Física Teórica 2

Primer cuatrimestre de 2013 **Guía 9**: Partículas idénticas

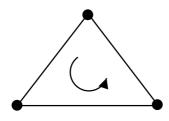
- 1. (a) N partículas idénticas de espín 1/2 están sometidas a un potencial de oscilador armónico unidimensional. ¿Cuál es la energía del estado fundamental?
 - (b) Suponga N=2. Escriba el vector de estado del sistema correspondiente al estado fundamental. ¿Existe alguna restricción para el valor del espín total del sistema? Interprete físicamente.
- 2. Construya los estados posibles de varias partículas en cada uno de los siguientes casos:
 - (a) Dos bosones de espín 1.
 - (b) Tres bosones de espín 1.
 - (c) Dos fermiones de espín 7/2.
- 3. Dos partículas distinguibles de espín 1 sin impulso angular orbital pueden tener j=0, j=1, o j=2. Suponga ahora que las partículas son idénticas. ¿Qué restricciones se obtienen?
- 4. Sean dos partículas en la órbita N=2=2n+l del oscilador armónico tridimensional isótropo. Considere que dichas partículas son:
 - (a) fermiones de espín 1/2,
 - (b) bosones de espín 0.

De un listado de los posibles estados de dos partículas utilizando las siguientes bases (J = L + S):

- (i) $l_1 l_2 s_1 s_2 m_{l_1} m_{l_2} m_{s_1} m_{s_2}$,
- (ii) $l_1 l_2 s_1 s_2 j_1 j_2 m_{j_1} m_{j_2}$,
- (iii) $l_1 l_2 s_1 s_2 j_1 j_2 J M_J$,
- (iv) $l_1 l_2 s_1 s_2 L S M_L M_S$,
- (v) $l_1 l_2 s_1 s_2 L S J M_J$.

¿Podría calcular en forma simple el número de estados en cada caso? [Ayuda: recuerde que para una partícula bajo la acción de un potencial de oscilador armónico tridimensional isótropo se satiface $E_N=\hbar\omega(N+3/2)$.]

5. Tres partículas idénticas de espín 0 están situadas en los vértices de un triángulo equilatero (ver figura). El eje z es perpendicular al plano del triángulo y pasa por su centro. Todo el sistema puede rotar libremente alrededor de dicho eje. Obtenga restricciones para los valores posibles de J_z .



1

6. Considere tres partículas idénticas de espín 1 que interactúan débilmente.

- (a) Suponga que se sabe que la parte espacial del vector de estado es simétrico respecto del intercambio de cualquier par de partículas. Utilizando la notación $|+\rangle |0\rangle |+\rangle$ para el caso en que la partícula 1 está en $m_s=1$, la partícula 2 en $m_s=0$ y la partícula 3 en $m_s=1$, construya los estados de espín normalizados en los siguientes tres casos :
 - (i) Las tres partículas en el estado $|+\rangle$.
 - (ii) Dos de ellas en $|+\rangle$, la otra en $|0\rangle$.
 - (iii) Las tres en diferentes estados de espín.

¿Cuál es el espín total en cada caso?

- (b) Trate de resolver el mismo problema cuando la parte espacial es antisimétrica ante el intercambio de cualquier par de partículas.
- 7. Suponga que el electrón es una partícula de espín 3/2 obedeciendo la estadística de Fermi-Dirac. Escriba las configuraciones de un hipotético átomo de Ne (Z=10) hecho de este tipo de electrones (es decir, el análogo de $1s^2$ $2s^2$ $2p^6$). Muestre que la configuración es altamente degenerada. ¿Cuál es el estado fundamental del hipotético átomo de Ne en notación espectroscópica ($^{2S+1}L_j$, donde S, L y J son respectivamente el espín total, el momento angular orbital total y el momento angular total), cuando se tiene en consideración el desdoblamiento por intercambio y el de espín-órbita?
- 8. Dos fermiones idénticos de espín 1/2 se mueven en una dimensión bajo el efecto de un potencial de pozo infinito

$$V(x) = \begin{cases} \infty & \text{para } x < 0, x > L \\ 0 & \text{para } 0 \le x \le L \end{cases}.$$

- (a) Escriba la función de onda y la energía del estado fundamental cuando las dos partículas se encuentran en un triplete de espín.
- (b) Repita (a) cuando las partículas se encuentran en el singlete de espín.
- (c) Suponga ahora que las dos partículas interactúan mutuamente mediante un potencial de corto alcance que puede ser aproximado por

$$V = -\lambda \delta(x_1 - x_2) \;,$$

con $\lambda > 0$. Asumiendo que la teoría de perturbaciones es válida para este potencial, discuta que pasa con los niveles de energía obtenidos en (a) y (b).

9. Considere el siguiente modelo unidimensional de molécula de hidrógeno. Dos electrones se mueven en una dimensión sometidos a un potencial de la forma

$$V(x) = V_0[\delta(x-a) + \delta(x+a)],$$

donde $V_0 > 0$.

- (a) Resuelva el problema considerando a los electrones indistinguibles.
- (b) Considere ahora un potencial de interacción repulsivo entre ambos electrones, de la forma

$$W(x_1, x_2) = -V_0 \delta(x_1 - x_2) .$$

Resuelva el problema a primer orden en la perturbación W analizando las características de la contribución debida a la antisimetrización de la función de onda (término de intecambio).

10. Se tiene un hamiltoniano h con tres niveles de energía 0, $\hbar\omega$, y $2\hbar\omega$. La única degeneración que tienen estos niveles es debida al espín.

- (a) Se colocan tres partículas de espín 1/2 que no interactúan entre sí. El hamiltoniano del sistema de tres fermiones es H=h(1)+h(2)+h(3), donde los números indican las variables de configuración de cada partícula. Halle todos los autovalores y autovectores de H especificando el grado de degeneración de los niveles.
- (b) Repita el cálculo para un conjunto de tres bosones de espín 0.
- 11. Considere cuatro partículas no interactuantes que están descriptas por el hamiltoniano

$$H = h(1) + h(2) + h(3) + h(4)$$
,

donde

$$h(i) = \frac{p_i^2}{2m} + \frac{m\omega^2 x_i^2}{2} \ .$$

- (a) Si las partículas son distinguibles, halle los autoestados y energías del sistema. ¿Cuál es la degeneración de los tres estados de menor energía?
- (b) Si las partículas son indistinguibles de espín 0, ¿cuáles son los posibles estados físicos y cuál es la degeneración de las energías?
- (c) ¿Cuál es el estado fundamental y su degeneración si las partículas tienen espín 1/2?