
Simple examples of second quantization 4

In this chapter, we give three examples of the application of second quantization, mainly
to non-interacting systems.

4.1 Jordan–Wigner transformation

A non-interacting gas of fermions is still highly correlated: the exclusion principle intro-
duces a hard-core interaction between fermions in the same quantum state. This feature is
exploited in the Jordan–Wigner representation of spins. A classical spin is represented by
a vector pointing in a specific direction. Such a representation is fine for quantum spins
with extremely large spin S, but once the spin S becomes small, spins behave as very new
kinds of object. Now their spin becomes a quantum variable, subject to its own zero-point
motions. Furthermore, the spectrum of excitations becomes discrete or grainy.

Quantum spins are notoriously difficult objects to deal with in many-body physics,
because they do not behave as canonical fermions or bosons. In one dimension, however, it
turns out that spins with S = 1

2 actually behave like fermions. We shall show this by writing
the quantum spin- 1

2 Heisenberg chain as an interacting one-dimensional gas of fermions,
and we shall actually solve the limiting case of the one-dimensional spin- 1

2 x-y model, in
which the Ising (z) component of the interaction is set to zero.

Jordan and Wigner observed [1] that the “down” and “up” states of a single spin can
be thought of as empty and singly occupied fermion states (Figure 4.1.), enabling them to
make the mapping (see Figure 4.1)

| ↑〉 ≡ f †|0〉, | ↓〉 ≡ |0〉. (4.1)

An explicit representation of the spin-raising and spin-lowering operators is then

S+ = f † =
[

0 1
0 0

]
S− = f ≡

[
0 0
1 0

]
. (4.2)

The z component of the spin operator can be written

Sz = 1

2

[
| ↑〉〈↑ | − | ↓〉〈↓ |

]
≡ f †f − 1

2
. (4.3)
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�Fig. 4.1 The “up” and “down” states of a spin 1
2 can be treated as a one-particle state which is either full or empty.

We can also reconstruct the transverse spin operators

Sx = 1

2
(S+ + S−) = 1

2
(f † + f )

Sy = 1

2i
(S+ − S−) = 1

2i
(f † − f ). (4.4)

The explicit matrix representation of these operators makes it clear that they satisfy the
same algebra:

[Sa, Sb] = iεabcSc. (4.5)

Curiously, due to a hidden supersymmetry, they also satisfy an anticommuting algebra:

{Sa, Sb} = 1

4
{σa, σb} = 1

2
δab. (4.6)

In this way, the Pauli spin operators provided Jordan and Wigner with an elementary model
of a fermion.

Unfortunately the represeentation needs to be modified if there is more than one spin,
for independent spin operators commute but independent fermions anticommute. Jordan
and Wigner discovered a way to fix this difficulty in one dimension by attaching a phase
factor called a string to the fermions [1]. For a chain of spins in one dimension, the Jordan–
Wigner representation of the spin operator at site j is defined as

S+
j = f †

j eiφj , (4.7)

where the phase operator φj contains the sum over all fermion occupancies at sites to the
left of j:

φj = π
∑
l<j

nj. (4.8)

The operator eiφ̂j is known as a string operator.
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Illustrating the Jordan–Wigner transformation. The spin-raising operator at site j = 4 is decomposed into a product
of a fermion operator and a string operator.

�Fig. 4.2

The complete transformation is then

Sz
j = fj†fj − 1

2

S+
j = fj†eiπ

∑
l<j nl

S−
j = fje

−iπ
∑

l<j nl .

⎫⎪⎪⎬⎪⎪⎭ Jordan–Wigner transformation (4.9)

(Notice that eiπnj = e−iπnj is a Hermitian operator so that the overall sign of the phase
factors can be reversed without changing the spin operator.) In words (Figure 4.2):

spin = fermion × string.

The important property of the string is that it anticommutes with any fermion operator
to the left of its free end. To see this, note first that the operator eiπnj anticommutes with fj.
This follows because fj reduces nj from unity to zero so that, acting to the right of fj, since
nj = 1, eiπnj = −1 and hence fj eiπnj = −fj; whereas, acting to the left of fj, since nj = 0,
eiπnj fj = fj. It follows that

{eiπnj , fj} = eiπnj fj + feiπnj = fj − fj = 0 (4.10)

and similarly, from the conjugate of this expression, {eiπnj , f †
j } = 0. Now the phase fac-

tor eiπnl at any other site l �= j commutes with fj and f †
j , so that the string operator eiφ̂j

anticommutes with all fermions at all sites l to the left of j, i.e. l < j:

{eiφj , f (†)
l } = 0 (l < j),

while commuting with fermions at all other sites l ≥ j:

[eiφj , f (†)
l ] = 0 (l ≥ j).

We can now verify that the transverse spin operators satisfy the correct commutation
algebra. Suppose j < k; then eiφj commutes with fermions at sites j and k, so that

[S(±)
j , S(±)

k ] = [f (†)
j eiφj , f (†)

k eiφk ] = eiφj [f (†)
j , f (†)

k eiφk ].
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But f (†)
j antcommutes with both f (†)

k and eiφk so it commutes with their product f (†)
k eiφk , and

hence

[S(±)
j , S(±)

k ] ∝ [f (†)
j , f (†)

k eiφk ] = 0. (4.11)

So we see that by multiplying a fermion by the string operator, it is transformed into a
boson.

As an example of the application of this method, we shall now discuss the one-
dimensional Heisenberg model,

H = −J
∑

[Sx
j Sx

j+1 + Sy
j Sy

j+1] − Jz

∑
j

Sz
j S

z
j+1. (4.12)

In real magnetic systems, local moments can interact via ferromagnetic or antiferromag-
netic interactions. Ferromagnetic interactions generally arise as a result of direct exchange,
in which the Coulomb repulsion energy is lowered when electrons are in a triplet state
because the wavefunction is then spatially antisymmetric. Antiferromagnetic interactions
are generally produced by the mechanism of super exchange, in which electrons on
neighboring sites that form singlets (antiparallel spin) lower their energy through virtual
quantum fluctuations into high-energy states in which they occupy the same orbital. Here
we have written the model as if the interactions are ferromagnetic.

For convenience, the model can be rewritten as

H = −J

2

∑
[S+

j+1S−
j + H.c.] − Jz

∑
j

Sz
j S

z
j+1, (4.13)

where “H.c.” denotes the Hermitian conjugate. To “fermionize” the first term, we note that
all terms in the strings cancel except for eiπnj , which has no effect:

J

2

∑
j

S+
j+1S−

j = J

2

∑
j

f †
j+1eiπnj fj = J

2

∑
j

f †
j+1 fj, (4.14)

so that the transverse component of the interaction induces a “hopping” term in the
fermionized Hamiltonian. Notice that the string terms would enter if the spin interaction
involved next-nearest neighbors. The z component of the Hamiltonian becomes

− Jz

∑
j

Sz
j+1Sz

j = −Jz

∑
j

(
nj+1 − 1

2

)(
nj − 1

2

)
. (4.15)

Notice how the ferromagnetic interaction means that spin fermions attract one another. The
transformed Hamiltonian is then

H = −J

2

∑
j

(f †
j+1fj + f †

j fj+1) + Jz

∑
j

nj − Jz

∑
j

njnj+1. (4.16)

Interestingly enough, the pure x-y model has no interaction term in it, so this case can be
mapped onto a non-interacting fermion problem, a discovery made by Lieb, Schulz and
Mattis in 1961 [2].

To write out the fermionized Hamiltonian in its most compact form, let us transform to
momentum space, writing
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fj = 1√
N

∑
k

skeikRj , (4.17)

where s†
k creates a spin excitation in momentum space, with momentum k. In this case, the

one-particle terms become

Jz

∑
j

nj = Jz

∑
k

s†
ksk

−J

2

∑
j

( f †
j+1 fj + H.c.) = − J

2Ns

∑
k

(e−ika + eika)s†
ksk′

Nδkk′s︷ ︸︸ ︷∑
j

e−i(k−k′)Rj

= −J
∑

k

cos(ka)s†
ksk. (4.18)

The anisotropic Heisenberg Hamiltonian can thus be written

H =
∑

k

ωks†
ksk − Jz

∑
j

njnj+1, (4.19)

where

ωk = (Jz − J cos ka) (4.20)

defines a magnon excitation energy. We can also cast the second term in momentum space
by noticing that the interaction is a function of i − j, which is −Jz/2 for i − j = ±1 but
zero otherwise. The Fourier transform of this short-range interaction is V(q) = −Jz cos qa,
so that Fourier transforming the interaction term gives

H =
∑

k

ωks†
ksk − Jz

Ns

∑
k,k′,q

cos(qa) s†
k−qs†

k′+qsk′sk. (4.21)

This transformation holds for both the ferromagnet and the antiferromagnet. In the former
case, the fermionic spin excitations correspond to the magnons of the ferromagnet. In the
latter case, the fermionic spin excitations are often called spinons.

To see what this Hamiltonian means, let us first neglect the interactions. This is a
reasonable thing to do in the limiting cases of (i) the Heisenberg ferromagnet, Jz = J,
and (ii) the x-y model, Jz = 0 .

• Heisenberg ferromagnet, Jz = J (Figure 4.3)
In this case, the spectrum

ωk = 2J sin2(ka/2) (4.22)

is always positive, so that there are no magnons present in the ground state. The ground
state can thus be written

|0〉 = | ↓↓↓ · · · 〉, (4.23)

corresponding to a state with a spontaneous magnetization M = −Ns/2.
Curiously, since ωk=0 = 0, it costs no energy to add a magnon of arbitrarily long

wavelength. This is an example of a Goldstone mode, and the reason it arises is that the
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�Fig. 4.3 Excitation spectrum of the one-dimensional Heisenberg ferromagnet.

spontaneous magnetization could actually point in any direction. Suppose we want to
rotate the magnetization through an infinitesimal angle δθ about the x-axis; then the new
state is given by

|ψ〉′ = eiδθSx | ↓↓ · · · 〉
= | ↓↓ · · ·〉 + i

δθ

2

∑
j

S+
j | ↓↓ · · · 〉 + O(δθ2). (4.24)

The change in the wavefunction is proportional to the state

S+
TOT | ↓↓ · · · 〉 ≡

∑
j

f †
j eiφj |0〉

=
∑

j

f †
j |0〉 = √

Nss
†
k=0|0〉. (4.25)

In other words, the action of adding a single magnon at q = 0 rotates the magnetization
infinitesimally upwards. Rotating the magnetization should cost no energy, and this is
the reason why the k = 0 magnon is a zero-energy excitation.

• x-y ferromagnet (Figure 4.4)
As Jz is reduced from J, the spectrum develops a negative part, and magnon states with
negative energy will become occupied. For the pure x-y model, where Jz = 0, the
interaction identically vanishes, and the excitation spectrum of the magnons is given
by ωk = −J cos ka, as sketched in Figure 4.4. All the negative-energy fermion states
with |k| < π/2a are occupied, so the ground state is given by

|	g〉 =
∏

|k|<π/2a

s†
k |0〉. (4.26)

The band of magnon states is thus precisely half-filled, so that

〈Sz〉 =
〈
nf − 1

2

〉
= 0, (4.27)
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Excitation spectrum of the one-dimensional x-y ferromagnet, showing how the negative energy states are filled. The
negative-energy dispersion curve is “folded over” to describe the positive hole excitation energy.

�Fig. 4.4

so that, remarkably, there is no ground-state magnetization. We may interpret this loss of
ground-state magnetization as a consequence of the growth of quantum spin fluctuations
in going from the Heisenberg to the x-y ferromagnet.

Excitations of the ground state can be made, either by adding a magnon at wavevectors
|k| > π/2a or by annihilating a magnon at wavevectors |k| < π/2a, to form a hole. The
energy to form a hole is −ωk. To represent the hole excitations, we make a particle–hole
transformation for the occupied states, writing

s̃k =
{

sk (|k| > π/2a)
s†
−k, (|k| < π/2a).

(4.28)

These are the “physical” excitation operators. Since s†
ksk = 1 − sks†

k , the Hamiltonian of
the pure x-y ferromagnet can be written

Hxy =
∑

k

J| cos ka|(s̃†
k s̃k − 1

2
). (4.29)

Notice that, unlike the Heisenberg ferromagnet, the magnon excitation spectrum is now
linear. The ground-state energy is evidently

Eg = −1

2

∑
k

J| cos ka|

= −a
∫ π/2a

−π/2a

dk

2π
J cos(ka) = − J

π
. (4.30)

But if there is no magnetization, why are there zero-energy magnon modes at q =
±π/a? Although there is no true long-range order, it turns out that the spin correla-
tions in the x-y model display power-law correlations with an infinite spin correlation
length, generated by the gapless magnons in the vicinity of q = ±π/a.
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