Física Teórica 2

Primer cuatrimestre de 2016 **Guía 3**: Postulados

1. Considere un sistema de spin 1 (con un espacio de estados de dimensión 3) y los siguientes operadores

$$L_x = \hbar \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \ L_y = \hbar \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix}, \ L_z = \hbar \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

- (a) Verifique que los autovalores del operador L_j (j=x,y,z) son $m_j=1,0,-1$ (en unidades de \hbar). Diga cuales son los correspondientes autovectores). Demuestre que estos operadores satisfacen las relaciones de conmutación $[L_j,L_k]=i\hbar\epsilon_{jkl}L_l$. Diga si todos o alguno de estos operadores forman un CCOC.
- (b) Suponga que tiene a su disposición tres tipos de aparatos de Stern Gerlach que separan un haz entrante en tres haces cada uno correspondiendo a los autovalores de m_x , m_y y m_z . Discuta como utilizar estos aparatos para medir L_x , L_y o L_z .
- (c) Suponga que prepara un estado con $m_x=0$ y mide L_z , cuales son los valores posibles y cuales son sus probabilidades. Qué sucede si a continuación mide L_x nuevamente? (cuales son los resultados posibles y cuales sus probabilidades).
- 2. Considere el mismo sistema que en el problema anterior y calcule los operadores L_x^2 , L_y^2 y L_z^2 .
 - (a) Diga cuales son sus autovalores y autovectores. Demuestre que estos operadores forman un CCOC. Cuál es la base común de autovectores?
 - (b) Suponga que prepara un estado con $m_x=0$ y mide L_z^2 . Cuales son los valores posibles y sus probabilidades? Que sucede si el estado inicial es tal que $m_y=0$? y si es $m_z=1$?
 - (c) Discuta cómo se puede hacer para medir simultaneamente los tres operadores L_x^2 , L_y^2 y L_z^2 . Diseñe un instrumento que mida estos operadores usando los aparatos de Stern Gerlach que separan el haz de acuerdo a los valores de L_j (recuerde que el proceso de separación de un haz en tres, que es efectuado aplicando un campo magnético apropiado, puede ser revertido totalmente).
- 3. (a) La manera mas fácil de derivar la desigualdad de Schwarz es la siguiente. Primero observe que

$$(\langle \alpha | + \lambda^* \langle \beta |) \cdot (|\alpha \rangle + \lambda |\beta \rangle) \ge 0$$

para cualquier número complejo λ . Luego, elija λ de tal forma que la desigualdad anterior se reduzca a la desigualdad de Schwarz, $\langle \alpha | \alpha \rangle \langle \beta | \beta \rangle \geq |\langle \alpha | \beta \rangle|^2$.

(b) Para dos observables A y B y un estado cualquiera, pruebe la relación de incerteza generalizada

$$\left\langle (\Delta A)^2 \right\rangle \left\langle (\Delta B)^2 \right\rangle \ge \frac{1}{4} \left| \left\langle [A, B] \right\rangle \right|^2 ,$$

donde $\Delta A = A - \langle A \rangle$.

(c) Muestre que el signo igual en la relación de incerteza generalizada se obtiene cuando el estado en cuestión satisface

1

$$\Delta A |\alpha\rangle = \lambda \Delta B |\alpha\rangle$$

donde λ es un imaginario puro.

4. Verifique que la función de onda de un paquete gaussiano, dada por

$$\langle x'|\alpha\rangle = (2\pi d^2)^{-1/4} \exp\left[\frac{i\langle p\rangle x'}{\hbar} - \frac{(x'-\langle x\rangle)^2}{4d^2}\right]$$

satisface la relación de incerteza mínima

$$\sqrt{\langle (\Delta x)^2 \rangle} \sqrt{\langle (\Delta p)^2 \rangle} = \frac{\hbar}{2} .$$

Muestre también que la condición

$$\langle x'|\Delta x|\alpha\rangle = c\langle x'|\Delta p|\alpha\rangle$$

donde c es un número imaginario, efectivamente se cumple para dicho paquete, en acuerdo con 3(c).

- 5. Demuestre que el paquete de onda Gaussiano del problema anterior es el único estado que satisface la condición $\Delta x \Delta p = \hbar/2$.
- 6. (a) Calcule

$$\langle (\Delta S_x)^2 \rangle \equiv \langle S_x^2 \rangle - \langle S_x \rangle^2$$

donde el valor de expectación es para el estado S_z+ . Usando su resultado, verifique la relación de incerteza generalizada,

$$\langle (\Delta A)^2 \rangle \langle (\Delta B)^2 \rangle \ge \frac{1}{4} |\langle [A, B] \rangle|^2$$

con
$$A \to S_x$$
 y $B \to S_y$.

- (b) Verifique la relación de incerteza con $A \to S_x$, $B \to S_y$ para el estado $S_x + ...$
- 7. Encuentre la combinación lineal de $|+\rangle$ y $|-\rangle$ que maximiza el producto

$$\langle (\Delta S_x)^2 \rangle \langle (\Delta S_y)^2 \rangle$$
.

Verifique explícitamente que para la combinación lineal que encontró, la relación de incerteza para S_x y S_y no se viola.

8. Evalúe $\langle (\Delta x)^2 \rangle \langle (\Delta p)^2 \rangle$ para una partícula confinada en un pozo unidimensional

$$V = \begin{cases} 0 & \text{si } 0 < x < a \\ \infty & \text{en otro caso} \end{cases}$$

Hagalo tanto para el estado base como para los estados excitados.