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ABSTRACT

A theory of lee cyclogenesis is proposed, based on a linearized model of baroclinic wave generation by
mountains in the presence of a background shear. The theory predicts that lee cyclogenesis will occur when
the criterion for the existence of standing baroclinic lee waves is satisfied in the environment. For an infinite
ridge, this requires that the component of wind across the ridge must reverse with height. The time scale for
cyclone development, and the meaning of the ambiguous term “lee” are clarified by examining the group
velocity of the baroclinic waves. Time dependent three-dimensional solutions are discussed along with their

application to Alpine lee cyclogenesis.

1. Introduction

There are a number of special regions in the middle
latitudes that experience an abnormally high frequency
of cyclogenetic events. Perhaps the most remarkable
of these (see the statistical summary of Radinovic¢ and
Lali¢, 1959) is centered on the Gulf of Genoa just
south of the French Alps. The problem of Alpine lee
cyclogenesis has been approached using the methods
of analysis of standard data (e.g., Buzzi and Tibaldi,
1978; McGinley, 1982), an international field program
(Kuettner, 1982), numerical simulation (e.g., Bleck,
1977; Tibaldi et al., 1980; and Mesinger and Strickler,
1982) and hydrodynamical theory (e.g., Illari et al.,

1981). In this paper I pursue the latter approach but

with a new formulation of the problem.

It is probably productive to think of the lee cyclo-
genesis problem as a scattering problem in which an
incoming synoptic scale baroclinic wave is distorted
by the Alps. From this viewpoint, one would expect
the orographically generated disturbance to depend on
the nature of the incoming wave. Indeed, forecasters
in the region have developed a classification of these
systems based essentially on the amplitude of the ap-
proaching upper-level wave (Fett, 1981).

If the incoming wave has a sufficiently large scale,
and sufficiently slow propagation and growth rates,
then the Alps would seem to be in a slowly changing,
nearly horizontally homogeneous environment. In this
limiting case, the scattering problem reduces to a prob-
lem of how the Alps would generate a disturbance in
a variety of uniform baroclinic basic states. Once this
problem is solved, the aspects of the disturbance that
have a reasonably small scale (even if it is not the
mountain scale) and a reasonably quick response time,
might be expected to be observed as the large-scale
wave moves slowly through.
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The question then is the following: What kind of a
disturbance is created by a mountain located in a uni-
form environment of vertically sheared, geostrophic,
baroclinic flow? It will be shown that under special
circumstances-—a certain angle between the thermal
wind vector and a mountain ridge for example~—a
standing baroclinic wave is produced by the mountain.
The time development of this wave is equivalent to
the formation of a lee cyclone, where the word “lee”
is given a definite meaning in terms of the group ve-
locity of the standing wave.

_ In Section 2, the theory of quasi-geostrophic baro-
clinic waves is briefly reviewed. Section 3 describes the
orographic forcing of a stationary baroclinic lee wave
by a ridge. (An alternative ‘“mountain wave” formu-
lation of this problem is found in Appendix B.) The
theory is generalized to include three dimensions and
transience in Section 4.

In Section 5, the qualitative predictions of the theory
will be compared with one case of Genoa cyclogenesis
to put the theory into a meteorological context. Lim-
itations on the theory are discussed in Section 6.

2. Stable baroclinic wave

The term “baroclinic wave” is so often used to imply
a growing, baroclinically unstable wave that a careful
definition of its use herein is required. We define a
baroclinic wave as a surface-trapped wave in a baro-
clinic current whose restoring force is associated with
temperature advection at the boundary. A concise de-
scription is given by Gill (1982), using the geostrophic
Boussinesq potential vorticity equation on an f~plane

&(V2P+—2P)=O (.1
Dt N2 E) T ‘

where P is the pressure, and using the surface tem-
perature advection equation
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D, 3 _
ol+wo =0, (2.2)

where 6 is the potential temperature. The formulas for
the geostrophic wind components are

1

— P,
pof
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Now consider a basic state in which the velocity
U(z) = U(2)i + V(2)] is a linear function of height so
that using (2.3), the potential vorticity in (2.1) vanishes

everywhere. In this case, any perturbation to this state
must obey

(2.3a)

Ug = —

(2.3b)

f2
V "+ szz =0. 2.4)
The linearized form of (2.2) is
60' a6’ a6’ 90
+ Vo +
TV tVog, g
. 96 a0
+ vg6y+ waz— 0. (2.5
If p'(x, y, z, ¢) is taken of the form p' = p(z)
X eix+r+ed then (2.4) requires that
P(2) = Ae™" + BeH, 2.6)
where
H(k, 1) = %-(k2 o (2.7)

The second term on the right in (2.6) is discarded by
setting B = 0 as it violates a boundedness condition
as z — oo in the half-space. With the hydrostatic law,

00 6p
gpo 9z’
and (2.6), (2.5) becomes
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+wh,=0 at z=0,

(e
pof dz
(2.8)

which reduces to the dispersion relation when w = 0;

av
G——(Uo'f'Hd!])k (V0+Hd)l

= -U(H)- k. 2.9)

The phase speed in the direction of the horizontal
wave number vector (k) is
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. k
Cp = Ulz = H(k, D],
k|
which is the background wind at z = H, the so-called
“steering level.” The group velocity C, = —do/dk is

given by
f ( dU)
NKP k-—Jk.

To summarize, these baroclinic waves are dispersive
waves with real frequencies which can propagate along
the surface of the earth in the presence of a horizontal
temperature gradient. By avoiding the rigid top lid (the
Eady problem) and the S-effect (the Charney problem)
the waves are stable in spite of the available potential
energy. The choice of this particular problem is con-
venient for the investigation of lee cyclogenesis, as it
allows a clear distinction between unstable growth
(none in this problem) and orographic forcing.

(2.10)

C,=UH) — (2.11)

3. Baroclinic wave generation by a ridge
Consider an infinite ridge lying parallel to the y-axis
given, for example, by
ha?

M) =T

3.1

A low-level wind blowing against the ridge will produce
vertical velocities according to

dh
dx’
assuming that the air goes over. For the steady state
two dimensional problem, (2.8) reduces to

wx,z=0)~ U, 3.2)

_ o Udb.(gpo/00)h
Pz=0)= 0 /H + dujdz)’ (3.3)
where A(k) is the Fourier transform of A(x),
h(k) = 1 f h(x)e **dx, (3.4)
21!' -
and in the case of (3.1),
hk) = — e"k"‘ (3.5)

The perturbation pressure field is then given by the
inverse Fourier transform (using 2.6, 3.3 and 3.5)

anz(gPO/ 0o)[2Re]
© h(k)e "He™dk
Jo (Uy /f{f + dUjdz),

D'(x, z) =

(3.6)

I

According to the Riemann-Lebesgue Lemma, the in-
tegral I will go rapidly to zero as |x| — oo because of
cancellations caused by the term e’**. This implies that
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the airflow will be disturbed only over the mountain.
There is one exception to this and that is if the de-
nominator of the integrand vanishes for some value
of k. If we take U, > 0, this is possible if dU/dz < 0
and then that special wavenumber k* is (from 2.7 with
[=0)

S
NH*’
where H* is the altitude at which the component of
wind across the mountain vanishes. The vanishing of
the wind U(z) at some height is then the condition
for obtaining a disturbance away from the mountain.
Physically, this allows there to be one baroclinic wave
with zero phase speed, and it is this wave that can be
directly forced by the fixed mountain.

The integral “I” can be readily evaluated at large
|x| by evaluating the contributions near k*. This is
accomplished by expanding all functions of k£ in a
Taylor series. The first term is sufficient for all but the
denominator which gives

Uy, dU) _
(n*a:)”‘”(
(3.8)

where Ak = k — k*. Then “I” in (3.6) becomes
N il(k*)e—z/h"eik'x foo eiAkdik
(UoN/f) - Ak

The integral in (3.9) depends on where the contour is
placed in the complex plane. Equation (2.11) shows
that the group velocity for this standing wave is directed
in the positive direction, in fact

C,, = Uy, (3.10)

so the contour is placed under the singularity, giving
(from 3.9)

k* =

3.7)

)d—HAk— Ak,

f

(3.9)

pxz)y=0 for x<0, (3.11a)

p'(x, 2) = (gpo) T ]%}Al(k"‘)e”zl” * sink*x

bo

for x>0. (3.11b)

Eq. (3.11b) describes a train of standing baroclinic
“lee” waves behind (in the sense of C,;) the mountain
range. Its phase is such that a low is present on the
lee slope, producing a wave drag.

This wave has a true baroclinic structure. The low
is associated hydrostatically with warm air and this
warm air is produced by advection from the warm
side, winning out over the midtroposphere ascent which
is producing the low-level vorticity. There is no phase
tilt as there would be in a growing Eady wave, except
perhaps near the mountain.

The theory seems to be successful in a number of
ways. It predicts the correct structure and a reasonable
wavelength (if H = 5 km, A = 2«x/k* = 3000 km).
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The low is on the correct side of the mountain. This
should not be considered trivial as there are waves,
such as capillary waves, that put their “lee” waves
upstream. Furthermore, the word “lee” is imprecise
in this problem as the background flow is strongly
sheared. The critical condition (U(z) reversing) may
be plausible as shown in Section 5. If these are wrong
in detail, it may well be that this is because the ideal-
izations, such as constant potential vorticity, quasi-
geostrophic balance, and two-dimensional geometry
are inaccurate rather than an error in the basic ap-
proach of looking for standing baroclinic waves.

The amplitude of the generated wave can be esti-
mated as follows. Putting N = 0.01 s7', f= 107*s7!,
h(k*) = (ha/2)e™ " = (3 X 10%)(2.5 X 10%)(e~%5)/2 m?
(from 3.5), po = 1 kg m™? into the pressure amplitude
formula (from 3.11b)

podrNf h

gives p’ = 2800 Pa = 28 mb. This large value illustrates
the sensitivity of baroclinic waves to orographic forcing
and suggests that in practice, nonlinear effects may
become important.

Figure 1 shows the asymptotic steady state surface
pressure field perturbation given by (3.11b). Also shown
is the exact time-dependent solution found using
methods in the next section. The agreement between
the two illustrates how quickly in time, and down-
stream, the wave approaches its steady state asymptotic
form.

4. The general three-dimensional time dependent
problem

The above theory has one important disadvantage.
It predicts a steady state train of lee waves rather than
a cyclone developing in time. The steady state as-
sumption in (3.6) was a mathematical convenience
which had the result of emphasizing that while the
baroclinic environment persists, the atmosphere is
trying to establish a steady train of waves. In fact, the
time development of the baroclinic wave is of central
importance as we are trying to equate lee cyclogenesis
with the growth of the first trough in the lee wave.
The theoretical solution at longer times is of less interest
as the baroclinic zone may have moved away from
the mountain or some other growth or propagation
mechanism may become dominant as the wave reaches
larger amplitude. The time development of the first
trough can be estimated. as follows.

The wave train begins to form at the time the moun-
tain is inserted in the flow or the time the correct
baroclinic environment first exists over the mountain.
The wave train then forms progressively from the
mountain location, extending at a rate given by the
group velocity of the standing wave. (This is quite
easily observed in the laboratory tow tank experiments
of buoyancy lee waves). In this case, with C, given by
(3.10), we can estimate that if the low level wind ap-



1162 JOURNAL OF THE ATMOSPHERIC SCIENCES

.

104

~304

301

204

.

{mb) ©

-104

—e0

3 km

. S T T Y
- 2:000 -~1000 o 1000 2000 km

X —>

FiG. 1. Time development of surface pressure (mb) near a 3 km ridge in a sheared
background flow according to linearized quasi-geostrophic theory [Eq. (4.2)]. Both initial
conditions lead to rapid lee cyclogenesis with pressure tendencies of from 4 to 6 mb/
(3 h)™". The fluid is trying to form the first trough of a standing baroclinic lee wave [shown

dashed from Eq. (3.11b)]. The distance covered by the group velocity (C, = Uy = 20 m

s~') is indicated by the dot on each curve. Initial condition I (undisturbed flow) produces
the simple pattern of a wave growing away from its source, while condition II exhibits a
rapid decay of the initial mountain anticyclone and a bit of overshoot in the lee trough
amplitude..

VoL. 41, No. 7

proaches the mountain at 20 m s™/, then it would take taking the double Fourier transform and using (2.6)

about 7 h for the first 500 km of the wave to be gen- and (2.7)

ated.
er dU

This group velocity argument is useful, but it is not 92 ( ikUy + ilVy + ikH - + ilH

! —+
much effort to go beyond and develop full time-de- 9¢ d.
pendent (and three-dimensional) solutions satisfying Heodd
specified initial conditions. Starting with (2.5), a single _ 118pb-

: ] Srarting with | ; (ikUy + ilVy)h = 0,
ordinary differential equation in time is derived by bo

),
dz P

at z=0. (4.1)
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The general solution to (4.1) is
+ Hgpob, (ikU,y + ilVo)h

5(t) = de18Y 42
p(t) = Ae o B , (4.2)
where
B= (ika +itve+ ikl %Y + iH gz)
dz dz

and A is a complex coefficient to be determined from
the initial conditions.

It is a bit difficult to select initial conditions for (4.1)
to correspond to real cases of cyclogenesis, so two dif-
ferent prototype conditions will be considered.

Condition I. Initially undisturbed flow
p(t=0)=0. (4.3)

The reader should be aware in advance that this
condition will produce a “starting” warm core cyclone
in the barotropic case (U, = V, = 0) which will drift
downstream. The dynamics and implications of this
vortex are discussed in Appendix A.

Using (4.3), the constant

_ Hgpef. ((kUo + ilVo)h

A=
0o B ’

(4.4)

so that

_ Hgpb. (ikU, + ilVo)h(1 — e®)

h(¢
J40)) b B

(4.5)

Condition II. Initial steady barotropic flow over the
mountain

Py

n h
t=0)= N-—
14 ( ) pOf |k|
(Smith, 1979a). This condition eliminates the starting
vortex but the initial “mountain anticyclone” is rather
unrealistic.
Using (4.6) in (4.2) gives

(4.6)

___ngoazil(. d_LI . ﬂ) -1
A ——00 ikH dz+llH i B~ (4.7)
so that
. _ Hegpob:h [ .
) = —‘559—" [(kuo + ilVy)
o
19+ g 2w
+(lkH dz-i-le dz)e B~'. (4.8)

For both conditions the quantity p'(x, y, z, ) is re-
covered from

p = f f - pe- e dled],

—oC

(4.9)

These formulas can be used to investigate a wide
variety of baroclinic environments and mountain ge-
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ometries. As before, the qualitative nature of the de-
veloping flow is controlled by the zeros, if any, of B.
The integral (4.9) can be analyzed by contour inte-
gration, asymptotic methods, or numerically using a
fast Fourier transform (FFT). Fig. 1 shows the FFT
results for a uniform ridge using initial conditions I
and II respectively. The two cases begin very differently
but rapidly converge as the first wave trough develops.
At large time, both solutions approach the asymptotic
result derived in Section 3.

Figure 2 illustrates the three-dimensional time-de-
veloping flow near an isolated mountain described in
Appendix C. The wind hodograph of the environment
has both speed and directional shear, turning from N
at the surface to WSW aloft. Initial condition I was
applied and after 18 h a lee cyclone has formed south
of the mountain. This position lies within the range
of group velocities of possible stationary baroclinic lee
waves.

5. Application of the theory to Alpine lee cyclogenesis

There is still considerable uncertainty about the pre-
cise synoptic conditions that lead to Alpine lee cyclo-
genesis. One common situation is the eastward move-
ment of an upper level trough towards the Alps from
the Atlantic. As the trough approaches, low level cold
air flows from the NW across France behind a cold
front oriented SW-NE. The wind hodograph then
shows NW winds at the surface turning to SW aloft.
If the Alps is considered an E-W ridge, then the wind
reversal criterion is met and a lee trough should begin
to form in place, to the south of the Alps.

An example of this situation is shown in Fig. 3 and
4 from 0000 GMT on 5 March 1982. At 850 mb the
NW flow is evident over France but the already de-
veloping cyclone, or possibly some other aspect of the
mountain perturbation or synoptic scale pattern has
reversed the winds in the lee. At 300 mb there are SW

winds over the Alps associated with a trough axis to
the west.

6. Discussion

Briefly stated, the present theory views the lee cy-
clogenesis process as the formation of the first trough
of a baroclinic lee wave. The low begins to form near

- the mountain and deepens as it moves back toward

the quarter-wave point of the standing wave. The time
scale and the position of the cyclogenesis seem roughly
correct. The necessary condition for lee cyclogenesis
is that the environment must have a horizontal tem-
perature gradient with sufficient strength and suitable
orientation to support standing baroclinic waves. Un-
like other known leeside pressure fall mechanisms such
as a barotropic starting vortex or wave-induced down-
slope wind, this low is generated hydrostatically by
warm air advection, winning out over mid-level ascent
which produces the low-level vorticity. In spite of these
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FIG. 2. A developing lee cyclone beside an isolated mountain in a baroclinic environment with strong vertical shear and cold
advection. The left part shows the mountain shape and the wind hodograph. The right part shows the sea level perturbation
pressure field, 18 h after starting the flow from an undisturbed state. At this time, the leeside pressure has dropped by 7.7 mb.
The slight left-right asymmetry is due to the directional shear in the basic hodograph. The parameters used in this calculation

are given in Appendix C. The contour interval is 1 mb.
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FiG. 3. The 850 mb chart over Europe on 5 March 1982 at 0000 GMT. North of the Alps, the flow is NW. South of the Alps, a Genoa
cyclone has formed over the last six hours and is still deepening. Chart is from the German Weather Service (DWD).
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F1G. 4. The 300 mb chart at the same time as Fig. 3. The flow over thev Alps is from the SW, thus possibly satisfying the baroclinic lee
wave criterion which would allow the orographic generation of a lee cyclone. Chart is from the German Weather Service (DWD).

successes, the theory has a number of limitations as
described below.

This is a quasi-geostrophic theory, yet the Rossby
number of the mountain airflow and cyclogenesis pro-
cess is probably quite close to unity. It is known (Smith,
1979a,b; 1982) that within linear steady state theory,
the quasi-geostrophic approximation eliminates real-
istic low-level blocking and deflection by the moun-
tains. This blocking may be as effective as orographic
lifting at creating a lee cyclone. If conditions are right,
any disturbance to the low-level temperature field,

whether by lifting or by altered temperature advection -

could create a lee cyclone (Smith, 1984).

The specification of the lower boundary condition
(as in 3.2) treats the mountains as smooth, rather than
as a pinnacled and dissected irregular surface. The
variety of scales and processes within the mountain
valleys are neglected. ' _

The theory is based on the linearized equations even
though the local mountain disturbance and the lee
cyclone have finite amplitude. The difficulty with this
is immediately evident when trying to distinguish the
environment from the perturbation using real data.
For example, the structure of the undisturbed baro-

clinic zone can only be determined by analyzing it
earlier on, and to the west, before it moves over the
Alps. One reason for this is that the time scale for
disturbance growth is comparable to the observing in-
terval.

The theory made use of the enormous mathematical
simplification that follows from the assumption of a
uniform potential vorticity environment. This implies
linear shear and horizontally uniform winds at each
altitude, as well as horizontally uniform temperature
gradients. Thus, we cannot describe mathematicaily
our physical picture of a baroclinic zone of finite width
moving over the mountains, and thus initiating the
lee cyclogenesis. Neither can we describe the role of
jet streams or jet streaks in the cyclogenesis process,
except insofar as they delineate a broad baroclinic en-
vironment in which the mountain can act.

In order to isolate the orographic forcing of baro-
clinic waves, the theory considered a stable basic state.
It may be, however, that unstable growth is involved
in lee cyclogenesis, particularly in the later stages. This
may be due to the tropopause, the B-effect, non-uni-
form potential vorticity, or caused by nonlinear effects
after the lee cyclone has reached a certain amplitude.
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The theory reveals a rather definite necessary con-
dition for lee cyclogenesis (i.e., the wind component
reversal). Observational data may not support this in
all cases. Perhaps other mechanisms exist for lee cy-
clogenesis. On the other hand, more general treatments
of baroclinic lee-wave generation may show that the
current condition is not absolute. This of course would
make it somewhat more difficult to disprove the theory.

The work of extending the theory, and testing it
against data from the Alps and elsewhere, is left for
the future. Appendix B indicates how the effects of
ageostrophy and wind profile curvature could be eval-
uvated. Numerical models of a simple type could be
used to verify the current results and check on the
effects of incoming wave structure and response non-
linearity. More complicated models could determine
whether the mechanism described here can operate in
the presence of boundary layers, inversions, and clouds.
Data from cases of lee cyclogenesis could be examined
to see if the current necessary condition for lee cyclo-
genesis is met in the environment. This promises to
be difficult both because the theoretical condition in
three dimensions is not simple, and because it is not
easy to separate “environment” from “disturbance”
in real data. Comparison of the mechanism of tem-
perature change, vorticity production, and energy con-
version might help to test the validity of the theory.
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APPENDIX A
The Starting Vortex

When there is initially no disturbance over the
mountain (i.., no relative vorticity) and lee side descent
begins, quasi-geostrophic theory predicts the formation
of a starting vortex. To illustrate the starting vortex it
is possible to write down the solution to (2.4) with
(2.5) and (3.2) or initial condition I and a mountain:

ha3
(xZ + yl + a2)3/2

h(x, y) = (A1)

in a uniform basic state, U(x, y, z, ) = (U, O). This
is (from Smith 1979a)
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Py, z, 0
2 -1/2
= oNf ha [x + y? +jfv2 (z+£a)]

- prhazl:(x — Ut +y?

LT o

At ¢t = Q the first term (the mountain anticyclone)
cancels the second term (the starting vortex). At later
times the warm core starting vortex drifts downstream
at the speed U.

In a sense, this solution constitutes a theory of lee
cyclogenesis although it is so dependent on the initial
conditions that it is not very satisfying. Also, the
warmth of the starting vortex is caused by descent
rather than warm air advection as in the present model.

When condition I is used in Section 4, one might
expect some tendency to form a starting vortex even
though the background state is strongly sheared. In
fact, this tendency seems almost completely absent.
This is evidenced by the fact that both initial conditions
I and II produce lee-side lows at about the same rate.
Condition II of course has no tendency to form a start-
ing vortex as there is an anticyclonic vortex above the
mountain at ¢ = 0. Furthermore, the vortex tube
shrinking due to windward side ascent must be nearly
eliminated by the shear as there is no evidence of a
mountain anticyclone at later times (Fig. 1).

It seems then that the starting vortex mechanism is
not directly related to the present results.

APPENDIX B

Direct Calculation of the Vertical Velocity Field
Using Two-Dimensional Lee-Wave Theory

In Section 3, the lee-wave pressure field was com-
puted using qua51-geostroph1c theory and the surface
advection equation. The result, from (3. llb) was of
the form

p = Ce™?™" sink*x. (B1)
This can be used to compute the ageostrophic wind

and vertical winds as follows. According to quasi-geo-
strophic theory

_ 1 Dg(vg)
U, = f Dt ’ (Bza)
1 Dg(ug)
v, = 7 D (B2b)

which for this linearized, steady, two-dimension prob-
lem becomes

(B3a)
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v, =0.
Using (B3a) in (B1) gives

(B3b)

Ug =

o f? e *H* Uo(l - %)k"‘2 sink*x. (B4)

The vertical velocity field associated with this wave

can be determined from the continuity equation in.

the form

wix, z) = —f a4 (BS)

which gives

w(x, z) = —= k**Upze #"" cosk*x.  (B6)

f2

The method of Section 3 has the advantage of em-
phasizing the importance of low-level temperature ad-
vection but it is not the only way or even the best way
to do the calculation. In the following few lines, the
baroclinic lee wave amplitude is rederived using a
method that is more akin to classical mountain wave
theory. This method gives the field of vertical velocity
(B6) directly, instead of deriving it from the geostrophic
pressure field.

The equation governing vertical velocity in two-di-
mensional steady state hydrostatic flow is given by
Jones (1967), Eliassen (1968), Smith (1979b), as

f? . 217U,
v~ s T ey ¥

UZZ Nz) A
+|—=-— . (B7
(%20
This equation is valid for any Rossby number (Uk/
). The second term takes into account the direct effect
of vertical shear and the effect of horizontal temper-
ature advection. The critical points in this equation
(U = 0, |UK| = f) prevent an analytical solution for
Rossby number of order (1), (see Jones, 1967, and
Eliassen, 1968) but the equation is very much 51mpler
if Ry € 1 and U,, = 0. Then
o U. .. k°N? ,
wzz-Z—sz——f—2w=0. (B8)
If solutions to this equation can be found satisfying
the decay or radiation condition aloft, then the vertical
velocity field can be expressed as:

Wik, z)
w(k, 0)
Reasoning as before, this perturbation will decay
downstream unless w(k, 0) has one or more zeroes.
In fact, with U(z) = Uy(1 — z/H™*), there is one such
k = k* = fIH*N corresponding to the eigenfunction

w(k*, z) = Dze */H", (B10)

w(x, z) =[2- Re]f ikUoh(k) —= e™**dk. (B9)
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where H* is the height of wind reversal. Lee wave
theory then gives, as x — oo,

A Ugk*A(k*)W (k*, z) cosk*x
Iw(0)
Ok |

The general solution to (B8) is readily found by
introducing the new independent variable!

w(x, z) = — (B11)

2=N—k(z—H), (B12)
S
so (B8) becomes
‘ﬁ—%wz—vt;—o, (B13)

which is an equation known to be satisfied by modified
spherical Bessel functions of order zero (Abramowitz
and Stegun, 1965, section 10,2). This solution has a
zero at Z = —1, which verifies the result (3.7), and the
structure in (B10).

Since we already know the eigenvalue and eigen-
function, the primary reason for using the transfor-
mation (B12) is that it makes it possible to express the
important amplitude factor in the denominator of
(B11) in terms of the eigenfunction alone, w without
needing to know how w(k, 0) behaves near k*. Taking
derivatives with respect to k and z gives

vk 2
z= *
0. 1}! (B14)
0w/dz
k=K

Combining (B10), (B11), and (B14) gives
2
N{H " 3)h(k*)ze‘z/ H* cosk*x, (B15)

which agrees with (B6) and (3.11b).

This calculation is useful for a number of reasons.
It provides a check on the temperature advection
method, while emphasizing a different aspect of the
dynamics. It gives the ageostrophic vertical velocity
directly and it shows the connection to 2-D mountain
wave theory. Furthermore, equation (B7) provides the
basis for the study of the effects of finite Rossby number
and mean profile curvature.

w(x, z) = +41r(

APPENDIX C
Parameters Used in the Construction of Fig. 2

Figure 2 is constructed from the formula (4.5) using
a Fast Fourier Transform. The parameters are as fol-
lows:

! This transformation was suggested by Roger Hughes of Yale
University. An alternative method for finding dw/dklo involving in-
tegration by parts {Smith 1979a, Eq. (2.90)} is not useful here as the
contribution from the second term in (B8) is difficult to estimate.
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Environment
f=10"*s"
N=10"2%s"
Ups=0
Vo=—-15ms™!
U, = (20/5000) s™!

V. = (20/5000) s™!

(For the northward directed standing wave, the steering
level is H* = 3750 m.)

Mountain
h(x, y) = 2 ’ 2 3
[(x/ax)* + (y/ay) + 1]
h = 3000 m
a, = 600 km
a, = 250 km

Initial Condition
Undisturbed flow p'(x, ¥, 2, t =0)=0
Time
t=18h
Numerical Calculation
Array size 16 X 16
Grid size 200 X 200 km
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—1600 < x < 1600 km
—1600 < y < 1600 km

Domain
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