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(Received 3 August 1970) 

The relativistic Kepler problems in Dirac and Klein-Gordon forms are solved by dynamical group 
methods for particles having both electric and magnetic charges (dyons). The explicit forms of the 
0(4, 2)-algebra and two special 0(2, I)-algebras (which coincide in the symmetry limit) are given, and a 
new group-theoretical form of the symmetry breaking is pointed out. The Klein-Gordon 0(2, I)-algebra 
also solves the dynamics in the case of very strong coupling constants (attractive singular potential), 
if the principal series of representations is used instead of the discrete series. 

1. INTRODUCTION 

It is well known by now that the nonrelativistic 
Schrodinger theory for the Kepler problem can be 
treated completely algebraically in an irreducible 
unitary representation of the dynamical group 0(4,2). 
In the Appendix, to which we shall refer frequently, 
we give a new version of this treatment. It is also clear 
that the relativistic Kepler problem (Klein-Gordon 
and Dirac equations) does not have the 0(4)-sym­
metry of the nonrelativistic problem. If the two 
particles forming the atom have both electric and 
magnetic charges, then the 0(4)-symmetry is broken 
even in the nonrelativistic Kepler problem. The main 
purpose of this paper is to show the remarkable 
group-theoretical way the 0(4)-symmetry is broken 
in the above cases. All the above problems are 
actually exactly soluble, though some of these 
solutions have not yet been reported in the literature. 
We hope also to demonstrate the power of the method 
of dynamical groups in solving these problems, 
including the strong coupling case. 

For the ordinary relativistic Dirac problem, the 
correspondence between the bound-state spectrum and 
an 0(4, I)-representation was given by Kiefer and 
Fradkin1 and Pratt and Jordan.2 The spectrum­
correspondence is not the complete solution of the 
problem and the operators given in Ref. 1 are ex­
tremely complicated, because at that time the im­
portance of the tilted states (see Appendix) was not 
recognized. The role of the 0(4)-symmetry of the 
relativistic hydrogen atom (no spins) in covariant 
theories based on the Bethe-Salpeter equation was 
studied in Refs. 3 and 4. Although the use of the 
dynamical group 0(2, 1) for the radial wave equation 
of the Klein-Gordon and second-order Dirac equa­
tions is also known,5 the complete dynamical group has 
not been given before. 

Early studies of the group property and solution of 

the Kepler problems with both electric and magnetic 
charges are due to Fierz6 and Banderet.7 More 
recently Hurst8 related the Dirac quantization 
condition9 to the condition of integrability of the Lie­
algebra to the Lie group. ZwanzigerlO has solved a 
related nonrelativistic, Kepler problem with magnetic 
charges plus an extra particular 1/r2 potential by 
using the 0(4)-symmetry. This case is particularly 
simple, as we shall observe again. The relativistic 
Kepler problem with magnetic monopoles, as far as 
spectrum is concerned, was studied recently by 
Berrondo and McIntoshY It was then recognized 
that the Kepler problem with magnetic charges 
realizes a different representation of the dynamical 
group 0(4,2) than the ordinary Kepler problem, 
and a new quantum number f.1, arises.12 With this a 
connection is established to the 0(4, 2)-models of 
hadrons and to a theory of electromagnetic origin of 
strong interactions.12 

Thus the motivation to complete the study of the 
Kepler problem with magnetic charges is threefold: 

(1) to give the solutions of the Schrodinger, Klein­
Gordon, and Dirac forms of the Kepler problem in 
the case of particles with both electric and magnetic 
charges and to treat the case of the very large coupling 
constant; 

(2) to exhibit the dynamical group 0(4, 2) for these 
cases and the nature of symmetry breaking, because 
the type of symmetry breaking may be applicable to 
other symmetry-breaking processes; 

(3) to have results applicable to the theory of strong 
interaction phenomena based on the concept of 
magnetic charges. 

We should mention that the spin-orbit symmetry 
breaking of the relativistic atom has also been treated 
in the context of the covariant infinite-dimensional 
wave equations. In the spinless case, the relevant 
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infinite component wave equation for the H atom 
contains also correctly the recoil effects.13 In the case 
of spin, one can use the basic 0(4, 2)-group (enlarged 
by Dirac matrices to account for the spins), but one 
adds suitable new terms in the wave equation to 
describe the spin-orbit interactions.14 

2. GROUP THEORETICAL SOLUTIONS 

A. Hamiltonians 

It will be convenient to treat Schrodinger, Klein­
Gordon, and Dirac forms in a parallel fashion, as we 
go along. 

We consider a particle with electric charge e and 
magnetic charge g, or simply with charge q = (e, g). 
The electromagnetic field is described by the vector 
potentials Ap, = (Ao, -A) = (qJE' -AB) and Ap, = 
(1'0' -A) = (qJB' +AE)' The relativistic Lagrangian 
of the spin less particle in the field is 

L = mc.Ju 2 + (e/c)Ap,uP, + (g/c)Ap,u". (2.1) 

Hence we have the canonical momentum 

p" = mcu" + (e[c)A". + (g[c)A". (2.2) 

and, from the Euler-Lagrange equation, the Minkowski 
force 

where 

F".v = Av;p, - Ap,;v, 
- - - 1 F).P Fp,v = Av;p, - Ap,;v = z€"v;'p . 

(2.3) 

From the spatial components of K" we find, as 
desired, 

F = eE - (e/c)(B x v) + gB + (gjc)(E x v). (2.3') 

Because ullu". = 1, we obtain from (2.2) 

[PIl - (ejc)AIl - (g/c)A,,]2 = m2c2. (2.4) 

Consequently, 

H IKGl == cpo = eAo + gAo 

+ [m 2c4 + (cp - eA - gA)2]!. (2.5) 

This is the desired Hamiltonian in the Klein-Gordon 
form. To obtain the Hamiltonian in the Schrodinger 
form, we expand formally the square root and 
subtract the rest energy (physically this expansion is 
meaningful only if A is small because g is very large!) 
with the following result : 

HIS) == eAo + gAo + (1/2m)[p - (e/c)A - (g/C)A]2. 

(2.6) 

Finally, the Dirac form of the Hamiltonian is obtained 
by linearizing (2.5) with Dirac matrices: 

HiD) == eAo + gAo + ex· (cp - eA - gA) + yOmc2
• 

(2.7) 

We also give the second-order Dirac Hamiltonian 

W) - ( - 2 2 4 H II == eAo + gAo + [ cp - eA - gA) + m c 

- elic(o • B - iex· E) 

- glic( - a . E - iex • B)]!. (2.8) 

B. Two-Body System 

Let the particle of charge ql = (el' gl) move now in 
the field of another particle of charge q2 = (e2, g2) 
situated at the origin and thought to be heavy. In 
Eqs. (2.5)-(2.8), we replace (e, g) by (el , gl) and (in 
Gaussian units) let 

e2 
Ao = -, 

r 
where 

D(r) = r x n(r. n) , (2.9) 
r[r2 - (r. 1\)2] 

where il is an arbitrary unit vector. D(r) has the desired 
property V x D(r) = i/r2. We then obtain, with the 
abbreviations (Ii = c = I) 

IX = -(ele2 + glg2), 

'" = (elg2 - gle2), 

7t = P - ",D(r), 

the Hamiltonians 

HIS) == O/2m)1T2 - IX/r, 

H(KGl == [1T2 + m2]! - IX/r, 

HjD> == ex • 7t + yOm - IX/r, 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

Hjf) == [1T2 + m2 
- (",0 + iIXex) • i/r2]! - IX/r. 

C. The Dynamical Group 0(4,2) and the Two 0(2, 1)­
Algebras 

Consider the following generalized operators which 
reduce to those of the usual hydrogen atom, (AI) 
and (AI4), in the special case", = 0: 

J = r x 7t - ",i, 

2 ",2 
A = tr1T - 7t(r. 7t) + (",/r)J + -2 r - ir, 

2r 

2 ",2 
M = ir1T - 7t(r • 7t) + (",/r)J + -2 r + ir, 

2r 

r = r7t, 

r o = lCr1T2 + r + ",2/ r ), 

r 4 = i(r1T2 - r + ",2/r), 

T=r·7t-i. 

(2.14) 

These operators also satisfy the commutation relations 
of the Lie algebra of 0(4,2) as before, as can be 
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verified by direct, though laborious, calculation. This 
fact is more remarkable than it appears at first glance, 
for the generalized momenta 7t = P - ,uD(r) [see 
Eqs. (2.12) and (2.9)] no longer commute among 
themselves as do the canonical momenta p; rather we 
find [7Ti' 7T j ] = i,ueiikxkjr3. The Casimir operator of 
the 0(2, 1 )-subgroup generated by f 0' f 4, T is again 
as in (A3) 

Q2 = r~ _ r! - T2 = J2. (2.15) 

Thus, if we had an associated Hamiltonian 

Ha == 7T2j2m - ocjr + Il2j2mr2, 

we would have 

e = r(Ha - E) 

'(2.16) 

= (lj2m)(fo + f 4) - E(fo - f 4) - oc, 

i.e., precisely the same equation as (A4); hence all the 
equations up to (A13) would equally apply to this 
case. Instead of Eq. (AI5) the Casimir operators 
would beI5 

Q2 = 3(,u2 - 1), 

Qa = 0, Q4 = ,u2(l - ,u2). (2.17) 

In particular, we would have 0(4) symmetry, the 
Balmer formula (A8), etc. This is indeed the case 
studied by Zwanziger,1° but not the case we want to 
solve. There is no physical reason to assume the extra 
scalar potential ,u2/2mr2 in (2.16). Instead we want to 
use the Hamiltonians (2.13) which include no extra 
scalar potential. 

We notice that the three operators 

r~ = !(r7T2 + r), 
r~ = !(r7T2 - r), 

T'= T 

(2.18) 

also generate an 0(2, I)-algebra with the Casimir 
operator 

(2.19) 

For our Hamiltonian HCs) == 7T2/2m - oc/r, we have 

e = r(H CS ) - E) 

= (1/2m)(r~ + r~) - E(r~ - r~) - oc, (2.20) 

again an equation of exactly the same type as (A4). 
Thus, in terms of the spectrum of f~ and f~, we can 
immediately use the solutions (A8) and (All), The 
only thing we do not know a priori is the range of 
(J2 - ,u2), Eq. (2.19), that is contained in the spectrum 
of H CS ). For the ordinary atom, a single representation 
of the full dynamical group 0(4,2) [Eqs. (AI4) and 
(AI5)] determines the spectrum of the Casimir 
operator Q2 of the 0(2, I)-subgroup and hence ]2. 

Now, however, the primed generators (2.18) cannot 
be completed to an 0(4,2)-algebra as the un primed 
ones given in (2.14). Indeed, if they could be, we 
would still get an 0(4)-symmetry which we know we 
do not have. Thus, we have two 0(2, I)-algebras, 
each commuting with J, whose Casimir operators, 
(2.15) and (2.19), are related by 

(2.2l) 

We can indeed view ,u2 as the parameter of symmetry 
breaking; for ,u2 = ° we get back the results of 
the Appendix. It is important to note that the "un­
symmetrical" case is also exactly soluble; this is because 
we know the range of J2 from the 0(4, 2)-representation 
(2.14), and we know the spectrum of f~ and f~ from 
the value of Q'2. Thus, for E < 0, we solve e<I> = ° 
(2.20) by analogy with (A 7) and (A8), and im­
mediately have 

[( -2E/m)!r~ - oc]<l> = ° 
and 

(2.22) 

where n' is the (discrete) spectrum of f~. From (2.19), 
letting 

Q'2 = j(j + 1) _ ,u2 = cp'(q/ + 1), 
we find 

cp' = -t ± [(j + t)2 - ,u2]!. (2.23) 

Hence in the D+-representation of 0(2, I)-which is 
bounded below-the spectrum of f~ has the range 

n' = _ cp', - cp' + 1, - cp' + 2, ... 

= t + [(j + W- ,u2]i, t + [(j + W - ,u2]i, . ... 

(For comparison the range of the eigenvalues of fo 
is n = j + 1, j + 2,'" .) Consequently, Eq. (2.22) 
can be written as 

E. = -tmoc2{s + t + [(j + W - ,u2]i}-2, 

S = 0, 1,2,3,···. (2.24) 

For,u = 0, we recover the Balmer formula. For fixed 
,u :;!: 0, we see from the 0(4,2)-representation 
(2.14)-(2.17) that again, for each n(fo), the range ofj 
is 

j:I,uI, l,ul + 1, l,ul + 2,'" n - 1, (2.25) 

which completes the specification of the spectrum.15 

In the case of the Klein-Gordon Hamiltonian, the 
0(4,2)-representation (2.14) remains the same. But 
instead of (2.18), we see that 

r~ = t(r7T2 + r - oc2/r), 

r; = !(r7T2 - r - oc2/r), (2.26) 

T'= T 
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also form the Lie algebra of an 0(2, I)-group with 
the Casimir operator 

Q,2 = r~2 _ r~2 _ T2 = J2 _ ft2 _ rt2 = cp'(cp' + 1), 

so that 
cp' = -i ± [(j + t)2 - ft2 - rt2]!. (2.27) 

The Lie algebra (2.26) solves the square of H(KGl 

given in (2.13) in the sense that 

o = r[(H(KG) + rt/r)2 - (E + rt/r?] 

= r7T2 - (E2 - m2)r - 2rtE - rt2/r 

= r~ + r~ - (E2 - m2)(r~ - r~) - 2ocE, (2.28) 

which is again an equation of the type (A4) or (2.20). 
The equation 0 <i> = ° can again easily be solved by 
putting <i> = ei8T<D and by choosing tanh (j = (E2 -

m2 + 1)/(E2 - m2 - 1). Then 

{[ -4(E2 - m2)]!r~ - 2rtE}<D = O. (2.29) 

From (2.27), the spectrum of r~ is given by 

n' = s + t + [(j + t)2 - ft2 - rt2]!, 

s=0,1,2,···. 

Hence, the energy spectrum becomes 

E. = m(l + rt2{s + t + [(j + t)2 - ft2 - rt2]!}-2)-! 

s = 0, 1,2,···. (2.30) 

Finally, in the case of the second-order Dirac equation, 
we introduce instead of (2.26) the 0(2, I)-algebra 

r~ = t{r7T2 + r + (1/r)[ _rt2 
- (fta + irta.) • il}, 

r~ = t{r7T2 - r + (1/r)[ _rt2 - (fta + irta.) • il}, 

T' = T, (2.31) 

with the Casimir operator 

Q'2 = J2 - ft2 - rt2 - (fta + irta.) • i. (2.32) 

The operator 

r = a • J + (fta + irta.) • i + 1 

has the property that 

r 2 = (J + ta)2 - ft2 - rt2 + t. 
Let 

(t=J+ta; 
then 

(2.33) 

f2 = (t2 - ft2 - (,(2 + t = j(j + 1) - ft2 - (,(2 + <1-. 

(2.34) 

r are then 

r:y = ± [(j + W - ft2 - (,(2]!. (2.35) 

Now, from (2.32), 

Q'2 = r 2 _ r = y2 - Y = cp' (cp' + 1) 
or 

cp' = -y or y - 1. (2.36) 

For the Dirac Hamiltonian (2.13), we get then from 
the second-order equation 

(0 = r[(H(D) + (,(/r)2 - (E + (,(/r)2] 

= r7T2 - (E2 - m2)r - 2rtE - (l/r) 

x [(,(2 + (Ila + irta.) • i] 

= r~ + r~ .,... (E2 - m2)(r~ - r~) - 2('(E, (2.37) 

i.e., the same equation as (2.28). Thus we can im­
mediately write down the energy spectrum in analogy 
to the previous case: 

Es = m[l + (,(2{S + [(j + W - ft2 - (,(2]!}-2]-!, 

s = 0, 1,2,3, .. ·. (2.38) 

This differs from the Klein-Gordon spectrum (2.30) 
in the additive term t after s and in the eigenvalue j 
of total angular momentum which here includes spin. 

D. The Case of Large Coupling Constants 

Equations (2.30) and (2.38) hold only for a small 
coupling constant 

(,(2 < (j + W - ft2, 

because then cp' [which is associated with the Casimir 
operator Q'2 of 0(2, 1)] is real [Eq. (2.27)], and we 
obtain the D+-representations of the discrete series. 

If (,(2 is large, however, as is the case for magnetic 
charges, (rt = 137/4 instead of 1/137 for ordinary 
atoms !)12 we must use for cp' a value corresponding to 
the principal series of representations 

cp' = -t + 0.., A real. (2.39) 
Then 

Q'2 = cp'(g/ + 1) = _/1.2 - i. 

In the case of the Klein-Gordon equation, for 
example, from Eq. (2.27) 

Q'2 = J2 _ ft2 _ (,(2, 

and we obtain 

(2.40) 

Note that j now denotes the total angular momentum Thus we have a particular representation in the 
of the spin-t particle in the atom. The eigenvalues of principal series. 
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In the case of the principal series of representations 
of the Lie algebra of 0(2, 1), the spectrum of r 0 

ranges from - 00 to + 00, i.e., it is not bounded below. 
Moreover, a new invariant quantum number Eo 
occurs in addition to the invariant cp.16 The spectrum 
of f~ is then 

eigenvalues n if E < O. Hence, 

En = -Hmrx2/n2). (A8) 

For E > 0, fo cannot be diagonalized; we go back to 
Eqs. (A4) and (A5), and let 

(A9) 
r~:Eo + s, s = 0, ±1, ±2, .... 

We have then from (2.29) 

(2.41) and choose tanh 0' = (E - I/2m)/(E + I/2m). Then 
again, from (A5), 

Es = m [1 + rx2(s + EO)-2]-!. (2.42) [(2E/m)!r4 - rx]cIJ' = 0. (AlO) 

The new quantum number is fixed within the 0(2, 1)­
subgroup; it can be determined only within the 
representation of the big group 0(4, 2). 

The physical reason for the drastic change in the 
case of a large coupling constant for relativistic 
equations is that we now have a large attractive 
singular potential at r = O. In the case of attractive 
singular potentials we cannot use the usual boundary 
conditions of the Schrodinger treatment; the solutions 
form an overcomplete set, and one needs indeed a 
new quantum number to characterize the problem 
completely.17 

The operators 

APPENDIX 

ro = Hrp2 + r), 
r 4 = Hrp2 - r), 

T=r·p-i 

(AI) 

satisfy the commutation relations of the Lie algebra 
of the group 0(2, 1): 

[ro, r 4] = iT, [r4' T] = -Wo, [T, ro] = ir4 · 

(A2) 
The Casimir operator is given by 

Q2 = r~ _ r~ - T2 = (r x p)2 = J 2
• (A3) 

Consequently, from the Hamiltonian H = p2/2m -
rx/r, we obtain (Ii = c = 1) 

0== r(H - E) = 1/2m(fo + fJ - E(ro - f 4) - rx. 

(A4) 
The equation 

(A5) 

can be solved as follows. Let 

<1> = ei8T<D, (A6) 

and choose tanh 0 = (E + I/2m)/(E - 112m); then 
Eq. (A5) reduces to 

[( - 2E/m)!r 0 - rx]cIJ = O. (A 7) 

Thus <D's are the eigenstates of f 0 with discrete 

Now r 4 has a continuous real spectrum 2. Hence 

E = Hmrx2/22). (All) 

The states <1> must be normalized as follows, 

(<1>1 (ro - r 4) 1<1» = 1, (AI2) 

and are not identical with the Schrodinger wavefunc­
tions 'If. The physical normalized solutions of (A5) 
are then 

<1> = (lln)ei8T In), (A 13) 

where In) is a basis of the discrete unitary irreducible 
0(2, 1) representation D~ with Casimir operator 
given in Eq. (A3): Q2 = j(j + 1) = cp(cp + 1), cp < O. 
Hence cp = -j - l. Therefore, for each j, n = 
j + 1 ,j + 2, .. '. Similar equations hold for the 
continuous spectrum. 

The treatment above does not tell us yet what 
values of j occur; it is yet incomplete. The complete 
solution is as follows. The operators (AI) together 
with 

J = r x p, 

A = irp2 - p(r. p) - ir, 

M = irp2 - p(r. p) + ir, 

r = rp 

(AI4) 

satisfy the commutation relations of the Lie algebra of 
0(4,2); J and A (Runge-Lenz vector) together 
generate a compact 0(4) subgroup that commutes 
with r o. (Note then that J and "tilted A" commute 
with 0.) The Casimir operators of the Lie algebra of 
this 0(4,2) are 

Q2 = J2 + A2 - M2 - r 2 + r~ - r! - T2 = -3, 

Q3 = 0, Q4 = O. (AI5) 

In an irreducible representation of SO(4,2), for 
eachj = 0, 1,2,3,'" we haven =j + l,j + 2,···. 
Or,foreachn = 1,2," 'wehaveI= 0,1,'" n - 1. 
The energy levels depend only on n2 , which is the 
basis of the O(4)-symmetry. 
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Unitary and nonunitary representations of the SL(2, C) group are investigated in such a basis, in 
which the subgroup diagonalized is that one which in the four-dimensional representation leaves invariant 
the 4,vector p" = (HI + v), 0, 0, HI - v» for an arbitrary real value of p~ = v. The split of the 
representation space into irreducible subspaces changes smoothly when varying the value of v. The 
formalism is of importance in physical theories which postulate analyticity requirements and Lorentz 
invariance simultaneously (e.g., Regge and Lorentz pole theory). In this paper we construct explicit 
basis functions of the representation spaces. 

1. INTRODUCTION 
The representation theory of the SL(2, C) group 

is of great importance in physics, and a lot of work 
has been devoted to construct its representations 
explicitly. It is, however, surprising that attention has 
hardly been paid to constructing and investigating 
them in an explicitly "analytically continuable" form. 
We mean the following: The representations of the 
SL(2, C) group are usually given in an SU(2) , 
SU(1, 1), or E(2) basis, i.e., the representation space 
is given as a direct sum (integral) of subspaces invari­
ant with respect to the little groups of the 4-vectors 
(l, 0, 0, 0), (1,0,0, 1), and (0,0,0, 1), respectively. 
Physical theories, which postulate analyticity require­
ments together with Lorentz invariance, necessitate 
the construction of SL(2, C) representations over such 
spaces, which are split into subspaces invariant with 
respect to the little group of an appropriately chosen 
4·vector, e.g., p" = O(l + v), 0, 0, iO - v». Its 
length p! = v is kept a free parameter. Moreover, we 
want the representations to be analytic in this variable 
v in the sense that the split of the representation space 
into irreducible subspaces changes smoothly when 
we vary the value of this parameter. 

In this paper we will explicitly construct the basis 

states for such representations. We shall apply a 
standard procedure.1 This method consists first of 
choosing a subgroup which one wants to be diagonal 
in the basis to be constructed and second of deter­
mining the eigenfunctions of the Casimir operator of 
this subgroup. 

For this purpose, we must obviously specify such a 
subgroup of SL(2, C) which, depending on the value 
of a suitable parameter, becomes deformed from 
SU(2) through E(2} to SU(1, 1). Then one must 
determine the representation matrix elements of this 
group, which is the second point of the previous 
program above. These problems have already been 
treated2•3 but without embedding this group into 
SL(2, C). [The term "interpolating group (IG)" was 
introduced for this group3; we are going to use it in 
this paper as well.] 

After having constructed the basis with the above 
specified properties in the SL(2, C) representation 
space, we naturally examine the matrix elements of 
finite SL(2, C) transformations and the problem of 
the transformation coefficients between different basis 
sets.4 Here we give them only in integral forms, as the 
explicit calculations can be found in a separate paper.s 

In Sec. 2, we shall summarize the results of the 
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