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For two circular cross-section “infinitely long” wires charged to opposite electric potential, itis a
standard problem to calculate the potential field, the attractive force per unit wire length, etc. If,
however, the potentials are not exactly opposite, the problem is not even well defined. As shown
here, the problem becomes well defined when the physical environment of the wires is considered.
An effective electrical ground is imposed on the problem either by the presence of nearby

conductors or due to the finite length of the wires.

L. INTRODUCTION AND OVERVIEW

A standard configuration in electrostatics involves two
long parallel conductors charged to opposite electrical po-
tentials 4 7 and — V. If the length of the conductors is
much larger than their separation (labeled 4 in Fig. 1), the
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standard approach is to take the conductors to be infinitely
long and thereby to reduce the problem to one in two-di-
mensional electrostatics. If the conductor cross sections
are circular, the fields can be found in closed form' with the
use of complex variable techniques, image line charges, or
bipolar coordinates. In SI units, 4, the charge per unit
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Fig. 1. Two infinitely long parallel conducting cylinders with circular
cross sections. If the cylinders have opposite potentials imposed on them,
the induced charge per unit length and the force of attraction per unit
length can be found in terms of elementary functions.

length, and F, the force of attraction per unit length, are
A =4me,V /cosh™'[(d?/24a%) — 1]
=~2me,V /In(d /a),
F= (8we,/d 1 —4a%/d?)
X {¥V /cosh™'[(d?/2a%) — 1]}?
=~ (2me,/d) [V /In(a/d) > (n

The approximate expressions given above are the limiting
forms that apply when the wires are far apart compared to
their radii, that is, when d>a.

It is easy to lose sight of the crucial role played in this
configuration by the choice that the potentials on the two
conductors have opposite polarity.” Consider, for example,
the case in which the same potential + V is applied to both
wires. Two different viewpoints lead to very different pre-
dictions about the consequence of the applied potential. A
“practical” scientist, especially one familiar with electro-
scopes, would argue that charging two closely spaced wires
to the same potential would cause the wires to repel each
other.> A “mathematical” scientist would argue, quite dif-
ferently, that the problem is described by Laplace’s equa-
tion, V>® = 0, with the boundary conditions that the elec-
trostatic potential @ is + ¥ on the boundaries. Therefore,
the unique solution is that & = + V everywhere. But if
that were correct, there would be no electric fields (since
V& would vanish), no electrical charges on the wires (from
Gauss’ law), and no force between the wires.

Clearly, some information is missing; the physical prob-
lem is incompletely specified. It might seem that what is
missing is the charge per unit length on the wires, but to
specify that would be to sidestep the real issue: Experimen-
tally, we impose “voltage” on the wires, not charge. Nature
figures out what the charge must be. The charge per length
should then be a result contained in the solution of a cor-
rectly posed mathematical problem, not an input into such
a problem.

The difficulty has to do with boundary conditions,* in
particular with the spatial location of ground, i.e., of zero
potential. For the case of opposite potentials on the wires, it
is clear that ground is located at the median plane between
the wires. If, on the other hand, both cylinders are at + ¥,
there is no natural location for ground. In particular,
ground cannot in any simple way be at spatial infinity since
the mathematics of two-dimensional electrostatics de-
mands that the potential difference between spatial infinity
and the wires is infinite, except in the single case that the
wires have opposite potentials or, inore generally (that is, if
the wires have different cross sections), except in the case
that t2he sum of the linear charge densities on the wires is
zero.

Where, then, is ground? Let us suppose that the wires are
L =1 m long and are separated by d = 1 mm. We must
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(a)

(b)

Fig. 2. The two electrostatic environments of two “infinite” parallel wires.
In (a) a large metal laboratory table is at a distance R_ that is small
compared to the wire length L. In (b) the wires are isolated; there are no
other electrical elements within distances from the wires many times L.

distinguish two different kinds of experimental environ-
ments for these wires. In the first environment [Fig. 2(a)],
there are large conductive elements (tables, laboratory ap-
paratus, or whatever) at a distance R, say 1 cm, from the
wires. These external conducting elements may be far away
in comparison with the separation between the wires, but
they are close compared to the wire length. More generally
this case is characterized by L> R _ . When this condition
applies, it is justified to continue to use a two-dimensional
(“infinitely long”) viewpoint for the wires,® but the large
external element must be taken into consideration. This
element introduces a large equipotential surface into the
neighborhood of the wires, a surface that we can define as
“ground.” (That is, the voltage on the wires should be tak-
en with reference to the external conductive element. In
determining the charge on the wires or the force between
the wires, the voltage relative to some nominal circuit
ground is irrelevant. It is the difference between the poten-
tial of the nearby conductive element and the potential of
the wires that has physical consequences.) What is inter-
esting and usually unappreciated about this sort of configu-
ration is that the charges induced on the wires, and the
forces between the wires, depend crucially on the location
of the external conductive element. Without the location
and shape of that element, the problem is incompletely
specified.

The second type of electrostatic environment [Fig.
2(b)] is that in which the wires are isolated; there are no
relevant external conductive elements. More realistically
this means that L<R _, as would be the case for our 1-m
wires if they were many meters from any other conductive
element. In this case, we must recognize the fact that the
wires exist in a three-dimensional world. At points much
closer to the wires than 1 m, and not too near the ends of the
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wires, the field structure is approximately two-dimension-
al, but from many meters away the wires look like a “point”
source, not a “line” source. For an isolated point source, of
course, the appropriate ground is at spatial infinity. Thus
three-dimensional reality can be inserted into the two-di-
mensional mathematics by imposing an effective ground
surface at a distance from the wires of several times L.
The rest of this article will elaborate, with details and
model problems, on the central ideas above. Section II
deals with the influence of an external conductive element
and presents a model problem for which a quantitative de-
scription can be given. Section III deals in an approximate
quantitative manner with the case of isolated parallel wires.

I1. THE INFLUENCE OF GROUND

We consider here the way in which a nearby external
conductive element affects the electrical charge induced on
wires and the forces on them. An electrostatic configura-
tion with a realistically irregular nearby conducting ele-
ment does not typically lead to a simple solution, and the
need for a numerical solution might obscure the insights
that are our goal here. We will therefore use a model prob-
lem that has enough flexibility to show the effect of chang-
ing the distance to ground and other interesting effects, but
which allows a reasonably simple solution. To describe this
model problem, in its simplest form, we start with the cylin-
ders in Fig. 1 set to the same potential ¥. We then choose
one of the equipotentials of that solution to be defined as
ground, and we characterize the distance to ground as
shown in Fig. 3. Once this equipotential is specified as zero
potential, the relationship between the potential on the
wires and the charge per unit length of the wires is fixed,
and the force on each wire can be found.

In the limiting case a€«d <R _, it is not difficult to find
an approximate solution. We can, in this limit, treat the

Fig. 3. A model problem for studying the influence of the location of
ground. A closed-form solution exists for the potential field of two sym-
metrically charged circular cross-section conductors. Ground is chosen to
be one of the equipotentials and is characterized by the horizontal dis-
tance R from the center of the figure to the equipotential. In the figure,
d /a = 10, and for the solid curve, R /d = 2. The dashed curves repre-
sent other equipotentials, any of which could also be chosen as the zero-
potential surface.
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fields as if they were due to a uniform surface charge distri-
bution, on each cylinder, with charge per unit length A.
Equivalently, we can view the fields as those due to infin-
itesimal line charges A at the cylinder axis. (In reality, the
charge distributions will not be uniform, but the nonuni-
formity can be ignored for d>a and d<R _ .) The contri-
bution to the potential from each “line charge” is then
O = (A /2me,)In(R /r), where r is the distance from the
line charge, and R is an arbitrary constant. The potential V'
on the surface of one of the cylinders has contributions
from both line charges:

A ln£+ A ln£.

V=
a 2me, d

27e,

The potential on the grounding sphere at (large) distance
R_ is

AlnR—f—/{]nR

“2me, R_ 2me, R
From these, we find that R=~R_, and that the induced
linear charge density is

A={27e,V/[2In(R,, /d) +1In(d /a) ]},
and that the repulsive force per unit length is®
2
- A z277'60( vV ) (2b)
2regd  d \2In(R_/d) + In(d/a)

Though the conditions a <d <R allow a usefully sim-
ple approximation, they turn out to be unnecessary con-
straints; the electrostatics problem can be solved in closed
form for arbitrary values of @, d, and R . The details of the
solution are given in the Appendix. Some numerical results
for A and F are presented in Fig. 4 with dashed lines repre-
senting the limiting approximations of Egs. (2). These re-
sults show that the approximations are quite accurate ex-
cept for the cased /a = 2.1, in which case the wires are very
nearly touching each other, or the case that R _ /d is near
the limiting value (R /d =} + a/d) at which the ground
surface is touching the wires. Equations (2), as well as the
curves in Fig. 4, show that the closer the grounding surface
is, the stronger the force between the wires. This agrees
with the simple intuitive picture that a close grounding
surface implies large potential gradients and therefore
large electrical fields, with the consequence of large
charges and forces.

We are now in a position to compare the (repulsive)
force between the two wires of Fig. 1 symmetrically
charged to + Vand — V. The mathematics in the Appen-
dix covers the general case, but is rather complicated. The
essence of the comparison can be seen in the limiting case of
widely separated wires (d> a) with ground a large distance
away (R_ >d). From Egs. (1) and (2), we see that the
forces are approximately equal if (R _ /d)?<d /a. But for
(R_ /d)*>d /a, the force of repulsion in the symmetric
case is much less than the force of attraction in the antisym-
metric case. There is a competition of two geometric ef-
fects: the weakening of the force due to a wide separation
and the weakening due to a large distance to ground. If the
former one dominates, then the forces in the symmetric
and antisymmetric cases have the same magnitude.

If the potentials ¥, and V, on the two wires in Fig. 1 are
neither equal nor opposite, it will be convenient to describe
their potentials by

Vav E%(Vl + Vz),

o

(2a)

Vag =4V = V2),
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Fig. 4. (a) Induced charge per unit length 4, and (b) force per unit length
F, on two wires, both at potential + V. Values are given as a function of
R /d, the distance to the grounding surface in units of the wire separa-
tion. Results are presented for three values of d /a, the separation of the
wires in units of the wire radius. Dashed curves show the values given by
the limiting form appropriate to large R _ /d and d /a.

so that symmetric and antisymmetric effects will be easily
identifiable. If neither ¥,, nor V,; vanishes, several fac-
tors complicate the analysis. Foremost is the fact that the
equipotentials are now of complex shape. Figure 5 shows
examples of this for Vg =V,, and 2V,,, both with
d = 8a. The equipotentials are asymmetric and of complex
shape, but in both figures, and in every case except that of
V,, = 0, at sufficient distances the field of the two wires
looks like the field of a single wire of potential V. It fol-
lows that at sufficiently large values of R  /d, equipoten-
tials will always (except in the single case ¥,, = 0) be ap-
proximately circular and that we can (as we did above for
the case Vg = 0) use the sufficiently distant equipoten-
tials to represent the location of ground.

The force between the wires, for arbitrary values of
R_/d,d/a,andV,,/V,isdescribed in the Appendix. As
above, the nature of the answer is most easily seen in the
limiting case. For widely separated (d>a) wires with a
distant ground (R _ >d), the force of repulsion is

Fe 2me, [( Vv )2_( Ve )2]
d |\2In(R_/d) +1n(d/a) In(d /a)/ |

(3)

Note that Eq. (3) agrees with Eq. (1) in the limit ¥,, =0,
and with Eq. (2) in the limit V ; = 0.

Some interesting patterns can be seen in Eq. (3). In par-

ticular, for very thin wires, specifically when d/a
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Fig. 5. Equipotentials around two circular cross-section wires with
d/a=8,and with Ve =V, in (a) and Vg =2V, in (b).

> (R, /d)?, the attractive and repulsive forces are on an
equal footing and approximately cancel if |V, | = | Vg |- If,
on the other hand, d /a< (R /d)? the attractive part of
the force tends to be stronger than the repulsive part, and
the overall force can be attractive, even if V,, > Vg

II1. ISOLATED WIRES

If two wires are isolated in space with no nearby ground-
ing electrode, we can consider that there is an effective
grounding surface at a value of R on the order of L, the
length of the wires. To see why this is so, we first note that
at distances rsuch that 7> d, but r € L, the electric potential
has the form

b = — (1/27€y) A, In r + const. 4)

Here, A,,, is the sum of the charge per unit length of both
wires. If there were a grounding surface at some large
r= R _, the constant could be expressed in terms of R _ to
give

D = (1/27€p) A In(R_ /7). (5)

At distances r» L, the wires can be considered to be a point
source with total charge A4, ,, L and therefore with a poten-

R. H. Price and R. P. Phillips 537



tial
b =A4,,L /47e,r. (6)

The actual potential in the median plane of the wires (the
plane that bisects the wires and is orthogonal to the wires)
can be reasonably well approximated by Eq. (5) for r<L.
That is, Eq. (5) should be correct to order of magnitude
until 7 is considerably larger than L. Similarly, Eq. (6)
should be approximately true for >L. At r= L, both
equations must be approximately true and this can only be
the case if In(R /L) =1, i.e., for

R_=L. (7)

The reasoning here is based on the matching of a two-
dimensional “line charge” source to its large-distance,
three-dimensional “point source” form, and this reasoning
can be checked with a relatively simple closed-form solu-
tion. We consider the case of a single isolated thin wire of
length L. We model this wire as a conducting prolate spher-
oid of extreme eccentricity (see Appendix). The model has
the disadvantage that the cross-sectional radius a is not
constant, but varies along the wire approximately as

a~+/ (L /2)* = 2%, where z, the coordinate along the wire,
varies from —L /2 to L/2. This disadvantage is
outweighed by two advantages. First, though the “wire” is
not constant in cross section, it is constant in charge per
unit length A. This would seem to be just as natural a re-
quirement for the three-dimensional extension of a wire
that we have previously considered “infinitely long.” And
we cannot have it both ways. The wire can be constant in
cross section or in A, but not in both. The second advantage
of this choice of wire, of course, is that the external field can
be expressed in closed form.

In the median (z=0) plane of the wire, the external
field is

b = (A /47e,)
xIn{[Vr/DY?+1+1][J2r/LY?+1—-1]}.

(8)
The r> L limit gives ® = AL /47e,r, which agrees, as it
must, with Eq. (6). In the opposite limit, »<L, Eq. (8)
becomes ® = (1 /27e,)In(L /r), and we can infer [by
comparison with Eq. (5)] that the effective grounding sur-
face for the wire is at R = L. That is, if we are interested
in the fields near the wire (at r € L) where we consider the
wire to be two-dimensional, we must locate a cylindrical
grounding surface at ¥=R _ = L. This is a specific exam-
ple of the more general conclusion in Eq. (7).

APPENDIX

The detailed calculations justifying the results reported
in the text are best done with bipolar coordinates’ u and v,
which are related to Cartesians by

x = ¢ sinh u/(cosh u — cos v),

y=csinv/(cosh u — cosv). (A1)
The coordinate lines for both # and v are circles, as shown
in Fig. 6. The cross sections of the wires are represented by
the curves u = + u,and — u,, where the bipolar quanti-
ties u, and ¢ are related to the quantities @ and d of Fig. 1'by

u,=cosh=*(d /2a), c=+(d/2)?—a. (A2)

The potential outside the cylinders at # = + u, must satis-
fy Laplace’s equation V>® = 0, which in bipolar coordi-
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Fig. 6. Bipolar coordinates.

nates has the form
d*d 3’
+ =0.
o> I
When the cylinders have opposite potentials ¢ =
+ Vg, the appropriate solution to Eq. (A3) is simply

® =K,u. (A4)

Since ® = V,;; on the u = u, circle, the constant K is
fixed, and the potential becomes

D = Vg (u/up). (AS)

The charge per unit length on the cylinders can be found by
computing the charge density o = — €nV®, where n is
the unit outward normal. The result of integrating o
around the circumference of the ¥ = u, circular conductor
is a charge per unit length A, as given (with ¥ in place of
Vaur) by Eq. (1). The value of A4 can be inferred more
immediately by noticing that the potential in Eq. (A4) can
be viewed as that arising from image line charges + A4 at
x = + ¢, y = 0. The electrostatic force between the wires
can be found by taking the derivative with respect to the
separation d, of the electrostatic energy per unit length
Vadge = (A %g/dme;)cosh™'[(d?/2a%) — 1].  Alterna-
tively, and more simply, the force is that between the two
image line charges, (Aqq)?/47mesc, with ¢ given by Eq.
(A2).

Fortwocylindersatu = + u,, both charged to the same
potential ¥, , a solution to Eq. (A3) must be found that is
even in u, which gives ® = V,, atu = + u,, and for which
the equipotentials at large distances approach circles about
the origin. This solution® turns out to be

(A3)

— nlu|

e
<I>=VaV+K2(|u|—u0—22 cos nv
1 n
o0 — nu, 0S.
+2% ¢ coshnu nv). (A6)
T n coshnu,
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By computing — n'V®, we find that K, = 4,,/27e,.

The general potential case, that of the cylinders at two
potentials ¥; and V,, is solved by the superposition of Egs.
(A5) and (AS6):

Auw
P = Vdiﬂ' + Vav + ( )
U 21r€,

«w ,— nju
X(|u|—-u0—22e
1 n

COos nv

+23
1

In this general solution, however, the constraint 4,, has
not been resolved. To do this we must specify the location
of ground. In the prescrlptlon of the text, this means choos-
ing a point on the x axis of Fig. 6 tobe at x = R _, the point
that defines the equipotential at & = 0. The x = R v y=0
point has bipolar coordinate values

v=0, =2tanh~'(¢/R_), (A8)

where cis given in terms of a and d by Eq. (A2). By setting
@ to zero at these values of 4 and v, we find the relationship
that determines A,, in terms of the potentials:

)(uuc —u0—2ie_ w

1 n

e~ " cosh nu

cos nv) . (A7)

n  cosh nu,

u=u,_

0 leﬁ

Aoy
+Vav+(

0 27e,

* e~ " coshnu_ )

+2 Z (A9)
In the case of distant ground (u_ <€1) and thin wires
(uy> 1), this reduces to

Aoy =2m€{ [V (4, /) + Vo ]/ (g ~2Inu_ )}
z277'60{[ Vi (., /5) + Vy )/
[In(d /a) +2ln(Rw/d)]}. (A10)

If V¢ (which makes little difference in any case) vanishes,
we get the first relation in Eq. (2).

To find the force between the wires, the electrostatic
pressure €, %/2 is computed for the wire on'the right. The
force per unit area on the wire is then projected in the x
direction and integrated over the wire’s surface. The force
of repulsion is found to be

cosh nu,

dv(cosh uycosv — 1
3217'2600 J ( ° )

x (2 A, + 4oV g
Uy

il 2
+ 44, > e~ "™ cos nv(1 4 tanh nuo)) . (A1)
1

In the limit of distant ground (#_ <1) and thin wires
(uy> 1), the force becomes

F——; 27e, [( Aay )2 _ ( Vi )2]
d 27e, ug
Equation (3) follows from Eq. (A12) if 4,, is replaced

with its value from Eq. (A10) and if the negligible term
Ve (1, /u,) in that equation is ignored.

(A12)
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In Sec. III the solution is used for the field outside a
charged conducting prolate spheroid. A family of confocal
spheroids, with focii at z= 4 L /2, can be parametrized
with u and defined in terms of Cartesian coordinates by

=@

The degenerate case u = 1 corresponds to the segment of
the z axis from z= — L/2to + L /2. The field outside a
prolate spheroid is given by

¢ = (Q/4me,L)In[(u + 1)/(p — D], (Al4)
where Q is the total charge on the spheroid. For the ex-
treme u — 1 <1 case, @ /L can be viewed as the charge per
unit length of the wirelike limiting spheroid. In the median

(z=0) plane, u = (2r/L)? 4+ 1 and the potential has the
form in Eq. (8).

(A13)
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texts, e.g., J. D. Jackson, Classical Electrodynamics (Wiley, New York,
1962), 2nd ed., Prob. 2.4; L. Page and N. I. Adams, Principles of Electric-
ity (Van Nostrand, Princeton, 1969), 4th ed., Sec. 32; E. M. Pugh and
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MA, 1960), Sec. 4-11; W. R. Smythe, Static and Dynamic Electricity
(McGraw-Hill, New York, 1939), Sec. 4.13.

ZMore generally, the mathematics in the solutions listed in Ref. 1 allows
the wires to be at different potentials if they also have different radii.
What is crucial is that the radii and potentials be related such that the
charge per unit length on the two wires is equal and opposite.

3The practical scientist is correct. If the + lead of a dc voltage supply is
attached to an electroscope (the moral equivalent of two long wires) and
ifthe — or “ground” lead is ignored, the electroscope will deflect. With
1000 V even a fairly crude electroscope shows a strong deflection.

4The importance of boundary conditions, and how easily their importance
is overlooked, is evident also in the question of the electric field outside a
current-carrying wire. See T. N. Sarachman, Am. J. Phys. 37, 748
(1969); R. Stoeckly, Am. J. Phys. 38, 934 (1970); D. Marcuse, Am. J.
Phys. 38, 935 (1970); W. T. Scott, Am. J. Phys. 38, 936 (1970).

>Actually, for the “infinitely long” viewpoint to apply, an additional con-
straint must be imposed: R must not vary significantly along the wire or
along that length of the wire being considered.

®There is an additional contribution to the force on each cylinder due to
the charge distribution on the grounding surface, but this is negligible in
the limit R _ >d.

"H. Margenau and G. M. Murphy, The Mathematics of Physics and
Chemistry (Van Nostrand, Princeton, 1956), 2nd ed., Sec. 5.14. See also
Smythe, Ref. 1.
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