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An expression for the intensity of electromagnetic radiation is derived up to the order after

the dipole approximation. Our approach is based on the fundamental equations taught in

an introductory course in classical electrodynamics, and the derivation is carried out using

straightforward mathematical transformations. VC 2018 American Association of Physics Teachers.
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I. INTRODUCTION

Multipole expansion is a well-known technique in calcula-
tions of electromagnetic1,2 and gravitational fields3,4 at large
distances from sources. In stationary cases, such as electro-
static problems, this approach is mainly linked to simple
series expansions and certain symmetrization procedures.5,6

Treatment of magnetostatic problems requires more elabo-
rate techniques beyond the lowest order.7 It becomes even
trickier in the case of the electromagnetic radiation field.
Moreover, in textbooks on classical electrodynamics one of
the terms beyond the dipole approximation is typically omit-
ted in expressions for the radiated power even if the detailed
derivations are given (see, e.g., Refs. 8–10; for an exception
see Ref. 11).

The goal of this article is to derive an expression for the
radiated power in the approximation an order beyond the
dipole approximation, using the basic equations of electrody-
namics and the techniques from vector and tensor calculus.
From the methodological point of view, our approach is
advantageous compared to the derivations based on gauge
symmetries12 or on solutions to the scattering problem.13

Indeed, our derivation only requires knowledge of the funda-
mental relations from an introductory course in classical
electrodynamics and involves straightforward mathematical
transformations. In addition, the simplicity of our approach
allows one to obtain a correction to the dipole radiation suffi-
cient for any practical purposes; more general derivations
might be found in Refs. 7 and 14–17.

The rest of the paper is organized as follows. An expres-
sion for the radiated power via the Poynting vector and mag-
netic field is obtained in Sec. II. The multipole expansion of
the radiative part of the vector potential is given in Sec. III.
The detailed derivations of each contribution to the radiated
power are presented in Sec. IV. A brief discussion of the
results is given in Sec. V.

II. POYNTING VECTOR AND RADIATED POWER

In a region of space without charges or currents, the
energy conservation law for the electromagnetic field in dif-
ferential form is

@w

@t
þ div S ¼ 0; (1)

where w is the energy density (we use Gaussian units)

w ¼ E2 þ B2

8p
; (2)

and S is the energy flux density (the Poynting vector)

S ¼ c

4p
E� B: (3)

Applying Gauss’s theorem to Eq. (1), the radiated power

I ¼ � dW

dt
� d

dt

ð
w dV

can be reduced to the surface integral of the Poynting vector

I ¼
þ

R
S � dR ¼

ð
X¼4p
jSjr2 dX; (4)

where on the r.h.s. the integration is performed over the com-
plete solid angle. From this expression, one can conclude
that only those fields contribute to the radiation, which
ensure the dependence jSj / 1=r2 as r!1.

In the far zone, the magnetic and electric fields can be
written as the sums

E ¼ E0 þ E1; B ¼ B0 þ B1; (5)

where the second terms (E1 and B1) are proportional to 1/r
and thus correspond to the radiation part of the field.
Since the electric (E1) and magnetic (B1) field vectors are
orthogonal and equal by magnitude, it is sufficient to con-
sider the norm of the Poynting vector for the radiation
fields

jS1j ¼
c

4p
jE1 � B1j ¼

c

4p
jB1j2: (6)

Then the radiated power is given by

I ¼ c

4p

ð
X¼4p
jB1j2r2 dX: (7)

The magnetic field is

Bðr; tÞ ¼ $� Aðr; tÞ; (8)

where A(r, t) is the vector potential, which we calculate in
Sec. III.

III. VECTOR POTENTIAL

We consider a system of electric charges in a volume V
near the origin and assume that the observation point r is far
enough that: jrj � r � V1=3, see Fig. 1.
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The vector potential of such a system in the Lorenz gauge
is given by (cf. Ref. 8, p. 408)

Aðr; tÞ ¼ 1

c

ð
V

dV0
1

jr� r0j j r0; t� 1

c
jr� r0j

� �
; (9)

where dV0 � dx0 dy0 dz0, and where retardation effects have
been taken into account.

We write for r0 � r the following approximations over
r0=r:

1

jr� r0j ’
1

r
; (10)

jr� r0j ’ r � r0 � $r ¼ r � r0 � r
r

; (11)

or, using the unit vector n¼ r/r,

jr� r0j ’ r � n � r0: (12)

Further terms bringing higher powers of r in the denomina-
tors can be neglected when considering the radiation part of
the field.

Within this approximation, the vector potential yields

Aðr; tÞ ¼ 1

cr

ð
V

dV0 j r0; t� r

c
þ 1

c
n � r0

� �
: (13)

This can be expanded as a Taylor series in ðn � r0Þ=c as follows:

Aðr; tÞ ¼ 1

cr

ð
V

dV0 j r0; t� r

c

� �

þ d

dt

1

c2r

ð
V

dV0 n � r0ð Þ j r0; t� r

c

� �

þ d2

dt2

1

2c3r

ð
V

dV0 n � r0ð Þ2 j r0; t� r

c

� �
þ � � � :

(14)

The current density for a system of point changes ei at ri

moving with velocities vi ¼ _ri can be written using Dirac
delta-functions as follows:

jðr; sÞ ¼
X

i

eiviðsÞdðr� riðsÞÞ; (15)

where retarded time s¼ t – r/c was introduced for
convenience.

The first term in expansion (14) easily simplifies to the
time derivative of the dipole momentð

V

dV0 j r0; t� r

c

� �
¼
X

i

eiviðsÞ ¼
d

ds

X
i

eiriðsÞ

¼ d

ds
dðsÞ ¼ _dðsÞ: (16)

Thus, we have in the leading order

Aðr; tÞ ¼
_d t� r

c

� �
cr

þ � � � : (17)

To obtain the next-order correction, we make the follow-
ing transformations:ð

V

dV0 n�r0ð Þj r0;t�r

c

� �
¼
X

i

eiviðsÞ
ð

V

dV0n�r0d r0�riðsÞ
� �

¼
X

i

eivi n�rið Þ

¼
X

i

ei
dri

ds
n�rið Þ

¼1

2

d

ds

X
i

eiri n�rið Þ

þ1

2

X
i

ei vi n�rið Þ�ri n�við Þ
� �

¼1

2

d

ds

X
i

eiri n�rið Þ

þ1

2

X
i

ein� vi�rið Þ: (18)

As we will see below, in the radiation parts of the field, the
vector potential appears only as cross product with the unit
vector n. Thus, one can add to A an arbitrary vector propor-
tional to n without changing the results. It is convenient to
add to the first term of (18)

1

2

d

ds

X
i

eiri n � rið Þ !
1

2

d

ds

X
i

ei ri n � rið Þ � n
r2

i

3

� 	
:

We will work with the vector potential A shifted as described
above. The sum over i is a contraction of the electric quadru-
pole moment tensor

Qjk ¼
X

i

ei x ið Þ
j x ið Þ

k �
r2

i

3
djk

� 	

with the unit vector n, yielding some vector D with
components

Dj ¼
X

k

Qjknk: (19)

The remaining part of this correction involves the cross prod-
uct of the magnetic dipole moment

Fig. 1. The system of charges is located near the origin and a distant

observer sits at point r.
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m ¼ 1

2c

X
i

ei ri � vi (20)

with the unit vector n.
The last term, which is written explicitly in Eq. (14), can

be transformed as follows:

d2

dt2

1

2c3r

ð
V

dV0 n � r0ð Þ2 j r0; t� r

c

� �

¼ 1

2c3r

d2

dt2

ð
V

dV0 eiji r0; t� r

c

� �
nkx0knlx

0
l

¼ 1

2c2r
€Mikl r0; t� r

c

� �
nknlei; (21)

where the ei are the unit vectors of the Cartesian coordinate
system and the summation over repeating indices is
implied. The third-rank current quadrupole tensor is
defined as

Mikl ¼
1

c

ð
V

dV0 jix
0
kx0l: (22)

Note that we do not attempt to make this tensor traceless and
just retain the main x0kx0l term, which is sufficient for the pur-
poses of further derivations.

Collecting all contributions in Eq. (14), we arrive at the
vector potential in the following form:

Aðr; tÞ ¼
_d

cr
þ _m � n

cr
þ 1

2c2r
€D þ 1

2c2r
€Miklnknlei;

(23)

where all the quantities are evaluated at the retarded time
s¼ t – r/c. The resulting expression might be compared, e.g.,
to the radiation part of the vector potential in Ref. 18.

IV. BRINGING IT ALL TOGETHER

The next step is to calculate the magnetic field B using
expression (23) for the vector potential. We have

B ¼ $� A ¼ $�



1

cr
_d t� r

c

� �
þ 1

cr
_m t� r

c

� �

�nþ 1

2c2r
€D t� r

c

� �
þ 1

2c2r
€Mikl t� r

c

� �
nknlei

�
;

where, for convenience, we have written the time argument
explicitly.

In order to retain the radiation part B1 / 1/r, it is sufficient
to keep solely the terms where the nabla operator acts only
on the time argument

$� f t� r

c

� �
¼ $ t� r

c

� �
� _f t� r

c

� �

¼ 1

c
_f t� r

c

� �
� n:

This yields

B1 ¼
€d� n

c2r
þ €m � nð Þ � n

c2r
þ

€_D� n

2c3r

þ 1

2c3r
€_Miklnknl eirsnres: (24)

The four terms in Eq. (24) correspond to the electric
dipole, magnetic dipole, electric quadrupole, and current
quadrupole term, respectively. Explicitly this reads

B1 ¼ Bd þ Bm þ BQ þ BM; (25)

where (note the 1/c in the definitions of the magnetic
moments!)

Bd ¼
€d � n

c2r
/ 1

c2
; (26)

Bm ¼
n� n� €mð Þ

c2r
/ 1

c3
; (27)

BQ ¼
€_D� n

2c3r
/ 1

c3
; (28)

BM ¼
1

2c3r
€_Miklnknl eirsnres /

1

c4
: (29)

Thus, the magnitude of the Poynting vector contains the fol-
lowing terms:

jS1j ¼
1

4p

 
cjBdj2|fflffl{zfflffl}
/1=c3

þ 2c Bd � Bm|fflfflfflfflfflffl{zfflfflfflfflfflffl}
/1=c4

þ 2c Bd � BQ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
/1=c4

þ cjBmj2|fflfflffl{zfflfflffl}
/1=c5

þ cjBQj2|fflffl{zfflffl}
/1=c5

þ 2c Bm � BQ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
/1=c5

þ 2c Bd � BM|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
/1=c5

!

þO c�6ð Þ: (30)

A. Electric and magnetic dipole radiation

The leading contribution to the radiated power is given by
the electric dipole term. It reads

Id ¼
c

4p

ð
X¼4p
jBdj2 r2 dX ¼ 1

4pc3

ð
X¼4p
j€d � nj2 dX:

(31)

Assuming that €d is directed along the Oz axis and that the h
angle of the spherical coordinate system is that between €d
and n, we obtain

Id ¼
€d

2

4pc3

ð
X¼4p

sin2h dX ¼
€d

2

4pc3

ð2p

0

d/
ðp

0

dh sin3h

¼ 2€d
2

3c3
/ 1

c3
: (32)

In a similar fashion we can calculate the magnetic dipole
contribution
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Im ¼
c

4p

ð
X¼4p
jBmj2 r2 dX

¼ 1

4pc3

ð
X¼4p
j €m � nð Þ � nj2 dX (33)

considering h as the angle between €m and n. We thus see
that

Im ¼
2 €m2

3c3
/ 1

c5
: (34)

B. Terms with zero contributions

The product of the electric dipole and magnetic dipole
terms ðBd � BmÞ contains the scalar product

ð€d � nÞ � ð €m � nÞ � n½ � ¼ ð€d � nÞ � nðn � €mÞ � €m½ �

¼ ð€d � ðn� nÞ|fflfflfflffl{zfflfflfflffl}
¼0

Þðn � €mÞ � ð€d � nÞ � €m ¼ n � ð€d � €mÞ:

Integration of the respective term in Eq. (4) using spherical
coordinates with h corresponding to the angle between
ð€d � €mÞ and n yields zero due toðp

0

sin h cos h dh ¼ 0:

Similar considerations apply to the product of the electric
dipole and the electric quadrupole terms ðBd � BQÞ. This
product contains ð€d � nÞ � ð€_D� nÞ, which can be trans-
formed as follows:

ð€d � nÞ � ð€_D� nÞ ¼ €d � n� ð€_D� nÞ
 �

¼ €d � €_D� ðn � €dÞðn � €_DÞ:

Bearing in mind the definition ofD, we obtain

€d � €_D � €di
€_Di ¼ €di

€_Qijnj;

n � €dÞðn �€_DÞ � €dini
€_Djnj ¼ €di

€_Qjkninjnk;
�

where the summation over repeated indices is implied, as
before. It is easy to show that the integration of the ni

components over the complete solid angle gives zero,
e.g.,

ð
X¼4p

nx dX ¼
ð2p

0

dw
ðp

0

dh sin h � sin h cos w|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
nx¼x=r

¼ 0:

The same holds true for triple productsð
X¼4p

ninjnk dX ¼ 0:

This means that there is no contribution into the radiated
power from the product of the electric dipole and quadrupole
terms.

In fact, there is a common reason for the above two contri-
butions being zero: they contain products of an odd number
of ni components. Such expressions always yield zero upon
integration over the complete solid angle. This is a conse-
quence of independence of such an integral of the choice of
axes orientation. The product of an odd number of ni factors
is an odd-rank symmetric tensor, and the only tensor of this
type invariant under axes rotation is zero. The same rationale
would apply, e.g., to the products of ðBm � BMÞ and
ðBQ � BMÞ, which appear in higher orders of expansion of
the radiated power.

Consider now the product of the magnetic dipole and
the electric quadrupole terms ðBm � BQÞ. The expression
ð€_D� nÞ � ½ð €m � nÞ � n� can be transformed as

ð€_D� nÞ � ð €m � nÞ � n½ � ¼ n � ð€_D� €mÞ:

Since D is a vector obtained as a contraction of the electric
quadrupole moment tensor Qij with the unit vector n¼ r/r,
we obtain

n � ð€_D� €mÞ ¼ nieijk
€_Djmk ¼ eijk

€_Qjlnlnimk:

The integrals of two unit vectors over the solid angle can be
shown to equalð

X¼4p
nlni dX ¼ 4p

3
dli:

The Kronecker delta contracts with €_Qjl, hence the above
term is proportional to

eijk
€_Qjldlimk ¼ eijk

€_Qjimk ¼ 0

since this is the double contraction of the antisymmetric
Levi-Civita symbol with symmetric quadrupole tensor
derivatives.

Such a double contraction of the Levi-Civita symbol
with symmetric tensors will also yield zero contributions
for terms of a similar nature in higher orders of
expansion.

C. Electric quadrupole radiation

The square of the electric quadrupole term j€_D� nj2 can
be transformed as follows:

ð€_D� nÞ � ð€_D� nÞ ¼ €_D � €_D� ðn � €_DÞðn � €_DÞ

¼ €_Di
€_Di � ni

€_Dinj
€_Dj

¼ €_Qijnj
€_Qiknk � ni

€_Qiknknj
€_Qjlnl:

Thus, the power of the electric quadrupole radiation is
equal to

IQ ¼
c

4p
1

4c6

ð
X¼4p

€_Qij
€_Qiknjnk � €_Qik

€_Qjlninjnknl

n o
dX:

(35)

The integral of four unit vectors is (see Ref. 8, p. 415)
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ð
X¼4p

ninjnknl dX ¼ 4p
15

dijdkl þ dikdjl þ dildjk

� �
: (36)

Taking into account that the electric quadrupole moment ten-
sor is traceless, Qii¼ 0, Eq. (35) reduces to

IQ ¼
1

20c5
€_Qij

€_Qij ; (37)

where summation over indices i, j is implied.
It is worth noting that definitions of the quadruple moment

tensor differ in the literature. For instance, using the
definition

~Qjk ¼
X

i

eif3x
ðiÞ
j x
ðiÞ
k � r2

ðiÞdjkg

we obtain a different multiplier in the expression for the
quadrupole radiation power, viz.,

IQ ¼
1

180c5

€_~Qij
€_~Qij: (38)

D. Anapole radiation

The product of the electric dipole term

Bd ¼
1

c2r
€d � n ¼ 1

c2r
epqt

€dpnqet

with the current quadrupole term (29) yields

2 Bd�BM ¼ 2
1

c2r
epqt

€dpnqet�
1

2c3r
€_Miklnknl eirsnres

¼ 1

c5r2
et � es|ffl{zffl}
¼dts

epqteirsnknlnqnr
€dp

€_Mikl

¼ 1

c5r2
€dp

€_Miklepqteirtnknlnqnr:

It involves the contraction of the Levi-Civita symbols

epqteirt ¼ dpidqr � dprdqi

resulting in

2 Bd � BM ¼
1

c5r2
€di

€_Miklnknl � €dq
€_Miklnknlnqni

� �
;

where the square of a unit vector nrnr¼ 1.
We will denote the contribution to the radiated power

originating from this term as IA. It equals

IA ¼
c

4p
1

c5

ð
X¼4p

€di
€_Miklnknl � €dq

€_Miklnknlnqni

� �
dX:

Performing the transformations in a manner similar to that in
Subsection IV C when dealing with the electric quadrupole
radiation, we arrive at

IA ¼
1

c4

4

15
€_Mikk

€di �
2

15
€_Miik

€dk

� �

¼ � 2

15c4
€_Mkki � 2 €_Mikk

� �
€di:

This result can be presented in a more convenient form intro-
ducing a vector

TðsÞ ¼ 1

10
Mkki � 2Mikkð Þei

¼ 1

10c

ð
V

dV0 j r0; sð Þ � r0
� �

r0 � 2r02 j r0; sð Þ
� �

(39)

known as the anapole [The term was proposed by
Zel’dovich following the suggestion by Kompaneets (Ref.
19).] moment or toroidicity. The former name is due to the
fact that this expression has no correspondence in the multi-
pole expansion of static electric and magnetic fields. On the
other hand, a toroidal solenoid produces a field, which can
be described by T. Note that terms corresponding to the
toroidal moments are sometimes included in the definitions
of the dynamic electric multipole moments, and correspond-
ing terms given for the radiated power.11,13,17

The power of the anapole radiation is thus

IA ¼ �
4

3c4
€_T � €d: (40)

In summary, the radiated power up to 1/c5 is given by

I ¼ Id þ Im þ IQ þ IA

¼ 2€d
2

3c3

þ2 €m2

3c3
þ 1

20c5
€_Qij

€_Qij �
4

3c4
€_T � €d: (41)

Since the 1/c factor enters both the magnetic moment and
the toroidicity, each of the last three terms is proportional
to 1/c5, and is therefore a 1/c2 lower correction to the lead-
ing term, i.e., to the (electric) dipole approximation. Any
subsequent terms in the expansion of the vector potential
would yield corrections of the order 1/c7 and higher. From
the considerations of symmetric properties of tensor prod-
ucts, it can be shown that even powers of 1/c would be
missing from the expansion, just as the 1/c4 terms are miss-
ing in Eq. (30).

V. DISCUSSION

It is not difficult to see why the anapole term is often
neglected when considering the radiated power. The reason
is that IA contains the second time derivative of the electric
dipole moment €d, which also defines the electric dipole radi-
ated power Id. Usually, the latter is sufficient as the principal
approximation and the calculation of the corrections is
required only if Id¼ 0. But in this case €d ¼ 0 and hence
IA¼ 0 as well. This means that the anapole term becomes
relevant only if the radiated power requires a higher preci-
sion than the dipole term alone.

In the static case, the electromagnetic field of the torus is
zero outside the system but time-dependent distributions of
charges and currents generate the electric field, in particular,
with the radiation pattern of a dipole.20 Such a moment is
known as toroidicity, toroidal dipole or anapole moment. In
higher approximations, other toroidal multipoles appear as
well.7,14,15,17

Applying the same strategy as in derivations of the electric
and magnetic dipole radiation in Sec. IV A, it is straightfor-
ward to show that the radiation of the torus is given by
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Itorus ¼
2 €_T

2

3c5
/ 1

c7
: (42)

This contribution, together with the electric dipole (32) and
anapole (40) radiation, completes the square

Idþt ¼
2

3c3
€d � 1

c
€_T

� �2

¼ 2€d
2

3c3
� 4

3c4
€_T � €d þ 2 €_T

2

3c5
;

(43)

cf. also Ref. 14.
In summary, we have obtained an expression for the

power of electromagnetic radiation in the approximation
beyond the dipole approximation, i.e., with terms propor-
tional to 1/c5, which is an accuracy sufficient for compari-
sons with most present-day measurements.

ACKNOWLEDGMENTS

The authors are grateful to Volodymyr Tkachuk,
Svyatoslav Kondrat, and Tim Brookes for critical reading of
the manuscript and for the feedback. The authors appreciate
comments from the anonymous Referees.

a)Electronic mail: andrij.rovenchak@lnu.edu.ua
b)Electronic mail: yurikryn@gmail.com
1J. Frenkel, Allgemeine Mechanik der Elektrizit€at (Springer-Verlag, Wien,

1926).
2J. B. French and Y. Shimamoto, “Theory of multipole radiation,” Phys.

Rev. 91(4), 898–899 (1953).
3Kip S. Thorne, “Multipole expansions of gravitational radiation,” Rev.

Mod. Phys. 52(2), 299–339 (1980).
4Luc Blanchet, “On the multipole expansion of the gravitational field,”

Class. Quantum Grav. 15(7), 1971–1999 (1998).

5Carl A. Kocher, “Point-multipole expansions for charge and current distri-

butions,” Am. J. Phys. 46(5), 578–579 (1978).
6M. Bezerra, W. J. M. Kort-Kamp, M. V. Cougo-Pinto, and C. Farina,

“How to introduce the magnetic dipole moment,” Eur. J. Phys. 33(5),

1313–1320 (2012).
7C. G. Gray, G. Karl, and V. A. Novikov, “Magnetic multipolar contact

fields: The anapole and related moments,” Am. J. Phys. 78(9), 936–948

(2010).
8John David Jackson, Classical Electrodynamics, 3rd ed. (John Wiley &

Sons, Inc., New York, 1999).
9David J. Griffiths, Introduction to Electrodynamics, 3rd ed. (Prentice Hall,

Upper Saddle River, New Jersey, 1999).
10L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields, 3rd

revised English edition (Pergamon Press, Oxford–New

York–Toronto–Sydney–Braunschweig, 1971).
11C. G. Gray, “Multipole expansions of electromagnetic fields using Debye

potentials,” Am. J. Phys. 46(2), 169–179 (1978).
12V. M. Dubovik and L. A. Tosunyan, “Toroidal moments in the physics of

electromagnetic and weak interactions,” Sov. J. Part. Nucl. 14(5), 504–519

(1983).
13Rasoul Alaee, Carsten Rockstuhl, and I. Fernandez-Corbaton, “An electro-

magnetic multipole expansion beyond the long-wavelength approx-

imation,” Opt. Commun. 407, 17–21 (2018).
14V. M. Dubovik and V. V. Tugushev, “Toroid moments in electrodynamics

and solid-state physics,” Phys. Rep. 187(4), 145–202 (1990).
15C. Vrejoiu and R. Zus, “Singular behavior of the multipole electromag-

netic field,” J. Phys. A 43(40), 405208 (2010).
16E. Radescu, Jr. and G. Vaman, “Cartesian multipole expansions and tenso-

rial identities,” Prog. Electromagn. Res. B 36, 89–111 (2012).
17Ivan Fernandez-Corbaton, Stefan Nanz, and Carsten Rockstuhl, “On the

dynamic toroidal multipoles from localized electric current distributions,”

Sci. Rep. 7(1), 7527 (2017).
18R. E. Raab and O. L. de Lange, Multipole Theory in Electromagnetism:

Classical, Quantum: Symmetry Aspects, with Applications (Clarendon

Press, Oxford, 2005), p. 17.
19Ia. B. Zel’dovich, “Electromagnetic interaction with parity violation,”

J. Exp. Theor. Phys. 6(6), 1184–1186 (1957).
20N. J. Carron, “On the fields of a torus and the role of the vector potential,”

Am. J. Phys. 63(8), 717–729 (1995).

732 Am. J. Phys., Vol. 86, No. 10, October 2018 A. Rovenchak and Y. Krynytskyi 732

mailto:andrij.rovenchak@lnu.edu.ua
mailto:yurikryn@gmail.com
https://doi.org/10.1103/PhysRev.91.898
https://doi.org/10.1103/PhysRev.91.898
https://doi.org/10.1103/RevModPhys.52.299
https://doi.org/10.1103/RevModPhys.52.299
https://doi.org/10.1088/0264-9381/15/7/013
https://doi.org/10.1119/1.11282
https://doi.org/10.1088/0143-0807/33/5/1313
https://doi.org/10.1119/1.3427412
https://doi.org/10.1119/1.11364
https://doi.org/10.1016/j.optcom.2017.08.064
https://doi.org/10.1016/0370-1573(90)90042-Z
https://doi.org/10.1088/1751-8113/43/40/405208
https://doi.org/10.2528/PIERB11090702
https://doi.org/10.1038/s41598-017-07474-4
https://doi.org/10.1119/1.17842

	s1
	d1
	d2
	d3
	s2
	d4
	d5
	d6
	d7
	d8
	s3
	d9
	d10
	d11
	d12
	d13
	d14
	d15
	d16
	d17
	d18
	s3
	d19
	d20
	f1
	d21
	d22
	d23
	s4
	d24
	d25
	d26
	d27
	d28
	d29
	d30
	s4A
	d31
	d32
	d33
	d34
	s4B
	s4C
	d35
	d36
	d37
	s4C
	d38
	s4D
	d39
	d40
	d41
	s5
	d42
	d43
	n1
	n2
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20

