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When a point charge accelerates or moves faster than light in a dielectric medium, it radiates.
However, sources of finite size can be designed whose peculiar structure ensures that they do not
radiate under these conditions. The criterion for absence of radiation of a rigid source in free space
is generalized to a dielectric medium, and applied to either oscillating or Cerenkov sources.

L. INTRODUCTION

“Let there be electricity and magnetism, and there is
light!” says Feynman’s personal version of Genesis'; and,
indeed, when an electron is accelerated, it radiates. Though
as human beings we appreciate this property, as physicists,
we do not: Separating sense from nonsense in the equations
of a radiating electron is an old dream and, as Einstein once
said,the electron is a stranger in electrodynamics.2

Even the classical electron at rest is odd: Since like
charges repel, the Coulomb field tends to make it explode
(unless its “mechanical mass” is negative), and one must
imagine rubber strips such as the “Poincaré stresses” to
hold the charge together. Anyway, the electrostatic energy
of a point charge is infinite.

If the classical point electron can accelerate, the situa-
tion grows worse: While radiating, the particle undergoes a
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radiation reaction that has two parts (in its rest frame).
The first one, which is infinite, can be viewed as a contribu-
tion to the mass, sinceit goes as d °r/dt >. But the second one
cannot be so “renormalized” since it is proportional tod *r/
dt?, and can cause the charge to accelerate itself >* (the so-
called runaway solution).

Although quantum electrodynamics is renormalizable
and powerful tools™® have been devised to hide the infini-
ties under the carpet, it nevertheless cannot yield a finite
energy for the point charge, nor a satisfactory theory of an
extended charge.

The old problem of building a clean model for the classi-
cal electron has motivated a search for charge distributions
that do not radiate.” Such charges could undergo force-free
accelerated motion.®

At present, the interest of such sources seems academic:
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They must be rigid in one particular reference frame re-
gardless of their motion, and thus not relativistically invar-
iant. By contrast, their relativistic counterparts (namely,
those that are rigid in their own rest frame) do radiate.® In
addition, they have not been quantized. They are, however,
interesting from a pedagogical point of view as a means of
enlightening the physics of radiation.

How can one design source distributions that do not ra-
diate? A simple criterion has been derived'® for time-peri-
odic sources in empty space, and generalized in the relativ-
istic formalism.” But what happens in a dielectric medium?
This brings about an important change: A source does not
need to accelerate in order to radiate, if it moves faster than
light in the medium. The question then arises of whether it
is also possible to design sources that do not emit Cerenkov

-radiation.

The purpose of this article is to derive in a simple way a
condition for absence of radiation in a lossless diglectric
medium and to apply it to either an oscillating or a Ceren-
kov source. Since the underlying physics is closely connect-
ed to diffraction or antenna problems, we use the same
formalism, i.e., Fourier transforms. In order to remain at a
rather elementary level, we use the usual physicists’ loose
tricks for taming generalized functions; in addition, we do
not use a relativistically invariant formalism and consider
only nonrelativistic velocities. Units are SI.

I1. A SIMPLE LOOK AT NONRADIATING
SOURCES

Imagine a point charge ¢ in a lossless, nondispersive,
uniform, and time-independent dielectric: The permittivity
isa rea/l constant € > 0, and the light velocity ¢’ = ¢/n with
n=¢?

First, let the charge be oscillating at the angular frequen-
cy o. For small amplitude motion, this is equivalent to a
pulsating source at @, which emits waves with wavenumber
k = w/c¢’ (otherwise, one must consider a whole spectrum
of w and k).

Now, instead of oscillating, let the charge be moving
with a constant velocity v. Does it radiate?

If v< ¢, one can formally transpose the free-space re-
sults, replacing ¢ by ¢’ (and ¢ by ¢’ = ¢/n), and conclude
that there is no radiation.

If v> ¢, however, this conclusion does not hold. The
situation is illustrated in Fig. 1. The disturbances initiated
by the charge on each point of its trajectory arrive simulta-
neously at the surface of a cone of angle 8 = sin™!(¢'/v)
trailing the particle (since the particle traverses AO in the
same time that the light travels from A to M): One expects
a forward radiation in the direction §, = #/2 — 6.

The emission does not stem from the charge itself, but
from the transitory dipoles induced in the medium near the
particle track, which interfere constructively on the cone.
It is, however, instructive to look at the result in terms of
the Liénard—Wiechert potentials'' of the particle, for ex-
ample,

Y(r,t) =q'/[4me,(R — vR/C) ],

withR =r — vt',t' =t — R /¢'.Foranyobservationpointr
inside the cone there are two solutions for the retarded time
t'since each point r (such as I) is on two equiphase circles.
But if r is on the surface of the cone, then the two solutions
¢’ merge together, whence R — v\R/c’ = 0, causing the
fields to be infinite.
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Fig. 1. Sketch of the Cerenkov emission of a point charge in a (nondisper-
sive) dielectric medium.

What is wrong? We know that a strictly nondispersive
dielectric does not exist: In particular, when the field var-
ies, the polarization cannot follow immediately. This
means that in the limit of short time scales (or high fre-
quencies), ¢’ tends to ¢, so that the Cerenkov condition
v> ¢' no longer holds. The correct procedure is, therefore,
to perform a calculation for each (angular) frequency @
and integrate over the finite frequency range defined by
vn(w) >c. :

The wave-front cone is analogous to that of a supersonic
bullet in air, or to the wake of a boat in sufficiently shallow
water; in deep water, however, dispersion is important
since the phase velocity is g/w'? (g being the acceleration of
gravity), so that the boat velocity is always larger than the
phase velocity of a wave of some frequency and generates
(surface) waves (except for very small velocities or wave-
lengths for which surface tension becomes important).*3

Now we can get a feeling about the design of nonradiat-
ing sources; replacing a point by a finite source distribution
brings about the possibility of destructive interference for
particular values of the wave vector k.

In the case of uniform motion, one must ensure destruc-
tive interference in the direction 8, = cos ™' (¢'/v) for each
angular frequency o satisfying ¢’ = ¢/n(w) <v.

For a source oscillating at the frequency w, one must
ensure destructive interference for k = w/c'.

The common experience about antenna and diffraction
problems suggests that the design of such sources is not a
trivial game. Usual antennas (in vacuum or in a space-time
invariant dielectric with refraction index # > 0) have radi-
ation patterns such that they do not radiate in certain direc-
tions, but they generally radiate in some direction. The
same is true for the diffraction pattern of a distribution of
apertures in a diffracting screen.

II1. CONDITION FOR ABSENCE OF RADIATION
A. Source

The space-time source’s distribution is defined by the
current J(r,2), i.e., in Fourier space

Nicole Meyer-Vernet 1085



J(kw) = J d3rdt e —*DJ(x,t)

and the charge distribution p(r,#) satisfies (from conserva-
tion of charge) ’

wp (ko) =kJ(kw).

We restrict this section to the following cases:

The source occupies a finite volume (included in a
sphere of radius R) at any given time.

The source either exists during a finite time or is station-
ary,'* i.e., either

(D) J(r,t) =0for |t|>T
or

(2) J(r,2) is stationary (in particular, it can be period-
ic).

Consequently, in case (1), J(k,w) is an analytic func-
tion of w; in case (2) it can only be defined as a generalized
function of w.

B. Medium

Let the ambient medium be space-time invariant, loss-
less, and without spatial dispersion. The dielectric permit-
tivity is € = (@) + iosgn(w), where the infinitesimal
imaginary part stands for either infinitesimal losses or a
causality condition, equivalent to choosing the so-called
retarded solution of Maxwell’s equations (except in some
special media where this point must be more carefully set-
tled'®); let n = e(w) /2.

C. Radiation

From Maxwell’s equations, the source’s electric field is

(in Fourier space)
—i(k(kJ)/k? J—k(k-J)/kz)
W . (D

€& \  we w’e — k*c?
The first term is the longitudinal field (E||k); in the special
case of a static charge distribution, it gives the Coulomb
field. The second term, which represents the transverse
field, has a pole whose real part is Re(k) = nw/c, which
causes the electromagnetic radiation.

The instantaneous source’s power loss is

Ek,w) = +

P(t) = —Jd3rE(r,t)-J(r,t). (2)

It is important to note that this is not necessarily the same
thing as the power escaping at infinity, i.c., the radiation,
which is found by integrating the radial component of the
Poynting vector over the surface of an infinite sphere. The
difference is the time variation of the field energy in the
medium, which may be different from zero if either € has a
finite imaginary part (loss or amplification in the medi-
um), has a zero in the spectral range of the source (reso-
nance), or if the problem is nonstationary. Confusion be-
tween these two quantities has led to some controversies
and paradoxes.'®"’

We will discard the first term in Eq. (1) because it does
not contribute to the radiation (although in the cases noted
above it can contribute to the source’s power loss."’

Now, depending on the nature of the source, either the
total energy loss (during an infinite time) is finite [case (1)
in Sec. II A], or the mean power is finite [case (2)] while
the total energy is infinite. So we calculate in case (1)
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W=J dtP@) (3)
and in case (2),

1 +7/2

(P) =lim —

T T J_-2/2
Using Parseval’s relation, we get from (2)

dt P(1). (4)

+ oo
f dt P(1) =—_i4fdw d’k E(k,o)Jd* (ko). (5)
~ (2m)

Now, inserting the transverse part of (1) in (5),.and using
(3) [case (1)] or (4) [case (2)] gives the total energy
[case (1)] or the mean power loss [case (2)] in radiation
because in the cases considered here the term involving the
energy in the medium disappears in the time integration.
One gets

+
f dt P(t) = —— 1 Im(dea”k
e (2m)%e,

o [3 o) | ~ k-J(k,w)f/kZ)
@*[n?* +iosgn(w)] — k22 )
where Im denotes the imaginary part.
Since the numerator is real, the only contribution to the
integral stems from the poles k = |w|n/c + io sgn(w), and
we obtain, by using Plemelj’s relations

+ = l + o d&)
dt P(t) =———f _—
J-Aw 7%€c J_w n

xfdn(kvz— kI mayer (6)

where the second integral (dQ = sin 8 d0 d@) is over the
direction of k.

Note that, in case (2), [J(k,w)|? is not strictly defined,
even in the sense of generalized functions, since it involves
squares of § functions; in order to avoid treating this case
separately, we will then use the usual physicist’s loose trick
(see, for instance, Ref. 18) of replacing the undefined
quantity [8(w)]? by

(1/27) lim [78(w)] (7

T—
and view the integral over ¢ in (6) as
+7/2
lim
T— o —_ 1—/2

for using it in Eq. (4).

D. No radiation

Since (k277 — [KJ|*) 4 - mwie >0, the necessary and suf-
ficient condition for the integral (6) to be zero, and thus
[since P(¢)»0] to have P(¢) =0 for any ¢ is

kI(kw) =0 or Jkw)|k

for k=nlw|/c, (8)

which is a formal generalization of the Goedecke'® condi-
tion.

What does this mean in practice?

If kJ(k,w) = O for k = n|w|/c, then the source has no
Fourier component for electromagnetic waves propagating
in the medium, and it is therefore not surprising that it does
not radiate.

Ttis instructive to compare this to classical scalar diffrac-
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tion problems. In the simplest case, one puts a harmonic
(angular frequency @) point source at infinite distance be-
hind an opaque plane screen with holes. The field’s distri-
bution at a given distance on the other side of the screen is
the inverse (two-dimensional) Fourier transform of the
product of the Fourier transform of the field distribution
on the screen by a phase factor. Now, for the field to be zero
at any distance, the latter Fourier transform must be identi-
cally zero, which requires blocking up all the holes.

If, on the other hand, J (k) ||k, then VXJ = 0, and the
absence of radiation is linked to the fact that the field is
purely longitudinal. (A trivial example of such a sourceis a
spherically symmetrical charge with a purely radial mo-
tion.)

IV. DESIGNING NONRADIATING SOURCES
A, Uniform motion )

Let a charge distribution p(r) be moving at uniform ve-
locity v, whence the current

J(r,t) =vp(r —vi),
J(k,w) = v2mp(k)S(w — kev). (9)

The condition kJ(k,w) =0 for k=n|w|/c reads
ko(k) = Ofor any k satisfying k = n|k-v|/c or, equivalent-
ly [since p( — k) = p*(k) 1], kp(k) = O for any k making
an angle §, = cos ™' (¢/nv) with v (whenever k = n|w|/cis
such that ¢/nv < 1).

Can one design a charge distribution satisfying this con-
dition?

Let us first neglect the variation of n with the frequency
. In this case, a nonradiating charge must satisfy
kp(k) = O for any k lying on the surface of a cone of vertex
angle &, with respect to v.

Then a trivial solution is a uniform charge distribution
on the surface of a plane being nowhere perpendicular to
the surface of the cone. In effect, let v be parallel to the ox
axis, and take a source p(r) = ¢ 8(x — y tan «), thus

p(k) = g4r” 8(k,)8(k, + k, tan @)

(meaning that the source’s Fourier components k are per-
pendicular to the plane). If a#6, + pm (p integer), then
the nonradiating condition is satisfied. But this distribution
involves charges at infinite distance, contrary to what we
have assumed in Sec. III A.

Can we design nonradiating distributions p(r) localized
at finite distance r<R? Since spherically symmetric
charges will not do, the simplest step is to assume cylindri-
cal symmetry around v. Let us take

p(r) =F(r)P,(cos 8'), (10)

with @’ being the angle between r and v, P,(u) being a
Legendre polynomial of order /,!° and F(r) being a func-
tion equal to zero for > R. Now, we use the fact that e®"
can be expanded as a sum of products of the form

G (k)Y T(6,8) Y *(0",4"),

where (6,4) are polar angles of k, (6',¢') are polar angles
of r, with respect to the ox(j|v) axis, and Y} are spherical
harmonics. Since the latter functions are orthonormal, and
P, « Y9, we deduce that

p(k) « P,(cos 6).

As a consequence, if the Legendre polynomial satisfies
P,(cos ;) =0, then the charge distribution (10) will not
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radiate by Cerenkov emission when moving at velocity v in
the medium of index n. For example, for ¢/nv = 37'/2, we
choose p(r) = F(r)P,(cos 8') since P,(n) = (3u*> — 1)/
2; for c¢/nv=(3/5)"? we choose P, since
Py(u) = (51> — 3u)/2, and so on.

This can be trivially generalized to nonsymmetrical
charges: A charge of the form

p(r) =F(r)YT(6',¢")
+ (= 1)"F(r)*Y [ ™64, (11)

where cos 6, is a zero of the associated Legendre function
P71 (cos 8') does not radiate by Cerenkov emission. Note in
passing that the possibility of finding a P 7" for any value of
¢/nv requires that the set of all zeros of those functions be
dense over the interval [ — 1, + 1]: We have not explored
this question. _

Now, what happens when the dispersion is taken into
account? In this case, the angle 8, = cos ~ ' (c¢/nv) becomes
a function of @ and thus of &, which tends to 7/2 when
k- «: Asaconsequence, asource such as (11) will radiate
in the part of the frequency spectrum where ¢/nv is no
longer a zero of P},

Note that Eq. (6) can be used to give readily the Ceren-
kov radiation of various charge distributions p(r). Insert-
ing (9) into (6), we obtain by using (4) and (7)

1 * dwf ~
Py=——— — 1 dQ
Py 2’me,c J; n

X[ (k2? — [kev|)8(@ — k¥) |p(K) 214 _ noye-

Integrating over the angle @ between k and v, with
dQ = sin 8 d6 d¢ and p(k) = p(k,0,4), we obtain

2
P =_v__j d (1- < )
( > 23172606'2 n>c/v @ nzl)2
2T 2
Xf d¢ p(n_a),eo’¢)
0 c

where 6, = cos™'(¢/nv) and the integral is over the posi-
tive frequencies satisfying n(w) > c/v.

-In the special case of a cylindrically symmetric (with
respect to v) charge distribution p(k,6), (12) takes the
simple form

v c? now
doof1 =5 )o("2 0
dme,c? J:1>c/v e n’? p ¢ °
(13)

For a point charge g[p(k) = g], (13) reduces to the well-
known Frank-Tamm result. Let us now take a charge ¢
distributed over a spherical shell of radius R, i.e.,

p(r) =q8(r—R)/47R?,
p(k) = gsin(kR)/kR. (14)

Inserting (14) into (13) shows that, as expected, the finite
source’s size R lowers the contribution of frequencies
®>c/nR. But this is not sufficient to make the integral
(13) converge for @ — o0, so that it is still necessary to take
the dispersion into account in order to ensure convergence
at large w.

) (12)

2

(P)=

B. Small oscillations

We take a charge distribution p(r) that oscillates at the
(angular) frequency @, namely, J(r,t)=(dd/
dtplr —d()], with d(z) = d sin wyt. We assume nwyd /
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c<€1 (the so-called dipole approximation), so that the
Fourier transform simplifies to

J(k,w) =ip(k)a(w)/e, (15)

where a(w) 1s the Fourier transform of the acceleration
a(r) = d%d/3t% thus

(ko) =m0d p(k) [6(0 + wp) + 6w — @) ). (16)

Inserting (16) into (8) yields the nonradiating condi-
tion

pk)=0 for k=nwyc. (17)

In the particular case of spherical symmetry, (17) takes the
form

fw drr sin(nwor)p(r) =0, (18)
) ¢
which is satisfied by
p(r) x cos(pnawgr/c)/r,
for r<R, nwoR /c =27l
p(r) «sin(pnawyr/c)/r,
for r<R, nwyR/c=2nl, p#1

(p integer >0, / integer > 0), or any linear combination of
such functions, and also by

p(r) <8(r —R),

(p integer > 0). Note that these distributions have a char-
acteristic scale on the order of the wavelength or a multiple
of it.

These results are not restricted to small oscillations:
They are easily generalized to any periodic motion of period
27/w,."° In this case, the source also exhibits higher har-
monic frequencies so that one has to replace w, by every
integer multiple of w, in the nonradiating conditions (17)
and (18).

Note in passing that inserting (16) into (6) [using (4)
and (7)) gives readily the mean power radiated (in the
dipole approximation) by an oscillating charge distribu-
tion p(k) as

(P) =——Ljdn[(k2d2 _
e cn

nwoR /¢ = mp

ked

ek ], - neoy/c?
(19)
which gives in the particular case of spherical symmetry
(P) = (nwyd*/12mec®) |p(nwy/c) .

For a point charge [p(k) = g], this gives the usual dipolar
radiation formula. For a charge of finite size R [use (14),
for instance ], the power radiated is much smaller than for a
point source if R> ¢/now.

C. Nonlocalized sources

The sources considered up to now were localized in a
finite volume. Oné can also easily design nonradiating dis-
tributions involving infinite planes or cylinders. Several
such harmonic sources have been discussed recently® by
using retarded potentials in empty space; it is, however,
simpler to use the Fourier transforms directly .

The space Fourier transforms now involve generalized
functions so that one must use a trick analogous to (7)
when integrating along the spatial coordinate(s) where the
distribution extends to infinite distance; this ensures the
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integrations over k to be properly defined in order to gener-
alize the nonradiation condition.

Consider a harmonic (w,) current distributed uniformly
on a cylindrically symmetric wire,

J(r,t) = e, j f(u)sin wyt,
where u denotes the distance to the oz axis. Thus
J(kow) = —ie, 47 8(k,) [8(@ + wy) — 8(w — w,) ]

Xf du uf(u )JO( e (ad )
o ¢
so that the nonradiating condition (8) becomes

on du uf(u)J0< ek ) =0,
o ¢

which is satisfied by f(#) = §(# — R), where nw R /cisa
zero of Jy and f(u) = Jy(au/R) (u<R), where nw,R /c
and «a are distinct zeros of J,,.

Now, what about plane distributions? We have already
seen that a charge uniformly distributed on an infinite
plane does not radiate by Cerenkov emission if the plane is
nowhere perpendicular to the surface of the Cerenkov
cone.

Now, consider a harmonic current uniformly distributed
on a plane xoy: It always radiates. In effect, J(k,w) « 8(k, )
6(k,)[ ] [where the term in brackets is the same as in
(20)] so that condition (8) cannot be satisfied. On the
other hand, one can build a nonradiating source with sever-
al such parallel planes® since J(k,) is now multiplied by a
function of k, which can be zero for k, = nw/c, if the
planes have the right separation (i.e., an odd multiple of
mC/nWy).

(20)

V. CONCLUSION

One is accustomed to thinking that a charged body,
which is accelerated and/or moves faster than light in a
medium, radiates. We have seen that this intuition is not
necessarily correct for the idealized problem of a classical
rigid source in a nondispersive dielectric.

To ensure this absence of radiation, one must carefully
design the source distribution in order that destructive in-
terference occur in every direction. Such special design
yielding counterintuitive behavior is reminiscent of the so-
called diffraction-free beams whose peculiar structure en-
sures minimum diffractive spreading in free space’'; this
latter problem is, however, more likely to have practical
applications.

A nonradiating source is trivially achieved with a spheri-
cally symmetric charge undergoing radial pulsations: The
absence of radiation stems from the fact that the field is
then purely longitudinal. One can also build a nonradiating
oscillating source by ensuring that it has no Fourier com-
ponents for the wavenumbers propagating in the medium:
The size of the source is then of the order of the wavelength
in the medium (or a multiple of it). Finally, one can build a
nonradiating Cerenkov source by ensuring that it has no
Fourier components along the Cerenkov (k) cone.

An alternative method for building “black” sources,
which has apparently escaped physicists’ attention, had
been suggested a long time ago.”
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2240Qur Second Experiment,” the Professor announced, ... “is the produc-
tion of that seldom-seen-but-greatly-to-be-admired phenomenon, Black
Light! You have seen White Light, Red Light, Green Light, and so on:
but never, till this wonderful day, have any eyes but mine seen Black
Light! This box ..., is quite full ofit. The way I made it was this: I took a
lighted candle into a dark cupboard and shut the door. Of course the
cupboard was then full of Yellow light. Then I took a bottle of black ink,
and poured it over the candle: and, to my delight, every atom of the
yellow light turned Black!” [Lewis Carroll, in Sylvie and Bruno Con-
cluded (Vintage, New York, 1976), pp. 712-713].

Wobbling, toppling, and forces of contact

Tad McGeer® and Leigh Hunt Palmer®
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Analyses and experiments are described for two familiar systems that upon close inspection reveal
some surprises. The wobbling domino provides a simple model for some important features in the
mechanics of walking. It also makes a sensitive level. The toppling pencil calls for careful

treatment of friction.

LIST OF SYMBOLS

(Defining equations are noted in parentheses)
base width of wobbling object (Fig. 2)
energy (26)

vertical force (25)

horizontal force (25)

gravitational acceleration

height to mass center of wobbling object
(Fig. 2)

step index

left edge (Fig. 2)

length from edge to mass center (Figs. 2 and 7)
object mass

right edge (Fig. 2)

ayr radius of gyration about the mass center
T total duration of wobbling (14)

Vem  velocity of the mass center (29)

Ve velocity of the foot (30)

X vertical coordinate (Fig. 7)
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y horizontal coordinate (Fig. 7)

a, half-angle between legs (Fig. 2)
a; contact angle on left edge (Fig. 2)

ag contact angle on right edge (Fig. 2)
a, contact angle for the k th step (8)
y slope

7 coefficient of restitution (6)

g leg angle (Figs. 2 and 7)

0, peak leg angle during the & th step
Uy coefficient of sliding friction (37)
H, coeflicient of static friction (37)

o time-scale parameter (2)

T dimensionless time, ¢+g//

0 dimensionless speed, d6 /dr

Q, initial speed

Q- speed just before support transfer
Q+ speed just after support transfer
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