Problema 5. (d)

Amillo de carga q radio vauable $a(t)$

$$
\text { donde: } \quad \hat{r}_{\lambda}=\left.\hat{r}\right|_{\theta=\frac{\pi}{2}}=\left.\hat{r}\right|_{z=0}=\underbrace{\hat{p}}_{\text {veror cilindincas }}=\cos \varphi \cdot \hat{x}+\sin \varphi \hat{y}
$$

Ccartesianas: $\quad \hat{x}, \hat{y}, \hat{z}$
cilíndicas: $\hat{\rho}, \hat{\varphi}, \hat{z}$
esféricas: $\hat{P}, \hat{\theta}, \hat{\varphi}$
(orsen cers dip. eléctr.)

- Calcular $\bar{E}_{\text {Tad }}$ y $\bar{B}_{\text {rad }}$ (harta rden $1 \rightarrow\left\{\begin{array}{l}\text { dip nagnético } \\ \text { cuadr.eiéchico }\end{array}\right.$
$P_{\lambda}(t)=\delta(p-\alpha(t)) \cdot \delta(z) \cdot \lambda(t): \quad$ densidad volumétrica de le
momentos

$$
\begin{aligned}
& \vec{p}(\vec{r}, t)=\int p_{\lambda} \cdot \bar{r} d^{3}=\int d l \lambda \cdot \bar{r}_{\lambda}=\int_{0}^{2 \pi} d \overbrace{0}^{d p a(t)} \cdot \lambda(t) \cdot \overbrace{\hat{a}(t) \cdot \hat{r}_{\lambda}}^{\hat{r}_{\lambda}}=0 \\
& \vec{m}(\vec{r}, t)=\frac{1}{2 c} \int \vec{r} \times \vec{j} d{ }^{3} \quad=\frac{1}{2 c} \iint_{\hat{\rho}}^{\vec{r}_{\lambda}} \times " I_{\lambda}^{\prime \prime} \cdot \hat{\rho}=0 \quad\left[\vec{\nabla} \vec{\sigma}_{\lambda}=-\dot{\rho}_{\lambda}: \text { ec. cont }\right] \\
& \overline{\bar{Q}}_{\dot{j}}(\vec{r}, t)=\int d^{3} r \rho_{\lambda}\left(3 r_{i} r_{j}-o_{i j} r^{2}\right) ; \quad\left[i, j=1,2,3: \begin{array}{c}
\text { componentes } \\
\text { cartesianas }
\end{array}\right] \\
& =\underbrace{3 \int d^{3} r \rho_{\lambda} \cdot r_{i} \cdot r_{j}}_{\left(\bar{Q}^{\text {rad }}\right)_{i j}} \\
& \underbrace{-\delta_{i j} \int d^{3} r P_{i} r^{2}}_{-}
\end{aligned}
$$

$$
Q_{i}^{\text {rad }}=3 \int_{0}^{2 \pi} \underbrace{d \varphi \cdot a(t)}_{d l} \cdot \lambda(t) \cdot a^{2}(t) \cdot\left(\hat{r}_{\lambda}\right)_{i}\left(\hat{r}_{\lambda}\right)_{i}
$$

$\left[\right.$ aux: $\left.\hat{r}_{\lambda}=\hat{x} \cos \varphi+\operatorname{sen} \varphi \hat{y}+0 \cdot \hat{z}\right]$

$$
\begin{aligned}
& =\frac{3 q \cdot a^{2}(t)}{2 \pi} \cdot \int_{0}^{2 \pi} d \varphi\left(\begin{array}{ccc}
\cos ^{2} \varphi & \cos \varphi \sin \varphi & 0 \\
\sin \varphi \cos \varphi & \sin ^{2} \varphi & 0 \\
0 & 0 & 0
\end{array}\right)_{\mathrm{ij}} \\
& \overline{Q_{i j}^{\text {rad }}}=\underbrace{\frac{3}{2} q \cdot a^{2}(t)}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)_{i j} \\
& \equiv Q_{r} \text { : notación } \\
& \text { 11: siempre aparece algo propercinal a }
\end{aligned}
$$

cálulos auribuntes

$$
\text { (1): } \begin{aligned}
(\vec{Q})_{i} & =\left[Q_{i j}^{\mathrm{rad}}+Q_{i j}^{*}\right] \cdot \hat{r}_{j} \\
& =(Q_{r} \underbrace{(\cos \theta \hat{x}+\operatorname{ses} \hat{y})}_{\hat{r}-(\hat{z} \cdot \hat{r}) \hat{z}}+Q^{*} \cdot \hat{r})_{i}
\end{aligned}
$$

(2) $\hat{r} \times \dddot{\widetilde{Q}}=\dddot{Q}_{r} \cdot \hat{r} \times(\hat{r}-(\hat{z} \cdot \hat{r}) \hat{z})+\ddot{Q}^{*} \underbrace{\hat{r} \times \hat{r}}$ $=0$: siempre desupa.

$$
=\ddot{Q}_{r} \underbrace{(\hat{z} \cdot \hat{r})}_{\cos \theta} \hat{z} \times \hat{r}
$$ rece esle término* (proporional a $\mathbb{1}$)

usams $\quad \hat{r}=\hat{p} \cdot \sin \theta+\cos \theta \hat{z} ; \quad \hat{z} \times \hat{p}=\hat{p}$

$$
\Rightarrow \hat{r} \times \vec{Q}=\ddot{Q}_{r} \cdot \cos \theta \cdot \sin \theta \cdot \hat{\varphi}
$$

(3) $\hat{r} \times(\hat{r} \times \stackrel{\rightharpoonup}{Q})=-Q_{r} \cos \theta \sin \theta \hat{\theta} ; Q_{r} \equiv \frac{3}{2} q \cdot a^{2}(t)$ \therefore

$$
\stackrel{\rightharpoonup}{E}_{r a d}(r ; t)=-\left.\frac{1}{6 c^{3} \cdot r} \cdot \hat{Q}_{r} \cos \theta \sin \theta \cdot \hat{\theta}\right|_{t_{r e t}}
$$

aus x

$$
\begin{aligned}
{\left[a^{2}(t)\right] } & =\frac{d^{3}}{d t^{3}}\left(r_{0}^{2} \cdot \cos ^{4} \omega t\right) \\
& =r_{0}^{2} \frac{d^{3}}{d t^{3}}\left[\frac{1}{8}(3+4 \cos (2 \omega t)+\cos (4 \omega t)]\right. \\
& =4 \omega^{3} r_{0}^{2}(\sin (2 \omega t)+2 \sin (4 \omega t))
\end{aligned}
$$

- $\left[\begin{array}{l}\vec{E}_{\mathrm{rad}}=-\left.q \frac{\omega^{3} r_{0}^{2}}{c^{3} r} \cdot\left[\sin \left(2 \omega t^{\prime}\right)+2 \sin \left(4 \omega t^{\prime}\right)\right] \cdot \cos \theta \sin \theta \cdot \hat{\theta}\right|_{\vec{B}_{\mathrm{rad}}}=-\left.q \frac{\omega^{3} r_{0}^{2}}{c^{3} r}\left[\sin \left(2 \omega t^{\prime}\right)+2 \sin \left(4 \omega t^{\prime}\right)\right] \cdot \cos \theta \sin \theta \cdot \hat{\varphi}\right|_{t^{\prime}}=t-r / c \\ \vec{t}_{t}=t-r / c\end{array}\right.$
$r_{1} t$. fijos:

$$
\cos \theta=\frac{\sin (2 \theta)}{2}
$$

$$
\vec{E}_{\mathrm{rad}}=|E| \hat{\theta}
$$

$$
\vec{B}_{\text {rad }}=|E| \hat{\varphi}
$$

$$
|E| \sim \sin (2 \theta)
$$

- Plencia por undod de ángulo sólido

$$
\begin{array}{rlrl}
\frac{d P}{d Q}(\bar{r}, t) & =r^{2} \cdot \vec{S}(\bar{r}, t) \cdot \hat{r} ; & \vec{S}=\frac{c}{4 \pi}\left|E_{\text {rad }}\right|^{2} \cdot \hat{r} \\
& =\frac{c}{4 \pi}\left(\frac{\dddot{Q} r}{6 c^{3}}\right)_{t_{\text {ret }}}^{2}\left(\frac{\sin 2 \theta}{2}\right)^{2} ; & & Q_{r} \equiv \frac{3}{2} q a^{2}(t) \\
& t_{\text {ret }}=t-r / c
\end{array}
$$

Energía por undod de tiempo por aridod de áng do sólido que abraiesa en le diección \hat{r}, fa posición r a tiempo t. y toe emitida en $t^{\prime} \simeq t-r / c$.

$$
\begin{aligned}
& \left\langle\frac{d P}{d \Omega}\right\rangle=\frac{1}{T} \int_{0}^{T} \frac{d P}{d \Omega}(t)=\ldots=\frac{c}{4 \pi}\left(\frac{q \Gamma_{0}^{2} \omega^{3}}{c^{3}} \frac{\sin 2 \theta}{2}\right)^{2}\left[\frac{1}{2}+\frac{2^{2}}{2}\right] \\
& T=\frac{2 \pi}{\omega} \text { : elijo el períndo Eerminos coni: } \begin{array}{l}
s^{2}(2 \omega t) \longrightarrow 1 / 2 \\
s^{2}(4 \omega t) 2^{2} \rightarrow 2^{2} / 2 \\
\text { interferenua: no aportan }
\end{array} \\
& \left\langle\frac{d p}{d \Omega}\right\rangle=\frac{5 c}{32 \pi}\left(\frac{q r_{0}^{2} \omega^{3}}{c^{3}}\right)^{2} \cdot \sin ^{2}(2 \theta)
\end{aligned}
$$

- Pbencia total (en todas las direccimes)

$$
P(t)=\int d \Omega \frac{d P}{d \Omega}=2 \pi \int_{0}^{\pi} d \theta \cdot \sin \theta \cdot \frac{P P}{d \Omega}(\bar{r} ; t)=\frac{8 \pi}{15} \frac{c}{4 \pi}\left(\frac{\ddot{Q}_{r}}{6 c^{3}}\right)_{t_{\text {ret }}}^{2}
$$

- Promedio temporal de $P(t)$:

$$
\langle P(t)\rangle_{T}=\frac{5 c}{32 \pi} \cdot\left(\frac{q r_{0}^{2} w^{3}}{c^{3}}\right)^{2} \cdot 4 \frac{8 \pi}{15}=\frac{1}{3} \cdot c\left(q \frac{q r_{0}^{2} w^{3}}{c^{3}}\right)^{2}
$$

Obs. La radiacioi euritida time frecoencia 2ω y 4ω (2 feewercias annónicas distintas). Para aplican las fórmular de l radiación de la térica hay que supuponer: $\bar{E}_{\text {iad }}^{\left(\omega_{1}=2 w\right)}+\bar{E}_{\text {rad }}^{\left(\omega_{2}=4 \omega\right)}=\bar{E}_{\text {rad }}$

