
Física Teórica 1 - 1^{er} cuatrimestre de 2010 - 2^{do} recuperatorio (21/7)

- 1. Una onda plana incide normalmente desde el vacío sobre un espejo. La onda plana está polarizada linealmente y tiene frecuencia ω . El espejo está formado por una lámina dieléctrica de espesor d, depositada sobre un conductor ideal. El dieléctrico tiene pérdidas y está caracterizado por una constante dieléctrica compleja $\sqrt{\varepsilon} = \alpha + i\beta$, y además $\mu = 1$.
 - (a) Encuentre la relación entre las amplitudes de los campos incidentes y reflejados.
 - (b) ¿Qué cantidad define la longitud de penetración δ de los campos en el dielétrico?
 - (c) Analice el caso en que $\alpha=1,\,\beta\ll 1$ y $\delta\ll d$. En especial, demuestre que la amplitud reflejada es proporcional a e^{-ad} , y dé el valor de a.
- 2. Una partícula relativista de carga q y masa m que se mueve sobre el eje x incide sobre una partícula de carga Q fija en el origen. Las dos cargas tienen el mismo signo. Inicialmente, en $x \longrightarrow \infty$ y $t \longrightarrow -\infty$, la partícula de masa m está caracterizada por un factor relativista γ_0 .
 - (a) Encuentre x como función de γ . ¿Cuál es la distacia de mínimo acercamiento?
 - (b) Encuentre \dot{v} como función de γ .
 - (c) Encuentre $\dot{\gamma}$ como función de γ .
 - (d) Escriba la potencia radiada como función de γ .
 - (e) Escriba la energía total radiada como una integral $\int_{\gamma_1}^{\gamma_2} d\gamma \, f(\gamma)$, dando los valores de γ_1 , γ_2 y la función f en términos de los datos del problema.
- **3.** El radio de un anillo circular es una función del tiempo $a(t) = r_0 + a\cos\omega t$. En todo momento $\dot{a}(t)/c \ll 1$. El anillo tiene carga q distribuida uniformemente.
 - (a) Calcular los campos de radiación $\mathbf{E}_{\mathrm{rad}}$ y $\mathbf{B}_{\mathrm{rad}}$, indicando separadamente las contribuciones de los términos dipolar eléctrico, dipolar magnético y cuadrupolar eléctrico.
 - (b) Graficar cualitativamente $E_{\rm rad}$ y $B_{\rm rad}$ sobre la superficie de una esfera.
 - (c) Calcular la potencia media emitida por unidad de ángulo sólido. Graficar cualitativamente en función de la dirección.
 - (d) Calcular la potencia media total emitida en todas direcciones.

