
Physics 221A

Fall 2010

Notes 18

Irreducible Tensor Operators and the

Wigner-Eckart Theorem

1. Introduction

The Wigner-Eckart theorem concerns matrix elements of a type that is of frequent occurrence

in all areas of quantum physics, especially in perturbation theory and in the theory of the emis-

sion and absorption of radiation. This theorem allows one to determine very quickly the selection

rules for the matrix element that follow from rotational invariance. In addition, if matrix elements

must be calculated, the Wigner-Eckart theorem frequently offers a way of significantly reducing the

computational effort. We will make quite a few applications of the Wigner-Eckart theorem in this

course, including several in the second semester.

The Wigner-Eckart theorem is based on an analysis of how operators transform under rotations.

It turns out that operators of a certain type, the irreducible tensor operators, are associated with

angular momentum quantum numbers and have transformation properties similar to those of kets

with the same quantum numbers. An exploitation of these properties leads to the Wigner-Eckart

theorem.

2. Definition of a Rotated Operator

We consider a quantum mechanical system with a ket space upon which rotation operators U(R),

forming a representation of the classical rotation group SO(3), are defined. The representation may

be double-valued, as it will be in the case of systems of half-integer angular momentum. In these

notes we consider only proper rotations R; improper rotations will be taken up later. The operators

U(R) map kets into new or rotated kets,

|ψ′〉 = U(R)|ψ〉, (1)

where |ψ′〉 is the rotated ket. We will also write this as

|ψ〉 R−−→ U(R)|ψ〉. (2)

In the case of half-integer angular momenta, the mapping above is only determined to within a sign

by the classical rotation R.

Now if A is an operator, we define the rotated operator A′ by requiring that the expectation

value of the original operator with respect to the initial state be equal to the expectation value of

the rotated operator with respect to the rotated state, that is,

〈ψ′|A′|ψ′〉 = 〈ψ|A|ψ〉, (3)
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which is to hold for all initial states |ψ〉. But this implies

〈ψ|U(R)†A′ U(R)|ψ〉 = 〈ψ|A|ψ〉, (4)

or, since |ψ〉 is arbitrary,

U(R)†A′ U(R) = A. (5)

Solving for A′, this becomes

A′ = U(R)AU(R)†, (6)

which is our definition of the rotated operator. We will also write this in the form,

A
R−−→ U(R)AU(R)†. (7)

Notice that in the case of half-integer angular momenta the rotated operator is specified by the

SO(3) rotation matrix R alone, since the sign of U(R) cancels and the answer does not depend on

which of the two rotation operators is used on the right hand side. This is unlike the case of rotating

kets, where the sign does matter.

3. Scalar Operators

Now we classify operators by how they transform under rotations. First we define a scalar

operator K to be an operator that is invariant under rotations, that is, that satisfies

U(R)K U(R)† = K,
(8)

for all operators U(R). This terminology is obvious. Notice that it is equivalent to the statement

that a scalar operator commutes with all rotations,

[U(R),K] = 0. (9)

If an operator commutes with all rotations, then it commutes in particular with infinitesimal rota-

tions, and hence with the generators J. See Eq. (12.13). Conversely, if an operator commutes with

J (all three components), then it commutes with any function of J, such as the rotation operators.

Thus another equivalent definition of a scalar operator is one that satisfies

[J,K] = 0.
(10)

The most important example of a scalar operator is the Hamiltonian for an isolated system, not

interacting with any external fields. The consequences of this for the eigenvalues and eigenstates

of the Hamiltonian were discussed in Sec. 14.6, where it was shown that the energy eigenspaces

consist of one or more irreducible subspaces under rotations. In fact, apart from exceptional cases

like the electrostatic model of hydrogen, each energy eigenspace consists of precisely one irreducible

subspace. Hence the eigenspaces are characterized by an angular momentum quantum number j

and the energy eigenvalue is (2j+1)-fold degenerate. In this set of notes we will come to understand

these facts from a deeper and more general standpoint.
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4. Vector Operators

In ordinary vector analysis in three-dimensional Euclidean space, a vector is defined as a collec-

tion of three numbers that have certain transformation properties under rotations. It is not sufficient

just to have a collection of three numbers; they must in addition transform properly. Similarly, in

quantum mechanics, we define a vector operator as a vector of operators (that is, a set of three

operators) with certain transformation properties under rotations.

Our requirement shall be that the expectation value of a vector operator, which is a vector of

ordinary or c-numbers, should transform as a vector in ordinary vector analysis. This means that if

|ψ〉 is a state and |ψ′〉 is the rotated state as in Eq. (1), then

〈ψ′|V|ψ′〉 = R〈ψ|V|ψ〉, (11)

where V is the vector of operators that qualify as a genuine vector operator. In case the notation

in Eq. (11) is not clear, we write the same equation out in components,

〈ψ′|Vi|ψ′〉 =
∑

j

Rij〈ψ|Vj |ψ〉. (12)

Equation (11) or (12) is to hold for all |ψ〉, so by Eq. (1) they imply (after swapping R and R
−1)

U(R)VU(R)† = R
−1V, (13)

or, in components,

U(R)Vi U(R)† =
∑

j

Vj Rji.

(14)

We will take Eq. (13) or (14) as the definition of vector operator.

In the case of a scalar operator, we had one definition (8) involving its properties under conjuga-

tion by rotations, and another (10) involving its commutation relations with the angular momentum

J. The latter is in effect a version of the former, when the rotation is infinitesimal. Similarly, for

vector operators there is a definition equivalent to Eq. (13) or (14) that involves commutation rela-

tions with J. To derive it we let U and R in Eq. (13) have axis-angle form with an angle θ ≪ 1, so

that

U(R) = 1 − i

h̄
θn̂ · J, (15)

and

R = I + θn̂ · J. (16)

Then the definition (13) becomes

(

1 − i

h̄
θn̂ · J

)

V
(

1 +
i

h̄
θn̂ · J

)

= (I − θn̂ · J)V, (17)

or

[n̂ · J,V] = −ih̄ n̂×V. (18)
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Taking the j-th component of this, we have

ni[Ji, Vj ] = −ih̄ ǫjik niVk, (19)

or, since n̂ is an arbitrary unit vector,

[Ji, Vj ] = ih̄ ǫijk Vk.
(20)

Any vector operator satisfies this commutation relation with the angular momentum of the system.

The converse is also true; if Eq. (20) is satisfied, then V is a vector operator. This follows since

Eq. (20) implies Eq. (18) which implies Eq. (17), that is, it implies that the definition (13) is satisfied

for infinitesimal rotations. But it is easy to show that if Eq. (13) is true for two rotations R1 and

R2, then it is true for the product R1R2. Therefore, since finite rotations can be built up as the

product of a large number of infinitesimal rotations (that is, as a limit), Eq. (20) implies Eq. (13)

for all rotations. Equations (13) and (20) are equivalent ways of defining a vector operator.

We have now defined scalar and vector operators. Combining them, we can prove various

theorems. For example, if V and W are vector operators, then V · W is a scalar operator, and

V×W is a vector operator. This is of course just as in vector algebra, except that we must remember

that operators do not commute, in general. For example, it is not generally true that V ·W = W ·V,

or that V×W = −W×V.

If we wish to show that an operator is a scalar, we can compute its commutation relations with

the angular momentum, as in Eq. (10). However, it may be easier to consider what happens when

the operator is conjugated by rotations. For example, the central force Hamiltonian (16.1) is a scalar

because it is a function of the dot products p · p = p2 and r · r = r2. See Sec. 16.2.

5. Tensor Operators

Finally we define a tensor operator as a tensor of operators with certain transformation prop-

erties that we will illustrate in the case of a rank-2 tensor. In this case we have a set of 9 operators

Tij , where i, j = 1, 2, 3, which can be thought of as a 3 × 3 matrix of operators. These are required

to transform under rotations according to

U(R)Tij U(R)† =
∑

kℓ

TkℓRkiRℓj, (21)

which is a generalization of Eq. (14) for vector operators. As with scalar and vector operators, a

definition equivalent to Eq. (21) may be given that involves the commutation relations of Tij with

the components of angular momentum.

As an example of a tensor operator, let V and W be vector operators, and write

Tij = ViWj . (22)
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Then Tij is a tensor operator (it is the tensor product of V with W). This is just an example; in

general, a tensor operator cannot be written as the product of two vector operators as in Eq. (22).

Another example of a tensor operator is the quadrupole moment operator. In a system with a

collection of particles with positions rα and charges qα, where α indexes the particles, the quadrupole

moment operator is

Qij =
∑

α

qα(3rαirαj − r2α δij). (23)

It is especially important in nuclear physics, in which the particles are the protons in a nucleus

with charge q = e. Notice that the first term under the sum is an operator of the form (22), with

V = W = rα.

Tensor operators of other ranks (besides 2) are possible; a scalar is considered a tensor operator

of rank 0, and a vector is considered a tensor of rank 1. In the case of tensors of arbitrary rank, the

transformation law involves one copy of the matrix R
−1 = R

t for each index of the tensor.

6. Examples of Vector Operators

Consider a system consisting of a single spinless particle moving in three-dimensional space, for

which the wave functions are ψ(r) and the angular momentum is L = r×p. To see whether r is a

vector operator (we expect it is), we compute the commutation relations with L, finding,

[Li, rj ] = ih̄ ǫijk rk, (24)

which according to Eq. (20) confirms our expectation. Similarly, we find

[Li, pj] = ih̄ ǫijk pk, (25)

so that p is also a vector operator. Then r×p (see Sec. 4) must also be a vector operator, that is,

we must have

[Li, Lj] = ih̄ ǫijk Lk. (26)

This last equation is of course just the angular momentum commutation relations, here with a new

interpretation. More generally, by comparing the adjoint formula (13.66) with the commutation

relations (20), we see that J is a vector operator on any Hilbert space upon which the angular

momentum is defined.

7. The Spherical Basis

The spherical basis is a basis of unit vectors in ordinary three-dimensional space that is alter-

native to the usual Cartesian basis. Initially we just present the definition of the spherical basis

without motivation, and then we show how it can lead to some dramatic simplifications in certain

problems. Then we explain its deeper significance. The spherical basis will play an important role

in the development of later topics concerning operators and their transformation properties.
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We denote the usual Cartesian basis by ĉi, i = 1, 2, 3, so that

ĉ1 = x̂, ĉ2 = ŷ, ĉ3 = ẑ. (27)

We have previously denoted this basis by êi, but in these Notes we reserve the symbol ê for the

spherical basis.

The spherical basis is defined by

ê1 = − x̂ + iŷ√
2

,

ê0 = ẑ,

ê−1 =
x̂ − iŷ√

2
. (28)

This is a complex basis, so vectors with real components with respect to the Cartesian basis have

complex components with respect to the spherical basis. We denote the spherical basis vectors

collectively by êq, q = 1, 0,−1.

The spherical basis vectors have the following properties. First, they are orthonormal, in the

sense that

ê∗q · êq′ = δqq′ . (29)

Next, an arbitrary vector X can be expanded as a linear combination of the vectors ê∗q ,

X =
∑

q

ê∗qXq, (30)

where the expansion coefficients are

Xq = êq · X. (31)

These equations are equivalent to a resolution of the identity in 3-dimensional space,

I =
∑

q

ê∗q êq, (32)

in which the juxtaposition of the two vectors represents a tensor product or dyad notation.

You may wonder why we expand X as a linear combination of ê∗q , instead of êq. The latter

type of expansion is possible too, that is, any vector Y can be written

Y =
∑

q

êqYq, (33)

where

Yq = ê∗q · Y. (34)

These relations correspond to a different resolution of the identity,

I =
∑

q

êqê
∗
q . (35)

The two types of expansion give the contravariant and covariant components of a vector with respect

to the spherical basis; in this course, however, we will only need the expansion indicated by Eq. (30).
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8. An Application of the Spherical Basis

To show some of the utility of the spherical basis, we consider the problem of dipole radiative

transitions in a single-electron atom such as hydrogen or an alkali, in which the transition amplitude

is proportional to matrix elements of the dipole operator between the initial and final states. We

use an electrostatic, spinless model for the atom, as in Notes 16, and we consider the transition from

initial energy level Enℓ to final level En′ℓ′ . These levels are degenerate, since the energy does not

depend on the magnetic quantum number m or m′. The wave functions have the form,

ψnℓm(r, θ, φ) = Rnℓ(r)Yℓm(Ω), (36)

as in Eq. (16.14).

The dipole operator is proportional to the position operator of the electron, so we must evaluate

matrix elements of the form,

〈n′ℓ′m′|r|nℓm〉, (37)

where the initial state is on the right and the final one on the left. The position operator r has

three components, and the initial and final levels consist of 2ℓ + 1 and 2ℓ′ + 1 degenerate states,

respectively. Therefore if we wish to evaluate the intensity of a spectral line as it would be observed,

we really have to evaluate 3(2ℓ′+1)(2ℓ+1) matrix elements, for example, 3×3×5 = 45 in a 3d→ 2p

transition. This is actually an exaggeration, as we shall see, because many of the matrix elements

vanish, but there are still many nonvanishing matrix elements to be calculated.

A great simplification can be achieved by expressing the components of r, not with respect to

the Cartesian basis, but with respect to the spherical basis. First we define

rq = êq · r, (38)

exactly as in Eq.(31). Next, by inspecting a table of the Yℓm’s, we find that for ℓ = 1 we have

rY11(θ, φ) = −r
√

3

8π
sin θeiφ =

√

3

4π

(

−x+ iy√
2

)

,

rY10(θ, φ) = r

√

3

4π
cos θ =

√

3

4π
(z),

rY1,−1(θ, φ) = r

√

3

8π
sin θe−iφ =

√

3

4π

(x− iy√
2

)

, (39)

where we have multiplied each Y1m by the radius r. On the right hand side we see the spherical

components rq of the position vector r, as follows from the definitions (28). The results can be

summarized by

rY1q(θ, φ) =

√

3

4π
rq, (40)

for q = 1, 0,−1, where q appears explicitly as a magnetic quantum number. This equation reveals

a relationship between vector operators and the angular momentum value ℓ = 1, something we will

have more to say about presently.
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Now the matrix elements (37) become a product of a radial integral times an angular integral,

〈n′ℓ′m′|rq|nℓm〉 =

∫ ∞

0

r2 dr R∗n′ℓ′(r)rRnℓ(r)

×
√

4π

3

∫

dΩY ∗
ℓ′m′(θ, φ)Y1q(θ, φ)Yℓm(θ, φ).

(41)

We see that all the dependence on the three magnetic quantum numbers (m′, q,m) is contained in

the angular part of the integral. Moreover, the angular integral can be evaluated by the three-Yℓm

formula, Eq. (17.43), whereupon it becomes proportional to the Clebsch-Gordan coefficient,

〈ℓ′m′|ℓ1mq〉. (42)

The radial integral is independent of the three magnetic quantum numbers (m′, q,m), and the trick

we have just used does not help us to evaluate it. But it is only one integral, and after it has

been done, all the other integrals can be evaluated just by computing or looking up Clebsch-Gordan

coefficients.

The selection rule m′ = q +m in the Clebsch-Gordan coefficient (42) means that many of the

integrals vanish, so we have exaggerated the total number of integrals that need to be done. But had

we worked with the Cartesian components ri of r, this selection rule might not have been obvious.

In any case, even with the selection rule, there may still be many nonzero integrals to be done (nine,

in the case 3d→ 2p).

The example we have just given of simplifying the calculation of matrix elements for a dipole

transition is really an application of the Wigner-Eckart theorem, which we take up later in these

notes.

9. Significance of the Spherical Basis

To understand the deeper significance of the spherical basis we examine Table 1. The first

row of this table summarizes the principal results obtained in Notes 13, in which we worked out

the matrix representations of angular momentum and rotation operators. To review those results,

we start with a ket space upon which proper rotations act by means of unitary operators U(R), as

indicated in the second column of the table. We refer only to proper rotations R ∈ SO(3), and

we note that the representation may be double-valued. The rotation operators have generators,

defined by Eq. (12.13), that is, that equation can be taken as the definition of J when the rotation

operators U(R) are given. (Equation (12.11) is equivalent.) The components of J satisfy the usual

commutation relations (12.24) since the operators U(R) form a representation of the rotation group.

Next, since J2 and Jz commute, we construct their simultaneous eigenbasis, with an extra index γ

to resolve degeneracies. Also, we require states with different m but the same γ and j to be related

by raising and lowering operators. This creates the standard angular momentum basis (SAMB),

indicated in the fourth column. In the last column, we show how the vectors of the standard angular
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momentum basis transform under rotations. A basis vector |γjm〉, when rotated, produces a linear

combination of other basis vectors for the same values of γ and j but different values of m. This

implies that the space spanned by |γjm〉 for fixed γ and j, but for m = −j, . . . ,+j is an invariant

space under rotations. This space has dimension 2j + 1. It is, in fact, an irreducible invariant space

(more on irreducible subspaces below). One of the results of the analysis of Notes 13 is that the

matrices Dj
m′m(U) are universal matrices, dependent only on the angular momentum commutation

relations and otherwise independent of the nature of the system.

Space Action Ang Mom SAMB Action on SAMB

Kets |ψ〉 7→ U |ψ〉 J |γjm〉 U |γjm〉 =
∑

m′

|γjm′〉Dj
m′m

3D Space r 7→ Rr iJ êq Rêq =
∑

q′

êq′D1
q′q

Operators A 7→ UAU † . . . T k
q UT k

q U
† =

∑

q′

T k
q′Dk

q′q

Table 1. The rows of the table indicate different vector spaces upon which rotations act by means of unitary operators.
The first row refers to a ket space (a Hilbert space of a quantum mechanical system), the second to ordinary three-
dimensional space (physical space), and the third to the space of operators. The operators in the third row are the
usual linear operators of quantum mechanics that act on the ket space, for example, the Hamiltonian. The first column
identifies the vector space. The second column shows how rotations R ∈ SO(3) act on the given space. The third column
shows the generators of the rotations, that is, the 3-vector of Hermitian operators that specify infinitesimal rotations.
The fourth column shows the standard angular momentum basis (SAMB), and the last column, the transformation law
of vectors of the standard angular momentum basis under rotations.

At the beginning of Notes 13 we remarked that the analysis of those Notes applies to other

spaces besides ket spaces. All that is required is that we have a vector space upon which rotations

act by means of unitary operators. For other vectors spaces the notation may change (we will not

call the vectors kets, for example), but otherwise everything else goes through.

The second row of Table 1 summarizes the case in which the vector space is ordinary three-

dimensional (physical) space. Rotations act on this space by means of the matrices R, which, being

orthogonal, are also unitary (an orthogonal matrix is a special case of a unitary matrix). The action

consists of just rotating vectors in the usual sense, as indicated in the second column.

The generators of rotations in this case must be a vector J of Hermitian operators, that is,

Hermitian matrices, that satisfy

U(n̂, θ) = 1 − i

h̄
θn̂ · J, (43)

when θ is small. Here U really means the same thing as R, since we are speaking of the action

on three-dimensional space, and 1 means the same as the identity matrix I. We will modify this

definition of J slightly by writing J′ = J/h̄, thereby absorbing the h̄ into the definition of J and

making J′ dimensionless. This is appropriate when dealing with ordinary physical space, since it

has no necessary relation to quantum mechanics. (The spherical basis is also useful in classical
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mechanics, for example.) Then we will drop the prime, and just remember that in the case of this

space, we will use dimensionless generators. Then we have

U(n̂, θ) = 1 − iθn̂ · J. (44)

But this is equal to

R(n̂, θ) = I + θn̂ · J, (45)

as in Eq. (11.28), where the vector of matrices J is defined by Eq. (11.22). These imply

J = iJ, (46)

as indicated in the third column of Table 1. Writing out the matrices Ji explicitly, we have

J1 =





0 0 0
0 0 −i
0 i 0



 , J2 =





0 0 i
0 0 0
−i 0 0



 , J3 =





0 −i 0
i 0 0
0 0 0



 . (47)

These matrices are indeed Hermitian, and they satisfy the dimensionless commutation relations,

[Ji, Jj ] = iǫijk Jk, (48)

as follows from Eqs. (11.30) and (46).

We can now construct the standard angular momentum basis on three-dimensional space. In

addition to Eq. (47), we need the matrices for J2 and J±. These are

J2 =





2 0 0
0 2 0
0 0 2



 (49)

and

J± =





0 0 ∓1
0 0 −i
±1 i 0



 . (50)

We see that J2 = 2I, which means that every vector in ordinary space is an eigenvector of J2 with

eigenvalue j(j + 1) = 2, that is, with j = 1. An irreducible subspace with j = 1 in any vector space

must be 3-dimensional, but in this case the entire space is 3-dimensional, so the entire space consists

of a single irreducible subspace under rotations with j = 1.

The fact that physical space carries the angular momentum value j = 1 is closely related to the

fact that vector operators are irreducible tensor operators of order 1, as explained below. It is also

connected with the fact that the photon, which is represented classically by the vector field A(r)

(the vector potential), is a spin-1 particle.

Since every vector in three-dimensional space is an eigenvector J2, the standard basis consists

of the eigenvectors of J3, related by raising and lowering operators (this determines the phase

conventions of the vectors, relative to that of the stretched vector). But we can easily check that

the spherical unit vectors (28) are the eigenvectors of J3, that is,

J3êq = q êq, q = 0,±1. (51)
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Furthermore, it is easy to check that these vectors are related by raising and lowering operators,

that is,

J±êq =
√

(1 ∓ q)(1 ± q + 1) êq±1, (52)

where J± is given by Eq. (50). Only the overall phase of the spherical basis vectors is not determined

by these relations. The overall phase chosen in the definitions (28) has the nice feature that ê0 = ẑ.

Since the spherical basis is a standard angular momentum basis, its vectors must transform

under rotations according to Eq. (13.65), apart from notation. Written in the notation appropriate

for three-dimensional space, that transformation law becomes

Rêq =
∑

q′

êq′D1
q′q(R). (53)

We need not prove this as an independent result; it is just a special case of Eq. (13.65). This

transformation law is also shown in the final column of Table 1, in order to emphasize its similarity

to related transformation laws on other spaces.

Equation (53) has an interesting consequence, obtained by dotting both sides with ê∗q′ . We use

a round bracket notation for the dot product on the left hand side, and we use the orthogonality

relation (29) on the right hand side, which picks out one term from the sum. We find

(

ê∗q′ ,Rêq

)

= D1
q′q(R), (54)

which shows that D1
q′q is just the matrix representing the rotation operator on three-dimensional

space with respect to the spherical basis. The usual rotation matrix contains the matrix elements

with respect to the Cartesian basis, that is,

(

ĉi,Rĉj

)

= Rij . (55)

See Eq. (11.7). For a given rotation, matrices R and D1 are similar (they differ only by a change of

basis).

10. Reducible and Irreducible Spaces of Operators

In the third row of Table 1 we consider the vector space of operators. The operators in question

are the operators that act on the ket space of our quantum mechanical system, that is, they are

the usual operators of quantum mechanics, for example, the Hamiltonian. Linear operators can

be added and multiplied by scalars, so they form a vector space in the mathematical sense, but of

course they also act on vectors (that is, kets). So the word “vector” is used in two different senses

here. Rotations act on operators according to our definition (6), also shown in the second column of

the table. Thus we have another example of a vector space upon which rotation operators act, and

we can expect that the entire construction of Notes 13 will go through again, apart from notation.

Rather than filling in the rest of the table, however, let us return to the definition of a vector

operator, Eq. (14), and interpret it in a different light. That definition concerns the three components
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V1, V2 and V3 of a vector operator, each of which is an operator itself, and it says that if we rotate

any one of these operators, we obtain a linear combination of the same three operators. Thus, any

linear combination of these three operators is mapped into another such linear combination by any

rotation, or, equivalently, the space of operators spanned by these three operators is invariant under

rotations. Thus we view the three components of V as a set of “basis operators” spanning this space,

which is a 3-dimensional subspace of the space of all operators. (We assume V 6= 0.) A general

element of this subspace of operators is an arbitrary linear combination of the three basis operators,

that is, it has the form

a1V1 + a2V2 + a3V3 = a · V, (56)

a dot product of a vector of numbers a and a vector of operators V.

If a subspace of a vector space is invariant under rotations, then we may ask whether it contains

any smaller invariant subspaces. If not, we say it is irreducible. If so, it can be decomposed into

smaller invariant subspaces, and we say it is reducible. The invariant subspaces of a reducible space

may themselves be reducible or irreducible; if reducible, we decompose them further. We continue

until we have only irreducible subspaces. Thus, every invariant subspace can be decomposed into

irreducible subspaces, which in effect form the building blocks of any invariant subspace.

In the case of a ket space, the subspaces spanned by |γjm〉 for fixed γ and j but m = −j, . . . ,+j
is, in fact, an irreducible subspace. The proof of this will not be important to us, but it is not

hard. What about the three-dimensional space of operators spanned by the components of a vector

operator? It turns out that it, too, is irreducible.

A simpler example of an irreducible subspace of operators is afforded by any scalar operator K.

If K 6= 0, K can be thought of as a basis operator in a one-dimensional space of operators, in which

the general element is aK, where a is a number (that is, the space contains all multiples of K). Since

K is invariant under rotations (see Eq. (8)), this space is invariant. It is also irreducible, because a

one-dimensional space contains no smaller subspace, so if invariant it is automatically irreducible.

We see that both scalar and vector operators are associated with irreducible subspaces of op-

erators. What about second rank tensor operators Tij? Such an “operator” is really a tensor of

operators, that is, 9 operators that we can arrange in a 3× 3 matrix. Assuming these operators are

linearly independent, they span a 9-dimensional subspace of operators that is invariant under rota-

tions, since according to Eq. (21) when we rotate any of these operators we get a linear combination

of the same operators. This space, however, is reducible.

To see this, let us take the example (22) of a tensor operator, that is, Tij = ViWj where V

and W are vector operators. This is not the most general form of a tensor operator, but it will

illustrate the points we wish to make. A particular operator in the space of operators spanned by

the components Tij is the trace of Tij , that is,

trT = T11 + T22 + T33 = V · W. (57)

Being a dot product of two vectors, this is a scalar operator, and is invariant under rotations.

Therefore by itself it spans a 1-dimensional, irreducible subspace of the 9-dimensional space of
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operators spanned by the components of Tij . The remaining (orthogonal) 8-dimensional subspace

can be reduced further, for it possesses a 3-dimensional invariant subspace spanned by the operators,

X3 = T12 − T21 = V1W2 − V2W1,

X1 = T23 − T32 = V2W3 − V3W2,

X2 = T31 − T13 = V3W1 − V1W3, (58)

or, in other words,

X = V×W. (59)

The components of X form a vector operator, so by themselves they span an irreducible invariant

subspace under rotations. As we see, the components of X contain the antisymmetric part of the

original tensor Tij .

The remaining 5-dimensional subspace is irreducible. It is spanned by operators containing the

symmetric part of the tensor Tij , with the trace removed (or, as we say, the symmetric, traceless

part of Tij). The following five operators form a basis in this subspace:

S1 = T12 + T21,

S2 = T23 + T32,

S3 = T31 + T13,

S4 = T11 − T22,

S5 = T11 + T22 − 2T33. (60)

The original tensor Tij breaks up in three irreducible subspaces, a 1-dimensional scalar (the

trace), a 3-dimensional vector (the antisymmetric part), and the 5-dimensional symmetric, traceless

part. Notice that these dimensionalities are in accordance with the Clebsch-Gordan decomposition,

1 ⊗ 1 = 0 ⊕ 1 ⊕ 2, (61)

which corresponds to the count of dimensionalities,

3 × 3 = 1 + 3 + 5 = 9. (62)

This Clebsch-Gordan series arises because the vector operators V and W form two ℓ = 1 irreducible

subspaces of operators, and when we form T according to Tij = ViWj , we are effectively combining

angular momenta as indicated by Eq. (61). The only difference from our usual practice is that we

are forming products of vector spaces of operators, instead of tensor products of ket spaces.

We have examined this decomposition in the special case Tij = ViWj , but the decomposition

itself applies to any second rank tensor Tij . More generally, Cartesian tensors of any rank ≥ 2 are

reducible.

It is possible that a given tensor Tij may have one or more of the three irreducible components

that vanish. The quadrupole moment tensor (23), for example, is already symmetric and traceless,
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so its nine components are actually linear combinations of just five independent operators. For

another example, an antisymmetric tensor Tij = −Tji contains only the three-dimensional (vector)

subspace.

For many purposes it is desirable to organize tensors into their irreducible subspaces. This

can be done by going over from the Cartesian to the spherical basis, and then constructing linear

combinations using Clebsch-Gordan coefficients to end up with tensors transforming according to

an irreducible representation of the rotations. We will say more about this process later.

11. Irreducible Tensor Operators

So far we have said nothing about a standard angular momentum basis of operators. The

Cartesian components Vi of a vector operator do form a basis in a 3-dimensional, irreducible subspace

of operators, but they do not transform under rotations as a standard angular momentum basis.

We see this from the definition (14), which shows that if we rotate the basis operators Vi in this

subspace, the coefficients of the linear combinations of the basis operators we obtain are components

of the rotation matrix R. When we rotate the basis vectors of a standard angular momentum basis,

the coefficients are components of the D-matrices, as we see in Eq. (13.65). We now define a class

of operators that do transform under rotations as a standard angular momentum basis.

We define an irreducible tensor operator of order k as a set of 2k + 1 operators T k
q , for q =

−k, . . . ,+k, that satisfy

U T k
q U

† =
∑

q′

T k
q′ Dk

q′q(U),

(63)

for all rotation operators U . We denote the irreducible tensor operator itself by T k, and its 2k + 1

components by T k
q . This definition is really a version of Eq. (13.65), applied to the space of operators.

It means that the components of an irreducible tensor operator are basis operators in a standard

angular momentum basis that spans an irreducible subspace of operators. Thus we place T k
q in the

SAMB column of the third row of Table 1, and the transformation law (63) in the last column. The

three transformation laws in the last column (for three different kinds of spaces) should be compared.

We see that the order k of an irreducible tensor operator behaves like an angular momentum quantum

number j, and q behaves like m.

However, unlike the standard angular momentum basis vectors in ket spaces, irreducible tensor

operators are restricted to integer values of angular momentum quantum number k. The physical

reason for this is that operators, which represent physically observable quantities, must be invariant

under a rotation of 2π; the mathematical reason is that our definition of a rotated operator, given by

Eq. (6), is quadratic U(R), so that the representation of rotations on the vector space of operators

is always a single-valued representation of SO(3).

Let us examine some examples of irreducible tensor operators. A scalar operator K is an

irreducible tensor operator of order 0, that is, it is an example of an irreducible tensor operator T 0
0 .
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This follows easily from the fact that K commutes with any rotation operator U , and from the fact

that the j = 0 rotation matrices are simply given by the 1 × 1 matrix (1) (see Eq. (13.59)).

Irreducible tensor operators of order 1 are constructed from vector operators by transforming

from the Cartesian basis to the spherical basis. If we let V be a vector operator as defined by

Eq. (13), and define its spherical components by

Vq = T 1
q = êq · V, (64)

then we have

U(R)VqU(R)† = êq · (R−1V) = (Rêq) · V

=
∑

q′

Vq′D1
q′q(R), (65)

where we use Eq. (53).

The electric quadrupole operator is given as a Cartesian tensor in Eq. (23). This Cartesian

tensor is symmetric and traceless, so it contains only 5 independent components, which span an

irreducible subspace of operators. In fact, this subspace is associated with angular momentum value

k = 2. It is possible to introduce a set of operators T 2
q , q = −2, . . . ,+2 that form a standard angular

momentum basis in this space, that is, that form an order 2 irreducible tensor operator. These can

be regarded as the spherical components of the quadrupole moment tensor. We will explore this

subject in more detail later.

12. Commutation Relations of an Irreducible Tensor Operator with J

Above we presented two equivalent definitions of scalar and vector operators, one involving

transformation properties under rotations, and the other involving commutation relations with J. We

will now do the same with irreducible tensor operators. To this end, we substitute the infinitesimal

form (15) of the rotation operator U into both sides of the definition (63).

On the right we will need the D-matrix for an infinitesimal rotation. Since the D-matrix

contains just the matrix elements of U with respect to a standard angular momentum basis (this is

the definition of the D-matrices, see Eq. (13.54)), we require these matrix elements in the case of an

infinitesimal rotation. For θ ≪ 1, Eq. (13.54) becomes

Dj
m′m(n̂, θ) = 〈jm′|

(

1 − i

h̄
θn̂ · J

)

|jm〉 = δm′m − i

h̄
θ〈jm′|n̂ · J|jm〉. (66)

Changing notation (jm′m) → (kq′q) and substituting this and Eq. (15) into the definition (63) of

an irreducible tensor operator, we obtain

(

1 − i

h̄
θn̂ · J

)

T k
q

(

1 +
i

h̄
θn̂ · J

)

=
∑

q′

T k
q′

(

δq′q −
i

h̄
θ〈kq′|n̂ · J|kq〉

)

, (67)
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or, since n̂ arbitrary unit vector,

[J, T k
q ] =

∑

q′

T k
q′〈kq′|J|kq〉. (68)

This last equation specifies a complete set of commutation relations of the components of J

with the components of an irreducible tensor operator, but it is usually transformed into a different

form. First we take the z-component of both sides and use Jz|kq〉 = h̄q|kq〉, so that

〈kq′|Jz |kq〉 = qh̄ δq′q. (69)

This is Eq. (13.45) with a change of notation. Then Eq. (68) becomes Eq. (76a) below. Next dot

both sides of Eq. (68) with x̂ ± iŷ, and use

J±|kq〉 =
√

(k ∓ q)(k ± q + 1)h̄ |k, q ± 1〉, (70)

or

〈kq′|J±|kq〉 =
√

(k ∓ q)(k ± q + 1)h̄ δq′,q±1. (71)

This is also Eq. (13.45) with a change of notation. Then we obtain Eq. (76b) below. Finally, take

the i-th component of Eq. (68),

[Ji, T
k
q ] =

∑

q′

T k
q′〈kq′|Ji|kq〉, (72)

and form the commutator of both sides with Ji,

[Ji, [Ji, T
k
q ]] =

∑

q′

[Ji, T
k
q′ ]〈kq′|Ji|kq〉 =

∑

q′q′′

T k
q′′〈kq′′|Ji|kq′〉〈kq′|Ji|kq〉

=
∑

q′′

T k
q′′〈kq′′|J2

i |kq〉,
(73)

where we have used Eq. (68) again to create a double sum. Finally summing both sides over i, we

obtain,
∑

i

[Ji, [Ji, T
k
q ]] =

∑

q′′

T k
q′′〈kq′′|J2|kq〉. (74)

But

〈kq′′|J2|kq〉 = k(k + 1)h̄2 δq′′q, (75)

again a version of Eq. (13.45), so we obtain Eq. (76c) below.

In summary, an irreducible tensor operator satisfies the following commutation relations with

the components of angular momentum:

[Jz , T
k
q ] = h̄q T k

q , (76a)

[J±, T
k
q ] = h̄

√

(k ∓ q)(k ± q + 1)T k
q±1, (76b)

∑

i

[Ji, [Ji, T
k
q ]] = h̄2k(k + 1)T k

q . (76c)
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We see that forming the commutator with J± plays the role of a raising or lowering operator for the

components of an irreducible tensor operator. As we did with scalar and vector operators, we can

show that these angular momentum commutation relations are equivalent to the definition (63) of

an irreducible tensor operator. This is done by showing that Eqs. (76) are equivalent to Eq. (63) in

the case of infinitesimal rotations, and that if Eq. (63) is true for any two rotations, it is also true

for their product. Thus by building up finite rotations as products of infinitesimal ones we show

the equivalence of Eqs. (63) and (76). Many books take Eqs. (76) as the definition of an irreducible

tensor operator.

13. The Wigner-Eckart Theorem for Scalar Operators

We now preview the Wigner-Eckart theorem by presenting a special case that is important in its

own right, namely, the case of scalar operators. Recall that the Hamiltonian for any isolated system

is a scalar operator. A typical problem is to find the eigenvalues and eigenstates of the Hamiltonian,

something that usually means working in some basis. In view of the rotational invariance of the

system, a it is logical to use is the standard angular momentum basis. The Wigner-Eckart theorem

for scalars concerns the matrix elements of the scalar operator in this basis.

Let K be the scalar operator, and consider the state K|γjm〉. According to Eq. (10), K

commutes with J and hence with any function of J, including J2 and J±. Thus we find

J2K|γjm〉 = h̄2j(j + 1)K|γjm〉,

JzK|γjm〉 = h̄mK|γjm〉,

J±K|γjm〉 = h̄
√

(j ∓m)(j ±m+ 1)K|γj,m± 1〉. (77)

The first two of these equations show that K|γjm〉 is a simultaneous eigenstate of J2 and Jz

corresponding to quantum numbers j and m. But this implies that K|γjm〉 must be a linear

combination of the states |γjm〉 for the same values of j and m but possibly different values of γ.

That is, we must be able to write,

K|γjm〉 =
∑

γ′

|γ′jm〉Cjm
γ′γ , (78)

where the expansion coefficients are Cjm
γ′γ , and where the superscripts and subscripts simply indicate

all the parameters upon which the expansion coefficients could depend. But actually, it turns out

that the expansion coefficients do not depend on m. To show this, we apply raising or lowering

operators to Eq. (78), finding,

J±K|γjm〉 = KJ±|γjm〉 = h̄
√

(j ∓m)(j ±m+ 1)K|γj,m± 1〉

=
∑

γ′

J±|γ′jm〉Cjm
γ′γ

= h̄
√

(j ∓m)(j ±m+ 1)
∑

γ′

|γ′j,m± 1〉Cjm
γ′γ , (79)
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or

K|γj,m± 1〉 =
∑

γ′

|γ′j,m± 1〉Cjm
γ′γ . (80)

Comparing Eqs. (78) and (80), we see that the coefficients are independent of m, as claimed, so

we write simply Cj
γ′γ for them. Now we multiply Eq. (78) on the left by 〈γ′′j′′m′′| and rearrange

indices, to obtain

〈γ′j′m′|K|γjm〉 = δj′j δm′mCj
γ′γ . (81)

Thus we see that the matrix elements of a scalar operator with respect to the standard angular

momentum basis are diagonal in both j and m, and they are independent of m. The first part of

this conclusion, that the matrix elements are diagonal in j and m, follows more simply from the

fact that K, a scalar operator, commutes with J2 and Jz, and therefore possesses simultaneous

eigenstates with these operators; but the second part of the conclusion, that the matrix elements

are independent of m, is a deeper result, that depends ultimately on the rotational invariance of the

scalar operator K.

Suppose K is the Hamiltonian H for an isolated system. If we wish to diagonalize H to find its

eigenvalues and eigenstates, then our work is greatly simplified by the use of the standard angular

momentum basis, since the matrix for H in this basis is already diagonal in both j and m. If we

arrange the indices so that γ varies most rapidly, then the matrix for H in the basis |γjm〉 has a

block structure, in which the blocks are labeled by j and m, and γ is the index labeling the rows

and columns within each block. Then Eq. (81) shows that the blocks connecting different values of

j and m all vanish, that is, that the matrix overall has a block-diagonal form, where only the blocks

on the diagonal are nonzero. Thus, the problem of diagonalizing H is equivalent to diagonalizing

each of the diagonal blocks, one for each j and m. These are the matrices whose (γ′, γ) components

are Cj
γ′γ . But there is a further simplification: the blocks corresponding to a given j but different

m are all identical, since the coefficients Cj
γ′γ are independent of m. Thus, for each j there is a

repetition of 2j + 1 identical blocks, and whatever energy eigenvalues emerge by diagonalizing one

of these blocks is repeated 2j + 1 times as we vary m. The energy eigenvalues come in multiplets of

2j+1 degenerate levels. This is the same conclusion we reached earlier when thinking about nuclear

spin (Sec. 14.4).

14. Statement and Applications of the Wigner-Eckart Theorem

The Wigner-Eckart theorem is not difficult to remember and it is quite easy to use. In this

section we discuss the statement of the theorem and ways of thinking about it and its applications,

before turning to its proof.

The Wigner-Eckart theorem concerns matrix elements of an irreducible tensor operator with

respect to a standard angular momentum basis of kets, something we will write in a general notation

as 〈γ′j′m′|T k
q |γjm〉. As an example of such a matrix element, you may think of the dipole matrix
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elements 〈n′ℓ′m′|rq|nℓm〉 that we examined in Sec. 8. In that case the operator (the position or

dipole operator) is an irreducible tensor operator with k = 1.

The matrix element 〈γ′j′m′|T k
q |γjm〉 depends on 8 indices, (γ′j′m′; γjm; kq), and in addition

it depends on the specific operator T in question. The Wigner-Eckart theorem concerns the de-

pendence of this matrix element on the three magnetic quantum numbers (m′mq), and states that

that dependence is captured by a Clebsch-Gordan coefficient. More specifically, the Wigner-Eckart

theorem states that 〈γ′j′m′|T k
q |γjm〉 is proportional to the Clebsch-Gordan coefficient 〈j′m′|jkmq〉,

with a proportionality factor that is independent of the magnetic quantum numbers. That propor-

tionality factor depends in general on everything else besides the magnetic quantum numbers, that

is, (γ′j′; γj; k) and the operator in question. The standard notation for the proportionality factor is

〈γ′j′||T k||γj〉, something that looks like the original matrix element except the magnetic quantum

numbers are omitted and a double bar is used. The quantity 〈γ′j′||T k||γj〉 is called the reduced

matrix element. With this notation, the Wigner-Eckart theorem states

〈γ′j′m′|T k
q |γjm〉 = 〈γ′j′||T k||γj〉 〈j′m′|jkmq〉.

(82)

The reduced matrix element can be thought of as depending on the irreducible tensor operator T k

and the two irreducible subspaces (γ′j′) and (γj) that it links. Some authors (for example, Sakurai)

include a factor of 1/
√

2j + 1 on the right hand side of Eq. (82), but here that factor has been

absorbed into the definition of the reduced matrix element. The version (82) is easier to remember

and closer to the basic idea of the theorem.

To remember the Clebsch-Gordan coefficient it helps to suppress the bra 〈γ′j′m′| from the

matrix element and think of the ket T k
q |γjm〉, or, more precisely, the (2j + 1)(2k + 1) kets that

are produced by letting m and q vary over their respective ranges. This gives an example of an

operator with certain angular momentum indices multiplying a ket with certain angular momentum

indices. It turns out that such a product of an operator times a ket has much in common with the

product (i.e., the tensor product) of two kets, insofar as the transformation properties of the product

under rotations are concerned. That is, suppose we were multiplying a ket |kq〉 with the given

angular momentum quantum numbers times another ket |jm〉 with different angular momentum

quantum numbers. Then we could find the eigenstates of total angular momentum by combining

the constituent angular momenta according to k ⊗ j. Actually, in thinking of kets T k
q |jm〉, it is

customary to think of the product of the angular momenta in the reverse order, that is, j ⊗ k. This

is an irritating convention because it makes the Wigner-Eckart theorem harder to remember, but I

suspect it is done this way because in practice k tends to be small and j large.

In any case, thinking of the product of kets, the product

|jm〉 ⊗ |kq〉 = |jkmq〉 (83)

contains various components of total J2 and Jz , that is, it can be expanded as a linear combination

of eigenstates of total J2 and Jz , with expansion coefficients that are the Clebsch-Gordan coeffi-
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cients. The coefficient with total angular momentum j′ and z-component m′ is the Clebsch-Gordan

coefficient 〈j′m′|jkmq〉, precisely what appears in the Wigner-Eckart theorem (82).

Probably the most useful application of the Wigner-Eckart theorem is that it allows us to easily

write down selection rules for the given matrix element, based on the selection rules of the Clebsch-

Gordan coefficient occurring in Eq. (82). In general, a selection rule is a rule that tells us when a

matrix element must vanish on account of some symmetry consideration. The Wigner-Eckart the-

orem provides us with all the selection rules that follow from rotational symmetry; a given matrix

element may have other selection rules based on other symmetries (for example, parity). The selec-

tion rules that follow from the Wigner-Eckart theorem are that the matrix element 〈γj′m′|T k
q |γjm〉

vanishes unless m′ = m+ q and j′ takes on one of the values, |j − k|, |j − k| + 1, . . . , j + k.

Furthermore, suppose we actually have to evaluate the matrix elements 〈γ′j′m′|T k
q |γjm〉 for

all (2k + 1)(2j + 1) possibilities we get by varying q and m. We must do this, for example, in

computing atomic transition rates. (We need not vary m′ independently, since the selection rules

enforcem′ = m+q.) Then the Wigner-Eckart theorem tells us that we actually only have to do one of

these matrix elements (presumably, whichever is the easiest), because if we know the left hand side of

Eq. (82) for one set of magnetic quantum numbers, and if we know the Clebsch-Gordan coefficient on

the right-hand side, then we can determine the proportionality factor, that is, the reduced matrix

element. Then all the other matrix elements for other values of the magnetic quantum numbers

follow by computing (or looking up) Clebsch-Gordan coefficients. This procedure requires that the

first matrix element we calculate be nonzero.

In some other cases, we have analytic formulas for the reduced matrix element. That was the

case of the application in Sec. 8, where the three-Yℓm formula allowed us to compute the propor-

tionality factor explicitly.

In the special case of a scalar operator, T 0
0 = K, we have k = q = 0, and the Clebsch-Gordan

coefficient is

〈j′m′|j0m0〉 = δj′j δm′m. (84)

Thus the Wigner-Eckart theorem becomes

〈γ′j′m′|K|γjm〉 = 〈γ′j||K||γj〉 δj′j δm′m, (85)

which is equivalent to Eq. (81) with the reduced matrix element written as Cj
γ′γ .

15. Proof of the Wigner-Eckart Theorem

Consider the product of kets |jm〉⊗ |kq〉 = |jkmq〉 with the given angular momentum quantum

numbers, and consider the (2j+1)(2k+1)-dimensional product space spanned by such kets when we

allow the magnetic quantum numbers m and q to vary over their respective ranges. The eigenstates

|JM〉 of total J2 and Jz in this space are given by the Clebsch-Gordan expansion,

|JM〉 =
∑

mq

|jkmq〉〈jkmq|JM〉. (86)
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Moreover, the states |JM〉 for fixed J and M = −J, . . . ,+J form a standard angular momentum

basis in an invariant, irreducible subspace of dimension 2J+1 in the product space. This means that

the basis states |JM〉 are not only eigenstates of total J2 and Jz, but they are also linked by raising

and lowering operators. Equivalently, the states |JM〉 transform as a standard angular momentum

basis under rotations,

U |JM〉 =
∑

M ′

|JM ′〉DJ
M ′M (U). (87)

Now consider the (2j + 1)(2k + 1) kets T k
q |γjm〉 obtained by varying m and q. We construct

linear combinations of these with the same Clebsch-Gordan coefficients as in Eq. (86),

|X ; JM〉 =
∑

mq

T k
q |γjm〉〈jkmq|JM〉, (88)

and define the result to be the ket |X ; JM〉, as indicated. The indices JM in the ket |X ; JM〉
indicate that the left-hand side depends on these indices, because the right hand side does; initially

we assume nothing else about this notation. Similarly, X simply stands for everything else the

left-hand side depends on, that is, X is an abbreviation for the indices (γkj).

However, in view of the similarity between Eqs. (86) and (88), we can guess that |X ; JM〉 is

actually an eigenstate of J2 and Jz with quantum numbers J and M , and that the states |X ; JM〉
are related by raising and lowering operators. That is, we guess

Jz|X ; JM〉 = Mh̄ |X ; JM〉, (89a)

J±|X ; JM〉 =
√

(J ∓M)(J ±M + 1)h̄ |X ; J,M ± 1〉, (89b)

J2|X ; JM〉 = J(J + 1)h̄2 |X ; JM〉. (89c)

If true, this is equivalent to the transformation law,

U |X ; JM〉 =
∑

M ′

|X ; JM ′〉DJ
M ′M (U), (90)

exactly as in Eq. (87). Equations (89) and (90) are equivalent because Eq. (89) can be obtained

from Eq. (90) by specializing to infinitesimal rotations, while Eq. (90) can be obtained from Eq. (89)

by building up finite rotations out of infinitesimal ones.

In Sec. 16 below we will prove that these guesses are correct. For now we merely explore the

consequences. The logic is a generalization of what we applied earlier in the case of scalar operators

in Sec. 13. To begin, since |X ; JM〉 is an eigenstate of J2 and Jz with quantum numbers J and M ,

it can be expanded as a linear combination of the standard basis kets |γjm〉 with the same values

j = J and m = M , but in general all possible values of γ. That is, we have an expansion of the

form,

|X ; JM〉 =
∑

γ′

|γ′JM〉CkJMj
γ′γ , (91)
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where the indices on the expansion coefficients CkJMj
γ′γ simply list all the parameters they can depend

on. These coefficients, do not, however, depend on M , as we show by applying raising or lowering

operators to both sides, and using Eq. (89b). This gives

√

(J ∓M)(J ±M + 1)h̄ |X ; J,M ± 1〉

=
∑

γ′

√

(J ∓M)(J ±M + 1)h̄ |γ′J,M ± 1〉CkJMj
γ′γ , (92)

or, after cancelling the square roots,

|X ; J,M ± 1〉 =
∑

γ′

|γ′J,M ± 1〉CkJMj
γ′γ . (93)

Comparing this to Eq. (91), we see that the expansion coefficients are the same for all M values,

and thus independent of M . We will henceforth write simply CkJj
γ′γ for them.

Now we return to the definition (88) of the kets |X ; JM〉 and use the orthogonality of the

Clebsch-Gordan coefficients (17.33) to solve for the kets T k
q |γjm〉. This gives

T k
q |γjm〉 =

∑

JM

|X ; JM〉〈JM |jkmq〉 =
∑

γ′′JM

|γ′′JM〉CkJj
γ′′γ 〈JM |jkmq〉, (94)

where we use Eq. (91), replacing γ′ with γ′′. Now multiplying this by 〈γ′j′m′| and using the

orthonormality of the basis |γjm〉, we obtain

〈γ′j′m′|T k
q |γjm〉 = Ckj′j

γ′γ 〈j′m′|jkmq〉, (95)

which is the Wigner-Eckart theorem (82) if we identify

Ckj′j
γ′γ = 〈γ′j′||T k||γj〉. (96)

16. Proof of Eq. (90)

To complete the proof of the Wigner-Eckart theorem we must prove Eq. (90), that is, we

must show that the kets |X ; JM〉 transform under rotations like the vectors of a standard angular

momentum basis. To do this we call on the definition of |X ; JM〉, Eq. (88), and apply U to both

sides,

U |X ; JM〉 =
∑

mq

UT k
q U

† U |γjm〉〈jkmq|JM〉. (97)

Next we use the definition of an irreducible tensor operator (63) and the transformation law for

standard basis vectors under rotations, Eq. (13.65), to obtain

U |X ; JM〉 =
∑

mq

m′q′

T k
q′ |γjm′〉Dj

m′m(U)Dk
q′q(U) 〈jkmq|JM〉. (98)
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We now call on Eq. (17.40) with a change of indices,

Dj
m′m(U)Dk

q′q(U) =
∑

J′M ′M ′′

〈jkm′q′|J ′M ′〉DJ′

M ′M ′′ (U) 〈J ′M ′′|jkmq〉, (99)

which expresses the product of D-matrices in Eq. (98) in terms of single D-matrices. When we

substitute Eq. (99) into Eq. (98), the m′q′-sum is doable by the definition (88),

∑

m′q′

T k
q′ |γjm′〉〈jkm′q′|J ′M ′〉 = |X ; J ′M ′〉, (100)

and the mq-sum is doable by the orthogonality of the Clebsch-Gordan coefficients,

∑

mq

〈J ′M ′′|jkmq〉〈jkmq|JM〉 = δJ′J δM ′′M . (101)

Altogether, Eq. (98) becomes

U |X ; JM〉 =
∑

J′M ′M ′′

|X ; J ′M ′〉DJ′

M ′M ′′(U) δJ′J δM ′′M =
∑

M ′

|X ; JM ′〉DJ
M ′M (U). (102)

This proves Eq. (90).

Instead of proving Eq. (90), many authors (for example, Sakurai) prove the equivalent set

of statements (89), which involve the actions of the angular momentum operators on the states

|X ; JM〉. I think the transformation properties under rotations are little easier. In either case, the

rest of the proof is the same.

17. Products of Irreducible Tensor Operators

As we have seen, the idea behind the Wigner-Eckart theorem is that a product of an irreducible

tensor operator T k
q times a ket of the standard basis |γjm〉 transforms under rotations exactly as the

tensor product of two kets of standard bases with the same quantum numbers, |jm〉⊗|kq〉. Similarly,

it turns out that the product of two irreducible tensor operators, say, Xk1

q1
Y k2

q2
, transforms under

rotations exactly like the tensor product of kets with the same quantum numbers, |k1q1〉 ⊗ |k2q2〉.
In particular, such a product of operators can be represented as a linear combination of irreducible

tensor operators with order k lying in the range |k1 − k2|, . . . , k1 + k2, with coefficients that are

Clebsch-Gordan coefficients. That is, we can write

Xk1

q1
Y k2

q2
=

∑

kq

T k
q 〈kq|k1k2q1q2〉, (103)

where the T k
q are new irreducible tensor operators.

To prove this, we first solve for T k
q ,

T k
q =

∑

q1q2

Xk1

q1
Y k2

q2
〈k1k2q1q2|kq〉, (104)
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which we must show is an irreducible tensor operator. To do this, we conjugate both sides of this

with a rotation operator U and use the fact that X and Y are irreducible tensor operators,

UT k
q U

† =
∑

q1q2

UXk1

q1
U † UY k2

q2
U † 〈k1k2q1q2|kq〉

=
∑

q1q2

q′

1
q′

2

Xk1

q′

1

Y k2

q′

2

Dk1

q′

1
q1

(U)Dk2

q′

2
q2

(U) 〈k1k2q1q2|kq〉. (105)

Next we use Eq. (17.40) with a change of symbols,

Dk1

q′

1
q1

(U)Dk2

q′

2
q2

(U) =
∑

KQQ′

〈k1k2q
′
1q

′
2|KQ′〉DK

Q′Q(U)〈KQ|k1k2q1q2〉, (106)

which we substitute into Eq. (105). Then the q′1q
′
2-sum is doable in terms of the expression (104)

for T k
q ,

∑

q′

1
q′

2

Xk1

q′

1

Y k2

q′

2

〈k1k2q
′
1q

′
2|KQ′〉 = TK

Q′ , (107)

and the q1q2-sum is doable by the orthogonality of the Clebsch-Gordan coefficients,

∑

q1q2

〈KQ|k1k2q1q2〉〈k1k2q1q2|kq〉 = δKk δQq. (108)

Then Eq. (105) becomes

UT k
q U

† =
∑

KQQ′

TK
Q′DK

Q′Q δKk δQq =
∑

q′

T k
q′Dk

q′q(U). (109)

This shows that T k
q is an irreducible tensor operator, as claimed.

As an application, two vector operators V and W, may be converted into k = 1 irreducible

tensor operators Vq and Wq by going over to the spherical basis. From these we can construct

k = 0, 1, 2 irreducible tensor operators according to

T k
q =

∑

q1q2

Vq1
Wq2

〈11q1q2|kq〉. (110)

This will yield the same decomposition of a second rank tensor discussed in Sec. 10, where we found

a scalar (k = 0), a vector (k = 1), and a symmetric, traceless tensor (k = 2).

Problems

1. The following problem will help you understand irreducible tensor operators better. Let E be

a ket space for some system of interest, and let A be the space of linear operators that act on E .

For example, the ordinary Hamiltonian is contained in A, as are the components of the angular

momentum J, the rotation operators U(R), etc. The space A is a vector space in its own right,
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just like E ; operators can be added, multiplied by complex scalars, etc. Furthermore, we may be

interested in certain subspaces of A, such as the 3-dimensional space of operators spanned by the

components Vx, Vy, Vz of a vector operator V.

Now let S be the space of linear operators that act on A. We call an element of S a “super”

operator because it acts on ordinary operators; ordinary operators in A act on kets in E . We will

denote super-operators with a hat, to distinguish them from ordinary operators. (This terminology

has nothing to do with supersymmetry.)

Given an ordinary operator A ∈ A, it is possible to associate it in several different ways with a

super-operator. For example, we can define a super operator ÂL, which acts by left multiplication:

ÂLX = AX, (111)

where X is an arbitrary ordinary operator. This equation obviously defines a linear super-operator,

that is, ÂL(X + Y ) = ÂLX + ÂLY , etc. Similarly, we can define a super-operator associated with

A by means of right multiplication, or by means of the forming of the commutator, as follows:

ÂRX = XA,

ÂCX = [A,X ].
(112)

There are still other ways of associating an ordinary operator with a super-operator. Let R be a

classical rotation, and let U(R) be a representation of the rotations acting on the ket space E . Thus,

the operators U(R) belong to the space A. Now associate such a rotation operator U(R) in A with

a super-operator Û(R) in S, defined by

Û(R)X = U(R)X U(R)†. (113)

Again, Û(R) is obviously a linear super-operator.

(a) Show that Û(R) forms a representation of the rotations, that is, that

Û(R1)Û(R2) = Û(R1R2). (114)

This is easy.

Now let U(R) be infinitesimal as in Eq. (15), and let

Û(R) = 1 − i

h̄
θn̂ · Ĵ. (115)

(Here the hat on n̂ denotes a unit vector, while that on Ĵ denotes a super-operator.) Express the

super-operator Ĵ in terms of ordinary operators. Write Eqs. (76) in super-operator notation. Work

out the commutation relations of the super-operators Ĵ.

(b) Now write out nine equations, specifying the action of the three super-operators Ĵi on the the

basis operators Vj . Write the answers as linear combinations of the Vj ’s. Then write out six more

equations, specifying the action of the super raising and lowering operators, Ĵ±, on the three Vj .
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Now find the operator A that is annihilated by Ĵ+. Do this by writing out the unknown operator

as a linear combination of the Vj ’s, in the form

A = axVx + ayVy + azVz , (116)

and then solving for the coefficients ai. Show that this operator is an eigenoperator of Ĵz with

eigenvalue +h̄. In view of these facts, the operator A must be a “stretched” operator for k = 1;

henceforth write T 1
1 for it. This operator will have an arbitrary, complex multiplicative constant,

call it c. Now apply Ĵ−, and generate T 1
0 and T 1

−1. Choose the constant c to make T 1
0 look as simple

as possible. Then write

T 1
q = êq · V, (117)

and thereby “discover” the spherical basis.

2. This problem concerns quadrupole moments and spins. It provides some background for the

following problem.

(a) In the case of a nucleus, the spin Hilbert space Espin = span{|sm〉,m = −s, . . . ,+s} is actually

the ground state of the nucleus. It is customary to denote the angular momentum j of the ground

state by s. This state is (2s+1)-fold degenerate. The nuclear spin operator S is really the restriction

of the total angular momentum of the nucleus J to this subspace of the (much larger) nuclear Hilbert

space.

Let Ak
q and Bk

q be two irreducible tensor operators on Espin. As explained in these notes, when

we say “irreducible tensor operator” we are really talking about the collection of 2k + 1 operators

obtained by setting q = −k, . . . ,+k. Use the Wigner-Eckart theorem to explain why any two such

operators of the same order k are proportional to one another. This need not be a long answer.

Thus, all scalars are proportional to a standard scalar (1 is convenient), and all vector operators

(for example, the magnetic moment µ) are proportional to a standard vector (S is convenient), etc.

For a given s, what is the maximum value of k? What is the maximum order of an irreducible

tensor operator that can exist on space Espin for a proton (nucleus of ordinary hydrogen)? A deuteron

(heavy hydrogen)? An alpha particle (nucleus of helium)?

(b) Let A and B be two vector operators (on any Hilbert space, not necessarily Espin), with spherical

components Aq, Bq, as in Eq. (64). As explained in the notes, Aq and Bq are k = 1 irreducible

tensor operators. As explained in Sec. 17, it is possible to construct irreducible tensor operators

T k
q for k = 0, 1, 2 out of the nine operators, {AqBq′ , q, q′ = −1, 0, 1}. Write out the nine operators

T 0
0 , T

1
1 , T

1
0 , T

1
−1, T

2
2 , . . . , T

2
−2 in terms of the Cartesian products AiBj. Just look up the Clebsch-

Gordan coefficients. Show that T 0
0 is proportional to A ·B, that T 1

q is proportional to the spherical

components of A×B, and that T 2
q specifies the components of the symmetric and traceless part of

the Cartesian tensor AiBj , which is

1

2
(AiBj +AjBi) −

1

3
(A · B)δij . (118)
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(c ) In classical electrostatics, the quadrupole moment tensor Qij of a charge distribution ρ(r) is

defined by

Qij =

∫

d3r ρ(r)[3rirj − r2 δij ], (119)

where r is measured relative to some origin inside the charge distribution. The quadrupole mo-

ment tensor is a symmetric, traceless tensor. The quadrupole energy of interaction of the charge

distribution with an external electric field E = −∇φ is

Equad =
1

6

∑

ij

Qij

∂2φ(0)

∂ri∂rj
. (120)

This energy must be added to the monopole and dipole energies, plus the higher multipole energies.

In the case of a nucleus, we choose the origin to be the center of mass, whereupon the dipole

moment and energy vanish. The monopole energy is just the usual Coulomb energy qφ(0), where q

is the total charge of the nucleus. Thus, the quadrupole term is the first nonvanishing correction.

However, the energy must be understood in the quantum mechanical sense.

Let {rα, α = 1, . . . , Z} be the position operators for the protons in a nucleus. The neutrons are

neutral, and do not contribute to the electrostatic energy. The electric quadrupole moment operator

for the nucleus is defined by

Qij = e
∑

α

(3rαirαj − r2α δij), (121)

where e is the charge of a single proton. In an external electric field, the nuclear Hamiltonian

contains a term Hquad, exactly in the form of Eq. (120), but now interpreted as an operator.

The operator Qij , being symmetric and traceless, constitutes the Cartesian specification of a

k = 2 irreducible tensor operator, that you could turn into standard form T 2
q , q = −2, . . . ,+2 using

the method of part (b) if you wanted to. We’ll say with the Cartesian form here, however. When

the operator Qij is restricted to the ground state (really a manifold of 2s+ 1 degenerate states), it

remains a k = 2 irreducible tensor operator. According to part (a), it must be proportional to some

standard irreducible tensor operator, for which 3SiSj − S2δij is convenient. That is, we must be

able to write

Qij = a(3SiSj − S2δij), (122)

for some constant a.

It is customary in nuclear physics to denote the “quadrupole moment” of the nucleus by the

real number Q, defined by

Q = 〈ss|Q33|ss〉, (123)

where |ss〉 is the stretched state. Don’t confuse Qij , a tensor of operators, with Q, a single number.

Express a in terms of Q, and derive the form Hint shown in Sakurai, Modern Quantum Mechanics,

revised edition, problem 29, p. 247, or in Sakurai and Napolitano, Modern Quantum Mechanics,

second edition, problem 3.33, p. 261. There is an error in Sakurai’s formula (in both books); correct

it.
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3. Sakurai, problem 3.29, p. 247; or Sakurai and Napolitano, problem 3.33, p. 261.


