

(
e−βĤp−iπ

∑L
µ=1 γ̂

†
p,µγ̂p,µ

))

=
1

2

∑
p=0,1

eβ
∑L
µ=1 εp,µ

( L∏
µ=1

(1 + e−2βεp,µ) + ηp

L∏
µ=1

(1− e−2βεp,µ)

)
. (232)

The relevant single-particle thermal averages needed are then: 43

〈γ̂†p,µγ̂p,µ′P̂p〉 =
1

Z
〈γ̂†p,µγ̂p,µ′P̂pe−βĤ〉

=
1

2Z

(
Tr
(
γ̂†p,µγ̂p,µ′ e

−βĤp

)
+ ηp Tr

(
γ̂†p,µγ̂p,µ′ e

−βĤp+iπ
∑L
µ=1 γ̂

†
p,µγ̂p,µ

))
= δµ,µ′

e−2βεp,µ

2Z

( L∏
l=1
l 6=µ

(
1 + e−2βεp,l

)
− ηp

L∏
l=1
l 6=µ

(
1− e−2βεp,l

))
. (235)

43Observe that to calculate the fermionic single-particle Green’s functions we need the separate ingredients for the

two sub-sectors p:

G =
〈
Ψ̂ Ψ̂†

〉
=
∑

p=0,1

〈
Ψ̂ Ψ̂†P̂p

〉
=
∑

p=0,1

Up

〈
Φ̂pΦ̂†pP̂p

〉
U†p , (233)

where for every p-sector we defined (see Sec. 5)

Φ̂p =

(
γ̂p

γ̂†p

)
= U†p Ψ̂ . (234)

Since in (233) Up depends on p, we have a weighted sum: it is not enough to calculate directly∑
p=0,1

〈
Φ̂pΦ̂†pP̂p

〉
.
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9 Spin-spin correlation functions

and:

〈γ̂p,µγ̂
†
p,µ′P̂p〉 =

1

Z
〈γ̂p,µγ̂

†
p,µ′P̂pe−βĤ〉

=
1

2Z

(
Tr
(
γ̂p,µγ̂

†
p,µ′ e

−βĤp

)
+ ηp Tr

(
γ̂p,µγ̂

†
p,µ′ e

−βĤp+iπ
∑L
µ=1 γ̂

†
p,µγ̂p,µ

))
= δµ,µ′

1

2Z

( L∏
l=1
l 6=µ

(
1 + e−2βεp,l

)
+ ηp

L∏
l=1
l 6=µ

(
1− e−2βεp,l

))
. (236)

Clearly, the averages where you destroy or create two γ̂ fermions vanish:

〈γ̂p,µγ̂p,µ′P̂p〉 = 0 and 〈γ̂†p,µγ̂
†
p,µ′P̂p〉 = 0 . (237)

Info: From the averages of the Bogoliubov operators, it is a simple matter to reconstruct all

elements of the ordinary and anomalous thermal Green’s functions for the original fermions, as

defined in Sec. 6.2. From these, using Wick’s theorem, other thermal averages and correlation

functions can be calculated, see Sec. 9.

i

We have tested these formulas on a chain of length L = 10. In the left panel of Fig. 8 we show

that for L = 10 the Jordan-Wigner results are equal to those obtained by Exact Diagonalisation

(ED) of the problem with both open and periodic boundary conditions. In the right panel of Fig. 8

we compare, for L = 100, the thermal averages obtained with the Jordan-Wigner approach for

OBC and PBC.

9 Spin-spin correlation functions

The question we address here is how to calculate spin-spin correlation functions for the quantum

Ising chain, see Ref. [18] for a more in-depth and general discussion. Here we discuss in detail the

equilibrium case.

Certain correlation functions, which do not involve the Jordan-Wigner non-local string, come

automatically from using the Wick’s theorem, once you have calculated the single-particle Green’s

functions, including the anomalous term, see Sec. 6.2.

But suppose you want to calculate σ̂xj1 σ̂
x
j2

correlations 44 for j2 > j1:

Cxxj1,j2 = 〈σ̂xj1 σ̂
x
j2〉 = 〈(ĉ†j1 + ĉj1) exp

(
iπ

j2−1∑
j=j1

n̂j

)
(ĉ†j2 + ĉj2)〉 . (238)

Recall now that:

eiπn̂j = 1− 2n̂j = ĉj ĉ
†
j − ĉ

†
j ĉj = (ĉ†j + ĉj)(ĉ

†
j − ĉj) = ÂjB̂j , (239)

where the last expression involves the definitions [19]

Âj = (ĉ†j + ĉj) ≡ čj,1 and B̂j = (ĉ†j − ĉj) = −ičj,2 , (240)

closely related to the Majorana fermions. Hence we can write:

Cxxj1,j2 = 〈σ̂xj1 σ̂
x
j2〉 = 〈Âj1

( j2−1∏
j=j1

ÂjB̂j

)
Âj2〉

= 〈B̂j1Âj1+1B̂j1+1 · · · Âj2−1B̂j2−1Âj2〉 , (241)

44Recall that, in our convention, x is the spin direction in which the symmetry-breaking occurs.
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9 Spin-spin correlation functions

where we used that (Âj)
2 = 1.

At this point we use Wick’s theorem [1], since this is a product of fermion operators averaged on

the ground state of a quadratic Hamiltonian (a Gaussian state, as we have seen), or on a thermal

state of a quadratic Hamiltonian, depending on whether we are calculating correlations at T = 0

or finite T . There are 2(j2 − j1) elements in the product, which we should be contracted pairwise

in all possible ways, with the appropriate permutation sign [1].

Recall: The results of Sec. 6.2 concerning the elementary fermionic Green’s functions tell

us that:

Gjj′
def
= 〈ĉj ĉ

†
j′〉 =

(
UU†

)
jj′

(242)

and

Fjj′
def
= 〈ĉj ĉj′〉 =

(
UV†

)
jj′

. (243)

Recall also that the anti-commutation of the fermionic destruction operators forces F to be

anti-symmetric. Moreover, if the average is taken over the ground state, so that U and V can

be taken to be both real a, then G = UUT is real and symmetric, and F = UVT is real and

anti-symmetric.

aThe same results can be easily obtained from thermal averages, see Sec. 8.

!

Let us start by observing that

ÂjÂj′ = 〈ÂjÂj′〉 = 〈(ĉ†j + ĉj)(ĉ
†
j′ + ĉj′)〉 = Gjj′ + (δj,j′ −Gj′j) + Fjj′ + F∗j′j = δj,j′ (244)

where we used that G = GT and (F∗)T = −F. Similarly, we have that:

B̂jB̂j′ = 〈B̂jB̂j′〉 = 〈(ĉ†j − ĉj)(ĉ
†
j′ − ĉj′)〉 = −Gjj′ − (δj,j′ −Gj′j) + Fjj′ + F∗j′j = −δj,j′ . (245)

These findings simply eliminate contractions between operators of the same type. 45

We are therefore left with the contractions of the type:

B̂jÂj′ = 〈B̂jÂj′〉 = 〈(ĉ†j − ĉj)(ĉ
†
j′ + ĉj′)〉 = −Gjj′ + (δj,j′ −Gj′j)− Fjj′ + F∗j′j

= δj,j′ − 2(Gjj′ + Fjj′)
def
= Mj,j′ (246)

and

ÂjB̂j′ = 〈ÂjB̂j′〉 = 〈(ĉ†j + ĉj)(ĉ
†
j′ − ĉj′)〉 = Gjj′ − (δj,j′ −Gj′j)− Fjj′ + F∗j′j

= 2(Gj′j + Fj′j)− δj,j′ = −Mj′,j (247)

as perhaps expected.

Warning: The previous considerations apply to expectations calculated on the ground state

or to thermal expectations. When considering time-dependent expectations the condition of

reality of the matrices G and F no longer applies, and appropriate modifications would be

needed, see Ref. [18].

!

45Observe that contractions of the type 〈ÂjÂj〉 or 〈B̂jB̂j〉 never occur from the Wick’s expansion.
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10 Entanglement entropy

We now have to account for all possible contractions of the B-A type, say, with the proper

permutation sign. If you think for a while, you realise that you can organise the whole Wick’s sum

into the determinant of an appropriate matrix as follows:

Wick → B̂j1Âj1+1B̂j1+1Âj1+2 · · · B̂j2−1Âj2 + B̂j1Âj1+1B̂j1+1Âj1+2 · · · B̂j2−1Âj2 + · · ·

= det


Mj1,j1+1 Mj1,j1+2 · · · Mj1,j2

Mj1+1,j1+1 Mj1+1,j1+2 · · · Mj1+1,j2
...

...
. . .

...

Mj2−1,j1+1 Mj2−1,j1+2 · · · Mj2−1,j2


(j2−j1)×(j2−j1)

. (248)

Here, to help the reader recognising the various contractions, we have used colours.

Info: A good way to understand the structure of the matrix determinant you see is to notice

that the second (column) index is constant — going from j1 +1 to j2 — and tells you which is

the Â operator in the contraction: the corresponding first (row) index tells you the B̂ partner

in the contraction, and as you see it grows from j1 up to j2 − 1, as appropriate for the B̂

partners.

i

As a simple consequence of the previous algebra, let us see how to calculate the ground-state

fermionic parity operator we used in the evaluation of thermal averages (see Eqs. (228) and (229)).

We find:

〈∅p|eiπN̂ |∅p〉 = 〈∅p|Â1B̂1Â2B̂2 · · · ÂLB̂L|∅p〉
= (−1)L〈∅p|B̂1Â1B̂2Â2 · · · B̂LÂL|∅p〉

= (−1)L det


M1,1 M1,2 · · · M1,L

M2,1 M2,2 · · · M2,L

...
...

. . .
...

ML,1 ML,2 · · · ML,L


L×L

. (249)

Consider a uniform Ising chain with PBC. By working in the fermionic ABC sector, calculate

numerically the spin-spin correlation function Cxx1,j for the three cases: a) h/J = 1/2, b)

h/J = 2 and c) h/J = 1. Verify that the correlations tend to decrease with increasing j, until

j ∼ L/2, and then increase back towards a value Cxx1L ≡ Cxx12 . Explain why this happens.

Verify numerically that, when L→∞ — practically, try increasing L in your calculation —,

Cxx1L/2 tends towards a finite value for case a), it goes to zero exponentially fast in case b),

and as a power-law in case c). Estimate the exponent of such a power-law. a

aCompare with the analytical solution provided in Ref. [6].

Problem 6 Spin-spin correlation function.

10 Entanglement entropy

The question we address here is how to calculate the entanglement entropy for the quantum

Ising chain [20]. To explain what it is, let us start from the concept of reduced density matrix.
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10 Entanglement entropy

For a system described by a quantum state |ψ(t)〉, we can equivalently adopt a density matrix

formulation [21], using ρ̂(t) = |ψ(t)〉〈ψ(t)|. The reduced density matrix is a proper (generally non-

pure) density matrix obtained by tracing out a part of the system. To be concrete, if our Ising

chain has L sites, then we can write:

ρ̂{L}(t) = |ψ(t)〉〈ψ(t)| =⇒ ρ̂{l}(t) = Tr{L}\{l}

(
ρ̂{L}(t)

)
, (250)

where ρ̂{L}(t) denotes the pure-state density matrix, and Tr{L}\{l} indicates that we take a partial

trace over the sites of the chain not belonging to the set we have indicated by {l}, for instance the

first l sites of the chain, {l} = 1, 2, · · · l.

The reduced density matrix ρ̂{L}(t) must be a positive Hermitean operator acting in the Hilbert

space of the {l} spins, whose trace is 1. It has, for a given value of t, 2l non-negative eigenvalues

wi(t) which sum to 1. The only case in which it is itself a pure state is when only 1 of them is

equal to 1, w1 = 1, and all the other vanish. This, in turn, is only possible when the state of the

two subchains {l} and {L} \ {l} is a product state, i.e., a state without entanglement. Hence, a

good way to capture such entanglement is to calculate the so-called entanglement entropy

S{l}(t) = −
2l∑
i=1

wi(t) logwi(t) , (251)

which vanishes exactly when the state is a product state, and is positive otherwise.

What do we know about ρ̂{l}(t)? Recall now that a basis of Hermitean operators for each spin

is given by the three Pauili matrices, supplemented by the identity matrix which we denote by

σ̂0 = 12. Hence, we can certainly write ρ̂{l}(t) as:

ρ̂{l}(t) =
1

2l

∑
α1, ..., αl
α=0,x,y,z

Cα1···αl(t) σ̂
α1
1 · · · σ̂

αl
l . (252)

The first question is how the coefficients Cα1···αl(t) in this expansion can be written.

Info: Let us recall the analogous problem for the case of a single spin. If we write ρ̂ =
1
2

∑
α Cασ̂

α, then while C0 = 1 due to the unit trace of ρ̂, we can reconstruct the other

coefficients Cα=x,y,z from measurements of the different components of the spin, more precisely,

from the spin expectation values

〈σ̂α〉 = Tr
(
σ̂αρ̂

)
=

1

2

∑
α′

Cα′ Tr
(
σ̂ασ̂α

′
)

= Cα , (253)

where we used that Tr(σ̂ασ̂α
′
) = 2δα,α′ . The name tomography is often used in this context:

you reconstruct full information on the state by appropriate measurements.

i

In a very similar way, consider measuring the expectation value of the operator σ̂α1
1 · · · σ̂

αl
l on

the state ρ̂{l}(t). We get:

Cα1···αl(t) = Tr{l}

(
σ̂α1

1 · · · σ̂
αl
l ρ̂{l}(t)

)
= Tr{l}Tr{L}\{l}

(
σ̂α1

1 · · · σ̂
αl
l ρ̂{L}(t)

)
= Tr{L}

(
σ̂α1

1 · · · σ̂
αl
l ρ̂{L}(t)

)
≡ 〈ψ(t)|σ̂α1

1 · · · σ̂
αl
l |ψ(t)〉 . (254)
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10 Entanglement entropy

Remark: The Cα1···αl(t) are 4l complex coefficients which completely specify the reduced

density matrix, an operator in a 2l-dimensional space. How to get the eigenvalues of such

a reduced density matrix, and extract the entanglement entropy, seems a highly non-trivial

task, at this stage. Notice also that the previous considerations apply to any spin system,

even those that cannot be solved. There is nothing special, so far, about the quantum Ising

chain.

!

Let us look more closely to an example of such a term. Consider, for a block of l = 8 sites the

term C000xz00y:

C000xz00y = 〈ψ|σ̂x4 σ̂z5 σ̂
y
8 |ψ〉 . (255)

First of all observe that such a term respects the parity invariance of the Hamiltonian, as it possesses

an even number of σ̂x and σ̂y operators: if there was an odd number of them, the coefficient would

vanish due to the parity selection rule. Next, we map spins into fermions.

Info: To map spins into fermions, recall the Jordan-Wigner transformation:
σ̂xj = K̂j (ĉ†j + ĉj)

σ̂yj = K̂j i(ĉ
†
j − ĉj)

σ̂zj = 1− 2n̂j

with K̂j =

j−1∏
j′=1

(1− 2n̂j′) . (256)

Recall also the following useful ways of writing some of the previous fermionic quantities. First

of all, Majorana (Hermitean) combinations appear explicitly in σ̂x and σ̂y:

čj,1 = (ĉ†j + ĉj) and čj,2 = i(ĉ†j − ĉj) . (257)

Second, you can re-express in many ways the operator 1− 2n̂j :

1− 2n̂j = ĉj ĉ
†
j − ĉ

†
j ĉj = (ĉ†j + ĉj)(ĉ

†
j − ĉj) = −ičj,1čj,2 . (258)

i

Therefore, we get: 46

C000xz00y = 〈ψ|K̂4 (ĉ†4 + ĉ4) (1− 2n̂5) K̂8 i(ĉ
†
8 − ĉ8)|ψ〉

= 〈ψ|(ĉ†4 + ĉ4) (1− 2n̂4) (1− 2n̂6) (1− 2n̂7) i(ĉ†8 − ĉ8)|ψ〉
= 〈ψ|č4,1 (−ič4,1č4,2) (−ič6,1č6,2) (−ič7,1č7,2) č8,2|ψ〉

= 〈ψ| (−ič4,2) (−ič6,1č6,2) (−ič7,1č7,2) č8,2|ψ〉 . (259)

Warning: In the notation of Sec. 9, see Eq. (240), such an expectation value would translate

into:

C000xz00y = i〈ψ|B̂4Â6B̂6Â7B̂7B̂8|ψ〉 , (260)

hence in equilibrium (i.e., for a ground state or thermal calculation) it would still vanish, simply

because you cannot construct the correct number of non-vanishing Wick’s contractions! In any

case, you notice how the approach we have undertaken is essentially impossible to carry out.

Even after calculating, through an appropriate application of Wick’s theorem, all possible

non-vanishing coefficients Cα1···αl calculating the eigenvalues of the corresponding reduced

density matrix seems an incredibly difficult task!

!

46Use the fact that (1−2n̂j) commutes with terms which do not involve fermions at site j, and that (1−2n̂j)
2 = 1.

This leads, in particular, to a cancellation of the two tails originating from the Jordan-Wigner string operators

K̂4 and K̂8 . Moreover, recall that the square of a Majorana gives the identity: (čj,1)2 = (čj,2)2 = 1.
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10 Entanglement entropy

But there is something very special about a quantum Ising chain, encoded in the fact that its

state |ψ(t)〉 is a Gaussian state, and Wick’s theorem allows calculating any expectation value of

fermionic operators in terms of elementary one-particle Green’s functions. It turns out that working

with Majorana fermions is a good way of handling efficiently ordinary and anomalous fermionic

Green’s functions. To do that, let us be equipped with a matrix notation for the Majorana as well.

To be consistent with the Nambu notation for the ordinary fermions, we better define the

Majorana column vector: 47

č =



č1,1
č1,1
...

čL,1
č1,2
č2,2
...

čL,2


=



1 0 · · · 0 1 0 · · · 0

0 1 · · · 0 0 1 · · · 0
...

...
. . .

...
...

...
. . .

...

0 0 · · · 1 0 0 · · · 1

−i 0 · · · 0 i 0 · · · 0

0 −i · · · 0 0 i · · · 0
...

...
. . .

...
...

...
. . .

...

0 0 · · · −i 0 0 · · · i





ĉ1
ĉ2
...

ĉL
ĉ†1
ĉ†2
...

ĉ†L


= W Ψ̂ , (262)

where we defined the 2L× 2L block matrix:

W =

(
1 1

−i1 i1

)
. (263)

One can define the Majorana 2L× 2L correlations matrix as:

Mnn′(t) = 〈ψ(t)|čnčn′ |ψ(t)〉 =
∑
j,j′

(W)nj〈ψ(t)|Ψ̂jΨ̂
†
j′ |ψ(t)〉(W†)j′n′ , (264)

which in full matrix form is immediately related to the Nambu Green’s function G(t):

M(t) = WG(t)W† . (265)

Upon substituting the block-expression for the Nambu Green’s function G(t) in Eq. (179) we obtain,

after simple block-matrix algebra:

M(t) =

(
1 + (G−GT) + (F− F∗) i(G + GT − 1)− i(F + F∗)

−i(G + GT − 1)− i(F + F∗) 1 + (G−GT)− (F− F∗)

)
= 1 + iA(t) (266)

where the 2L × 2L matrix A(t) is real and anti-symmetric, 48 and both G(t) and F(t) are time-

dependent and (in general) complex.

Remark: Notice that, quite generally, FT = −F as a consequence of the fermionic anti-

commutation. If we are in equilibrium (ground state or thermal) then both G and F are

time-independent and can be taken to be real. Moreover, G is symmetric, G = GT. This

implies that

M = 1 + i

(
0 −1 + 2G− 2F

1− 2G− 2F 0

)
(267)

in agreement with the Majorana equilibrium correlators seen in Sec. 9.

!

47The standard definition [11] which in row-vector form would read:

č = (č1, č2, č3, č4, · · · , č2L−1, č2L) ≡ (č1,1, č1,2, č2,1, č2,2, · · · , čL,1, čL,2) , (261)

mixes the different blocks of the Nambu fermions in a way that makes the algebra extremely painful.
48The fact that A is real and anti-symmetric follows from the fact that, quite generally, from G = UU† and

F = VU† and the unitary nature of the Bogoliubov rotation — see Eq. (6.2) — it follows that G + GT is real

and symmetric, F + F∗ is real and anti-symmetric, while both G −GT and F − F∗ are purely imaginary and

anti-symmetric.
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10 Entanglement entropy

This algebra of re-expressing the Green’s functions in terms of Majorana correlators, which in

turn involve a single 2L × 2L real and anti-symmetric matrix A(t), will be important in a short

while. 49

10.1 How to calculate the reduced density matrix spectrum

We are now ready to proceed, circumventing the difficulty of calculating all the 4l complex

coefficients of the reduced density matrix in Eq. (252) and finding its spectrum.

Step 1: The Majorana matrix M(t) fully determine the (pure) state |ψ(t)〉, because of the

Gaussian nature of the latter and Wick’s theorem. We can equivalently write

Mnn′(t) = 〈ψ(t)|čnčn′ |ψ(t)〉 = Tr
(
čnčn′ ρ̂{L}(t)

)
(268)

where ρ̂{L}(t) = |ψ(t)〉〈ψ(t)| is the pure-state density matrix associated with |ψ(t)〉.

Step 2: Consider now restricting the Majorana correlation matrix to a sub-chain {l} = 1, · · · , l,
say. We will denote such a 2l × 2l matrix as M{l}(t). M{l}(t) is made by four l × l blocks suitably

extracted from the full 2L × 2L matrix M(t) according to the site-indices involved in {l}. Most

importantly, since it is the block-truncation of an M = 1+ iA, with A = A∗ = −AT, it will retain the

same structure. 50 More precisely, omitting the t-dependence and assuming now n, n′ ∈ {1, · · · , l}
we have:  (M{l})n,n′ = δn,n′ + iAn,n′ (M{l})n,l+n′ = iAn,L+n′

(M{l})l+n,n′ = iAL+n,n′ (M{l})l+n,l+n′ = δn,n′ + iAL+n,L+n′

(269)

With a slight leap in the notation we will now denote these 4 blocks as:

M{l}(t) = 12l + iA{l}(t) , (270)

where both M{l} and A{l} are taken to be 2l × 2l and A{l} is real and anti-symmetric.

M{l}(t) contains correlations between Majorana fermions living on the physical sites of the re-

duced chain {l}. All other sites have been effectively eliminated from the discussion, to the point

49Incidentally, although we will not use it, the same transformation might be applied to the Hamiltonian Ĥ to

rewrite it in terms of Majorana fermions as follows:

Ĥ = Ψ̂† H Ψ̂ =
1

4
(č )T W H W† (č )

where use used that W−1 = 1
2

W† and, see Eq. (87):

W H W† =

(
(A−A∗) + (B−B∗) i(A + A∗)− i(B + B∗)

−i(A + A∗)− i(B + B∗) (A−A∗)− (B−B∗)

)
= iAH

with a real anti-symmetric AH = A∗H = −AT
H , since A = A† and BT = −B. The unitary Bogoliubov ro-

tation would now translate into a real orthogonal rotation of Majorana fermions which transforms the real

anti-symmetric matrix AH into a standard canonical form.
50This is a remarkable gift of the Majorana formalism. The restriction of matrices generally does not preserve their

properties: think of unitary matrices, where normalisation would be lost. Working with the Nambu Green’s

function would therefore make things less straightforward, at this stage.
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that we might consider restricting our Majorana operators to

č =



č1,1
č1,1
...

čl,1
č1,2
č2,2
...

čl,2


2l

=



1 0 · · · 0 1 0 · · · 0

0 1 · · · 0 0 1 · · · 0
...

...
. . .

...
...

...
. . .

...

0 0 · · · 1 0 0 · · · 1

−i 0 · · · 0 i 0 · · · 0

0 −i · · · 0 0 i · · · 0
...

...
. . .

...
...

...
. . .

...

0 0 · · · −i 0 0 · · · i


2l×2l



ĉ1
ĉ2
...

ĉl
ĉ†1
ĉ†2
...

ĉ†l


2l

. (271)

Hence, we can use the reduced density matrix in these averages:

(M{l})n,n′(t) = Tr
(
čnčn′ ρ̂{L}(t)

)
≡ Tr{l}

(
čnčn′ ρ̂{l}(t)

)
= δn,n′ + i(A{l})n,n′(t) . (272)

Step 3: For every fixed value of t, we can transform the matrix A{l}(t) to a canonical form, by

a (real) orthogonal transformation R. The canonical form of a real anti-symmetric matrix is, by

Schur’s decomposition, made of l anti-symmetric 2× 2 blocks along the diagonal:

A{l}(t) = R(t)�(t)RT(t) with � =



0 λ1 0 0 · · · 0 0

−λ1 0 0 0 · · · 0 0

0 0 0 λ2 · · · 0 0

0 0 −λ2 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 λl
0 0 0 0 · · · −λl 0


2l×2l

, (273)

with λq=1···l real. Using the rotation matrix R, we can define 2l new combinations of Majorana

fermions:

ďq(t) =

2l∑
n=1

Rnq(t) čn for q = 1, · · · , 2l . (274)

These new Majorana combinations, which now mix different sites of the sub-chain {l}, have a very

simple correlation matrix:

Tr{l}

(
ďq(t)ďq′(t)ρ̂{l}(t)

)
= δq,q′ + i�q,q′(t) . (275)

Now we switch back to ordinary fermions, simply because we are much more trained and used to

think in terms of them. We therefore define:

d̂q(t) =
1

2

(
ď2q−1(t) + iď2q(t)

)
for q = 1, · · · , l . (276)

By construction, given the simple correlations encoded by the matrix �, these fermions have

averages

Tr{l}

(
d̂†q(t)d̂q′(t)ρ̂{l}(t)

)
= δq,q′

1 + λq(t)

2
≡ δq,q′Pq(t) , (277)

which shows that λq ∈ [−1, 1], in order for the average fermionic occupation to be 0 ≤ Pq(t) ≤ 1,

and that the different fermions d̂q(t) are uncorrelated.

Step 4: For every fixed t we have found l new uncorrelated fermionic operators. Hence, in this

rather non-local basis the reduced density matrix factorises, each 2× 2 block having eigenvalues

Pq(t) =
1 + λq(t)

2
and 1− Pq(t) =

1− λq(t)
2

, (278)
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and contributing an entropy

Sq = −Pq(t) log(Pq(t))− (1− Pq(t)) log(1− Pq(t)) . (279)

Hence, we finally arrive at the entanglement entropy:

S{l}(t) = −
l∑

q=1

(
Pq(t) log(Pq(t)) + (1− Pq(t)) log(1− Pq(t))

)
. (280)

The evaluation of the correlation matrix and the entanglement entropy can be implemented nu-

merically with rather standard techniques.

Calculate the ground-state entanglement entropy for a uniform Ising chain, with l = L/2,

in the three cases: a) h/J = 1/2, b) h/J = 2, and c) h/J = 1. Shows that the half-chain

entanglement entropy tends to a constant, for increasing L, in cases a) and b), while it grows

logarithmically in the critical case c).

Problem 7 Ground state entanglement for a uniform Ising chain.

Acknowledgements. The research was partly supported by EU Horizon 2020 under ERC-ULTRADISS,

Grant Agreement No. 834402. GES acknowledges that his research has been conducted within the

framework of the Trieste Institute for Theoretical Quantum Technologies (TQT).

References

[1] J. W. Negele and H. Orland. Quantum many-particle systems. Addison-Wesley, 1988.
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