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""In experiment I*', let N5 = N4 be theinitial concentrations of A in the
two phases a and . We can choose the solvation free energies of A in

these two phases in such a way that the partition coefficient at equilibri-
um is K, = (N§/N% ). =exp{W(Ala) — W(A|B)/kT}, which
fulfills the condition AG"/kT(N2 + N%)
=n2+In{yK,/(1 4+ K,)} = —In2. A choice of K, = 12.276 or
K, = (12.276) ' is a solution of this equation. For the “demixing”
experiment I*, we start with a homogeneous distribution of A and B in
the system. We define K, and K g as above and require that the Gibbs
energy changebe AG' = — kT(N, + Ng)In 2, where N, and N are
the total number of A and B molecules in the system. A choice of
K, =12.276 and K = (12.276) ' will lead to an almost complete
demixing of A and B (about 93% of A’s in one compartment and 93%
of B’s in the other).

?Isaiah 11:3.
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The coherent states of a harmonic oscillator are introduced following Schrodinger’s definition
and the equivalence with other definitions is established. The basic properties of these states are

discussed in some detail.

1. INTRODUCTION

The coherent states of a harmonic oscillator (hereafter
referred to as CS) have been used in the quantum mechani-
cal description of coherent light sources and in communi-
cation theory at optical frequencies. Although this set of
states is recognized as a basic mathematical tool for dealing
with those physical situations in which the harmonic oscil-
lator is a model, it has not been given adequate attention in
the usual textbooks on quantum mechanics. Discussions of
these states are found in technical papers' and in special-
ized books on quantum optics® and communication the-
ory.? In this article we discuss the basic properties of the CS
that can be derived with the help of elementary quantum
mechanics.

The history of the CS goes back to the early days of
quantum mechanics, when around 1926, Schrédinger* re-
ported the existence of a certain class of states that dis-
played, in some sense, the classical behavior of the oscilla-
tor. To be more precise, the average energy of the oscillator
insuch a state is equal to the corresponding classical energy
(minus the quantum-mechanical zero-point energy #iw/2)
and the averages of x and p have the same oscillatory forms
as in the classical case with definite phase. The CS have
been called in the literature the minimum uncertainty co-
herent states, the Schrodinger coherent states, or the
Glauber coherent states (when applied to the radiation os-
cillators).

On the basis of Schrodinger’s work, we find that these
states have the following properties:

(1) They are a subset of the three-parameter family of
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minimum uncertainty states’ (at some fixed time, say
t=0):

P(x) = (mhd) 4 explixpy/fi— (x — x0)*/(284)]. (1)

The subset is fixed by the choice A = (mw)~ ! where m is
the mass and  is the angular frequency of the oscillator.®
Here, p, and x, are the averages of p and x, respectively, in
the state ¢(x). They correspond to the classical values of p
andxatr=0.

(2) The states follow the classical motion in the sense
that ¢(x) in (1), with A = (me) ~’, evolves in time, under
the harmonic potential V(x) = mw?x?/2, into a similar
state g (x,t) that is obtainable from (1) by replacing p, and
X, by their classical values p,, (¢) and x,, (2), respectively.>*

(3) The fluctuations Ax and Ap in such a state are inde-
pendent of time and AxAp = #/2 for all time.’

Schrodinger’s main motivation appears to be directed
towards the possibility of discovering states with similar
properties for potentials othér than the harmonic potential.
In z71 letter to Max Planck, Schrodinger states the follow-
ing”:
...“I was to produce a wave-packet, ..., which was practi-
cally confined to a small special region, and which as a
matter of fact revolves in precisely the harmonic ellipses
described by classical mechanics for an arbitrary long time
without dispersing! I believe that it is only a question of
computational skill to accomplish the same thing for the
electron in the hydrogen atom. The transition from micro-
scopic characteristic oscillations to the macroscopic “or-
bits” of classical mechanics will then be clearly visible,... .”
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Wave packets describing the Kepler orbits in a hydro-
genlike atom are yet to be discovered. This type of investi-
gation is being carried out by Nieto et al.*® From their
work it appears that the harmonic oscillator is the only case
for which we can talk about coherent states.

The CS in a particular form have also been used by Block
and Nordsieck® and subsequently by Schwinger'® in con-
nection with certain aspects of the electromagnetic radi-
ation. Glauber!'®»®  (first introduced the coherent
state), Klauder and Sudarshan,” and many others used
these states extensively for dealing with the coherent prop-
erties and photon statistics of optical fields.

In the traditional form of the quantum electrodynamics,
due originally to Dirac, the radiation field (the electric and
magnetic fields) in a cavity is expressed as a linear superpo-
sition of normal modes.'? This is where the harmonic oscil-
lator enters the show. The field Hamiltonian is then ex-
pressible as the sum of oscillator-type Hamiltonians. The
state of the radiation field is describable by the eigenstates
of the radiation oscillators that are the well-known number
states. However, these number states are found to be unsui-
table for calculations when the description of the field in-
volves the phase and the amplitude variables. A radiation
mode such as a plane propagating wave is best described by
a CS that is a particular linear combination of the number
states expressing the cooperative behavior of the photons.

The coherent state of an oscillator of mass m and angular
frequency w has been introduced in the literature in the
following equivalent ways:

(a) The CS are generated from the ground state |0) of
the oscillator by the displacement operator
D(a) = exp(aa’ — a*a) acting on it, where ¢ and a are
the annihilation and creation operators, respectively, of the
standard harmonic oscillator theory,"® and a is a complex
number, the star denoting complex conjugate (Sec. III).

(b) CS are the eigenstates of the annihilation operator a
(Sec. III).

(c) CS are those minimum uncertainty states
(AxAp =1#/2) that have the additional property
Ap = mwAx. The rest of the minimum uncertainty states
are called squeezed states (Sec. V).

(d) CS are those minimum uncertainty states for which
(2m) " '[(Ap)* + m*w®(Ax)?] takes the minimum value
fiw/2 (Sec. V).

We shall establish the interrelationship among these
definitions and that of Schrodinger’s. The two definitions
(a) and (b) are equivalent for the harmonic oscillator due
to the particular type of commutation relations of the ele-
ments I, a, a', and a'a that form the Heisenberg—Weyl
algebra.

Although we are dealing here with a mechanical oscilla-
tor, the theory can be readily adapted to the case of a single
mode of the radiation field by setting m = 1 and interpret-
ing x as the normal coordinate and p as its time derivative.
We shall give a few examples of the use of CS connected
with radiation theory.

In Sec. II we have collected the relevant formulas in the
harmonic oscillator theory that are assumed to be well
known' and that will be constantly used in this article. In
Sec.III we introduce the CS as a quasiclassical state follow-
ing Schrodinger’s ideas and establish the definitions (a)
and (b). Various useful properties are then derived follow-
ing Klauder and Sudarshan? in Sec. IV. In Sec. V we calcu-
late some important fluctuations and establish the equiv-
alence of (¢) and (d).
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I1. REVIEW OF THE PROPERTIES OF ¢ AND a’

The quantum theory of an oscillator'® is conveniently
treated in terms of the two operators a and a', defined be-
low, instead of the usual x and p. These operators naturally
appear in the theory. Consider an oscillator with the Ham-
iltonian

H(t) = 2m)~'[ p*(1) + m*®x*(1)], (2)

where x(¢) and p(¢) are operator-valued functions of time ¢
in the Heisenberg picture. They satisfy the commutation
relations

[x(8),p(1)] = ifi. (3)

The Heisenberg equations of motion for x(¢) and p(¢)
are

x(t) = (ih) ' [x(),H(1)] =p(t)/m, 4)

p(t) = — ma’x(1). (5)

These equations have exactly the same form as the corre-
sponding classical equations. To solve this coupled system

of equations, we introduce the two operatorsa(t) and a'(#)
defined by

a(t) = [mox(t) + ip()1/J 2m#w), (6)
at(t) = [mox(t) —ip(t)1/N 2mbw). (7)

These correspond to the normal coordinate and its com-

plex conjugate, which are introduced to decouple the clas-

sical system of equations similar in form to (4) and (5).
Equations (4) and (5) then reduce to

a(t) = la(),H]/(if) = —iwa(t), (8a)

at(t) = iwa’(1). (8b)
Hence,

a(t) = a(0)exp( — iwt), (9a)

a'(t) = a'(0)exp(iwt), (9b)

where a(0) = a, a'(0) = a' are the operators a(¢) and
a'(t), respectively, at t = 0. [Any 4(0) will be written as
A.]

From the commutation relation

[x(8), p(1)] = [x, p] = ifi,
it follows, by the use of (6) and (7) that

[a(t),a'(t)] = [a,a'] = 1. (10)

The Hamiltonian (2) becomes

H="twl[a"(t)a(t) + 1]

= fiw[a’a + 1]. (1)

The operator N = a'a, called the number operator, com-
mutes with H. Hence they have simultaneous eigenstates.
It is well known'? that eigenvalues of N are 0,1,2,... . The

eigenstates corresponding to the eigenvalue n is denoted by
|n). The following properties of |n) are also well known'*:

al0) =0, (12)
aln) =\njn —1), (13)
atln)y =yn+1jn+1) (14)
In) = (a™//n1)|0), (15)
(n|n') = 8(nn'), (16)
S {n) (n| =1, (17)
n=20
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where [ is the identity operator. The set {|7) } forms a basis
for the Hilbert space of the harmonic oscillator and is more
convenient than the usual |x) or [p) basis to deal with the
properties of the harmonic oscillator. With the help of the
completeness relation (17) we can write any state |i) and
any operator (acting on the Hilbert space of the oscillator)
in terms of |n). For example

9= 3 Ind (nlu), (18)

4=3 3 |n) (nld|m) (m]. (19)
In particular

a= 3 Vnln—1) (al, (20)

al = i Vin+ 1) |n+ 1) (n| (21)

These formulas, which are assumed to be well known,
will be constantly used throughout this article.

1. COH]iRENT STATES, DEFINITIONS

Following the original ideas of Schrédinger we intend to -

find a state |a(2)), called the coherent state of the oscilla-
tor (a state that will satisfy the time-dependent Schro-
dinger equation of the oscillator) that satisfies the follow-
ing two conditions'>!®

(a) {a(@®)|x|a(t)) =x,(2)
and
(b) {a(t)|H |a(t)) = E,,
the classical energy.

The classical coordinate x_, (¢) of the oscillator has the
form .

Xy (1) = A [a exp( — iwt) + a* exp(iot) ], (22)

where a = |a|exp(i@) and A is a suitably chosen number
(tobe conveniently fixed lateron). E,; = 2mA ?|a|*w® The
energy is being measured from the ground-state energy of
the oscillator, that is the zero point energy #iw/2 (which
may be considered to be used in confining the particle in the
wave packet) is substracted from the Hamiltonian. H is
then simply equal to Awa'a.
Using (6) and, (7)), for t = 0, we have

x = [V#/2mw) ] (a + a")

=xy(a +a').
Since

(23)

la(2)) = exp[ — iwz(a'a)]|a),
condition (a) reduces to

(24)

Xy (1) = xo(a|[exp(inta’a) ] (a + a") [expiwta’a) ] |a).
(25)

The right-hand side of (24) is simplified by making use
of the operator identity'’

[exp(éa’a)] £ (a.a") [exp( — £a’a)]
=flaexp(—&).atexp(£)], (26)
whenever f'is expandable in a power series. With £ = iwt,
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we have, from (25) and (26),
xo{a|a|a) exp( — int) + xo{a|a’|a) exp(int)
= Aa exp( — iwt) + Aa* exp(iwt).
With the choice of A = x,, condition (a) leads to
(27)

We shall see presently that (27) does not uniquely define
|). However, (27) with condition (b) uniquely fixes |@),
as we shall see below.

We now introduce two operators a’ and a’* defined by

(28a)
(28b)

Evidently [e,a'] = [a',a’’]. A displacement operator
D(a) that is unitary and generates the transformation
(28) can now be defined by the equations:

(ala|a) =a.

ad=a+a,
at=a" + a*.

a =D a)aD(a), (29a)
at=DT(a)a'D(a), (29b)
D(a)DT(a) =D (a)D(a)
=1 (30)
Let |a') be the state defined by
la'y =D (a)|a). 31
From Egs. (29) and (31) we then obtain

(«'la'|a’) = (a|D(a)a’'D T (a)|a)

= {(a|ala)

=q. (32)

Hence, it follows that
(a'|ala’) = (a'|a’ — ala’)
=Q. (33)

Since Eq. (33) can be satisfied by the choice of |a’) as
any of the eigenstates |n), there is no unique |a) that satis-
fies Eq. (27). However, condition (b) uniquely fixes |a) in
the following way.

As mentioned before, we are measuring energies from
the ground states so that the oscillator Hamiltonian
H = #wa’a. We also define H' = #iwa’a’, where ¢’ and ¢’
are given by Eq. (28). Now using Egs. (24), (31), and
(33) we have

(H) ={a(t)|H |a(1))
= {a(t)|D(a)H D (a)|a())
=<' (D) |H'|a’' (1))
=t#w|a|* + {a'|H |a’)

- =E, +{d|H|a'). (34)
Equation (34) shows that (b) is satisfied if and only if
(a'|H |a') = tw{a’|a’a|a’)

=0. (35)

There is only one |a’) =|0) that satisfies Eq. (35). Hence
the state satsifying (a) and (b) is unique and using Eq.
(31) is given by

]a(t)} = [exp( — iwta’a)]1D()|0), (36a)
) = D(a)|0). (36b)
We note that the ground state |0) of the oscillator is a
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member of the set {|a)} corresponding to a = 0, since
D(0) = I. Wealso remind the reader that the notation” |a)
should be written as |a,,a,), where a = a, + ia,, a,, @,
real so that a CS such as |1) =]1,0) may not be confused
with the number state |1). Whenever a chance for confu-
sion will appear, we shall use the extended notation.

Now we set to find an explicit form for D(a). To this
effect we assume that there exists a Hermitian operator
h(a) such that

D(a) =explih(a)l,
the right-hand side being unitary. Then Egs. (29) reduce to

exp[ — ih(a)]aexplih(a)] =a +a,

explih(a)]a’ expli(a)] =a' + a*.

Using the operator identity'®
—A) =B+ [4,B]

+ DI4[4B]] + -, (37)

exp(A)B exp(

we get
explih(a)]aexplih(a)] =a —i[h(a).a] + -+, (38)

and similar expression for the equation involving a'.
Hence, we must have -

[Ala),a] =ia
[h(a),at] = —ia*.

It is easily verified that these two equations are satisfied if
we take

h(a) = Aa" + ua, (39)
where A and u are constants, with '

A= —ia,

p=ia*.

Then the explicit form of D(a) may be expressed as

D(a) = exp[aa’ — a*al, (40)
which is found to satisty Eq. (29).

The inverse of D(a) is easily found to be
D ~Ya) =exp[ — ad' + a*a]

=D(—a). (41)

We also have from Egs. (36b), (28), and (29),
ala) = aD(a)|0)
=D(a)(a +a) |0)

= ala), (42)

which expresses |a) as the eigenstate of @ with eigenvalue
a, where a is any complex number. Equation (42) has been
used by Glauber'' as the defining property of CS. The
expression

|a) = exp[aa’ — a*a]|0). (43)

=exp[ — |a|?/2]exp(aa")|0), (44)

can also be obtained by solving Eq. (42) as an eigenvalue
equatlon To derive Eq. (44) from (43) we have made use

of the operator identity'®
exp(4 + B) =exp A exp Bexp( — [4,B]/2),

where {4, [4,B]] =0.
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From Eq. (44), we obtain by using

exp(aa’) = i (C;—:)(GT)",
i) !

n=

and Eq. (15),

@ = exp “i"'z) 3 (%) n), (45)

which is the expression for |a) in the number basis. The x
and p representations of |a) can also be derived from Eq.
(45).

The number state |n) represents the state with exactly »
photons. Hence, the probability that the state |a) has n
photons is obtained from Eq. (45):

[{n|a)|* = (|a|*/n)exp( — |a|?), (46)
which is a Poisson distribution with average number of
photons  (n) = |a|?>, average square number
(n*) = |a|* + |a|? and fluctuation in n about its mean (n)
equal to || The idea becomes more relevant when we talk
about a radiation mode where a sine wave is known to de-
liver photons according to the Poisson distribution. In this
sense |a) provides a quantum description of the classwal
field.

IV. PROPERTIES OF COHERENT STATES

Before going into the physical properties of CS, we inves-
tigate certain mathematical aspects that make these states
useful in situations where the harmonic oscillator is a mod-
el. The important mathematical properties of these states
are the following:

(1) Two different CS are not orthogonal. This follows
from Eq. (45): '

IS i

_f"z E |2+a*ﬂ (47)

(@|B) = exp "2“' exp

= exp

The overlap {a|B) is never zero. It is also a continuous
function of the complex variables a and  over the whole of
the complex plane.

(2) The set {|a)} is linearly dependent. However, any
finite number of distinct |a) s are linearly independent.

We have noticed that « is any complex number so that
there are infinitely many |a)’s. The first part of the
theorem effectively says that any one of the CS can be ex-
pressed linearly in terms of all the others.

Many different types of relations exist exhibiting the lin-
ear dependence of CS. We state one simple case here. Writ-
ing a = rexp(i6) and d *a=r dr d6, we obtain from Eq.
(45),

fam|a>d2.a= 3 (.%) L‘” —

_rz)dr

27 .
XJ expli(m + n)0 1d6, (48)
Q

X exp(

where m is any nonzero integer. Since the r integral in Eq.
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(48) is bounded for every value of #, we have

J.a"'|a)d2a =0,

for every natural number m.

(49)

We will show under (3), how any |a) can be expressed

in terms of the others. The second part of the theorem is
simply demonstrated by taking any linear combination of a
finite number r of states |a;) and setting it to zero:

n

Z cklak) =

k=1
By taking inner product w1th {a|, where a is any complex
number, we have

n

z e alay) =

k=1
Since (a|ak) are hnearly 1ndependent functions of a,
expression (50) can vanish identically only when all the
¢,’s are zero.

(3) The set {|a)} is complete, that is, we have a com-
pleteness relation of the form

_‘f Ia)v(aldza =1,

where the integration is over the entire complex plane.
To verify this statement we show that for every |¢) and
|#), we have

(50)

(51)

[ wia) Calpra’a = wio. (52)
Introducing the number basis and using
(n]a) = (@"/YnD)exp( — |a|>/2), (53)

[which is obtained from Eq. (45)] the left-hand side of Eq.
(52) can be expressed as

M <n|m>U (

xj expli(n — m)@ ]d6]<m|¢>
0

)exp( )dr

= 3 (yIn) (nlg)

= (¢|¢),

where we have used the fact that the ¢ integral is eqilal to
276, and

f re ~"dr =3
0 .

The CS provide an alternative (continuous) basis (non-
orthogonal) for the Hilbert space of the oscillator the other
being the well-known number states. In the following sub-
sections we use Eq. (51) for obtaining the CS representa-
tions of vectors and operators.

A, Expansion of a state in the CS basis

Any vector |¢) (in the Hilbert space of the oscillator)
can be expressed in the CS basis, by using Eq. (51):

) = ﬂ’lf @) (a|d)d . (54)
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In particular, any of the CS, say |8 ), can be expressed as
B) =n~" f @) (alB)d’a
|'82| +a*p ) da.

J. |a)exp(
(55)

Equation (55) reveals the linear dependence of the infinite
set {Ia ) }. The CS are said to be overcomplete; a sloppy way
of saying the same thmg is that there are more states than
are necessary for expressing any state in terms of CS. This is
usually shown in the following way:

Multiply Eq. (47) by exp( — im#) and integrate over 6
and O to 277. Herea = r exp(if) and mis a positive integer

including zero. We then have
2
aYexp( — im@)df = ex ( ) )( )
[ iwexp p 5, (-
‘ ’ 217
XJ expli(n —m)01d0
(¢]

FNE)

=r" exp(
Hence

|m) = 2m)~'r ""eXP( )(J_)

27
XJ- |a)exp( — imB)d6.
(1]

This shows that the subset {|a),}, obtained by setting
r = any constant, supplies adequate number of states for
expressing any number state {m) and hence any state |¢) in
the oscillator Hilbert space in terms of the subset.

Using Eq. (54), we can write any number state |n) as

!n)—J(‘/_’%)exp( jo* )|a)d .

The expansion coefficients in Eq. (54) can also be ex-
pressed as

(56)

(aly) =3 (a|n) (n]¢)
— expf = LY 5 (a2
—exp( - 12 )}n;<n|¢>(m). (57)
Since (Y|y) =3,|(n|¢)|* =1, the series on the right-
hand side of Eq. (57),
fylah=3 <n|¢>(3‘f), | (58)

is absolutely convergent in any finite region of the complex-
plane, showing that Sy (@*) is an entire function (analytic
in every finite region of the complex plane). We conclude
that for every |¢) in the oscillator Hilbert space, there ex-
ists an entire function f,, (a*) such that the CS represerita-
tion of |¢) is given by

(al) =1, (@*)exp( — |a|*/2). ‘ (59)
This one-to-one correspondence between (a|¢) and
Jy (a*) establishes a relation between the space of the CS
representations (a|¢) and the Segal-Bargmann '(S-B)
space of entire functions f,, (a*). We note that £, (a*) cor-
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responding to |¢) = |n) is (a*)"/yn!. The functions
f.(@*),n=0,1,.2,.., forman orthonormal basis of the Se-
gal-Bargmann space. For any two functions
f(a*) = Za,a*", g(a*) = Zb,a*", in this space, we have

(flgy =3 (nha,*b,, (60)

(F1F)y=3 (n)]a,[* (61)

The last equation gives the completeness relation. Also,
it shows that not every entire function is an element of this
space but only those f (a*), for which (f|f) < .

Operators such as a, a' take very simple forms (repre-
sentations) in the S-B space. It is evident from Eqgs. (13)
and (14) and the form of f, (a*) that the representation of
a'isa* and of ais d /da*. Many complicated equations can
be immensely simplified in this representation. {See Ref. 1,
p- 17.)

B. Coherent state representations of operators
An operator 4 acting on the oscillator Hilbert space is
expressible in the C-S basis by using Eq. (51) in the form:

A=7T-2f @) (a|d |B) (Bld%adB. (62)

The above expression is not, in general, unique due to the
overcompleteness of the C—S basis.'!

The matrix element {(a|4 |3 ) in Eq. (62) can be ex-
pressed in the number basis as

(ald |B)=exp(—l.0;'_2_L%E)
3 S M *\7n m
xnzomgo(m)(a B

We assume that {(n|4 |m)’s are well-behaved functions so
that an entire function 4 (a*,) can be defined by

d@*p=3 3 [(n4 |m>m]((a*>"(ﬂ)"')_

W=0m =0 (nlm!)
(64)

(63)

Hence,

{a|4|B) =A(a*Brexp( — |a|/2 —|B|*/2).  (65)

We call A(a*,8) the CS representation of 4. Treating
the right-hand side of (64) as a double Taylor series, we
may consider 4(a*,3) as the generating function of the
matrix element (n|4 |m). The diagonal element (|4 |a)
can be obtained from Eq. (64) by setting 8 = a, so that we
can write

(n|Ad |m)y (nim!)

(9 (I 27
(52) (2 )ual el (66)
This shows that 4 (a*,3) can be derived from the diagonal
term A (a*,a) This is possible due to the overcompleteness
of the C-S basis, and does not take place in any other or-
thogonal basis.

The representation of the identity operator / is obtained
from Eq. (64) by setting 4 = I,

I(a*,B) = exp(a*B). (67)
The CS representation of the state |¢) = 4 |¢) can be
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obtained by using Egs. (59) and (65):
[y (a@*) = (a|p)exp(|a|’/2)

— f (@4 |8) B |¢o>exp(J22E) B,
— j A(a*B) f, (B exp( — |8 > dB)

- f A@*B) f,( B*)du, (68)
where
du=7""exp( — |B|*)d’B. (69)

The trace of a Hermitian operator 4 is given by using Eq.
(53),

TrA=Y 7" f (nla) (alny (n|d |n)d%a
= ! fA(a*,a)exp( — |e|®)d’a

= J"A(a*,a)d,u. (70)

The CS representation of D(4) is found useful in various
situations especially in the theory of radiation detection.
We notice first that

DA)|B) =D(A)D(B)|0)
= D(A + B)exp[ (B*A — AB*)/2]|0)
= |A + B expl(B*A — AB*)/2]. (71
Hence,
D(a*BA)={(a|D(1)|B)exp[(la|* + |8]*)/2]

=exp( — |4 |*/2)exp(a*A + a*B — A *).
(72)

The diagonal elemerit is
(a|D(A)|a) = D(a*a;A)exp( — |a|?)
=exp( — |4 |/2)exp(a*d —al *). (73)

The number representation of D(4) can be obtained
from Eqgs. (64) and (72) which lead to

exp( — A |/2)exp(a*d + a*B—BA*)
=22(M_> (n|D(A)|m).
NeTo]

w m\ y (nlm!)

For detailed calculation we refer the readers to the paper by
Mollow and Glauber.'®*® We quote the results:

(n|D(A)|m)exp( — |4 |2/2) (nim!)'/?
X (= A*)" LA,

for n<m, and
(n|D(A)|n) =exp( — |1 |*/2)L,(|A 1%,

where L (" ~" is the associated Laguerre polynomial and
L, is the Laguerre polynomial.”'
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C. The P representation of Glauber’

The CS representation of a density operator p(a',a) can
be written according to Eq. (62) as

plata) =772 J‘R(a,ﬂ*) |} (B

Xexp( _UaP+ 18" |2)d2ad2,6’,

74
> (74)

where

R(aB*)=(alp(a'a)|B).

This is known as the R representation of Glauber.

There is, for a variety of density operators, a much
simpler representation known as the P representation that
was first introduced by Titulaer and Glauber??:

plata) =fP<a)|a> (ald’a, (75)
where P(a) is defined over the entire complex plane and is
called the weight function. The average value of an opera-
tor 4(a',a) in the state described by p is then given by

(4) =Tr(p4)

=JP(a)(a|A la)d %a. (76)

Although P(a) in Eq. (76) appears like a probability
density function over the complex plane of the classical
probability theory, it may be highly singular and even nega-
tive. However, this blemish disappears in many important
cases where P(a) is positive everywhere and the calcula-
tions of the averages can be carried out in a manner analo-
gous to classical calculations.

Let us consider some properties of P(a). Since p is a
density operator it satisfies the following conditions:

pl=p (77a)
Tr(p) =1, (77b)
pr=p, (77c)
0<{(dlp|p) = [{¢|¥)|*<1, (77d)

where |@) is any state.
The hermiticity of p implies that P(a) must be real val-
ued. By setting 4 = I'in Eq. (76) we get

Tr( p) =fP(a)d2a= 1, (78)

which shows that P(a) is properly normalized. We have
also

O<JP(a)exp[ — B — a|?ld?a<], (79)

which is obtained by choosing |¢) and |¢) in Eq. (77d) as
any two coherent states.

As an example we consider the density operator p for a
system in the coherent state |a). p is then

p=la){a|.
We set

P(B) =86%(B—a), (80)
where the two-dimensional delta function is defined by

8?(B)=56(Re B)5(Im B). (81)
It can easily be verified that Eqgs. (78) and (79) are satis-
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fied. Equation (80) gives the P( ) for the pure coherent
state.

Consider now the average of the operator (a')™a". We
have ,

((@")"a") = Tr( p(a*)"a"

= fP(a) (ala"™a"|a)d *a

= fP(a)a*ma"dza. (82)
We notice that the average of the operator (a")™a" in the
state p is simply obtained by taking the average of a*"a"
with the weight function P(«r). The average value of a nor-
mally ordered function of @ and a', £, (a,a’) [in which all
creation operators are transferred to the left of all annihila-
tion operators with the help of the commutation relation
(10)}] is given by

(fo(a,a")) =Tr[ pf,(aa")]

=fP(a)ﬁ(a,a*)d2a, (83)
where f, (a,a*) is obtained from the normal ordered oper-
ator function £, (a',a) by replacinga" by a* and a by a. It is
essential to have the function in the normal ordered form so
that terms of the type (a|a"™a"|a) can simply be replaced
by a*™a" as in Eq. (82).

The significance of the properties is further illustrated by
considering the case of an oscillator in thermal equilibrium
with a heat reservoir at temperature 7, in other words, an
oscillator with thermal noise. The density operator for such
a system is>®

(84)

where 8 = fiw/ky T, @ is the angular frequency of the oscil-
lator, and &y is the Boltzmann constant. We can verify this
by expressing p in Eq. (84) in the number representation:

FP(aT’a) = [1 - exp( - 0)]CXP( - eafya);

plata) =[1 —exp(—90)] i exp( — Ga’a)|n) (n|
n=0

=[1—exp(—6)] i exp( — 6n)|n) (n|.
n=0
Hence
Trp=[1—exp(—6)] i [exp( — &) ]”
n=0

=1,
and the average number of photons in the state p is
N = (n) =Tr(a'ap)
= [exp(8) — 117 L

This is the Planck distribution as it should be.
A CS representation of this p is

p= (#N)_lfexp( —'—?VE) |a) (a|d’a,

which can easily be verified by calculating (n|p|m) from
Eq. (85) which turns out to be

(85)

(nlplm) = [1 —exp( — 0) Jexp( — 6n)é,, . (86)
The weight function P(a) for this case is
P(a) = (7N) " 'exp( — |a|*/N), (87)
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which is Gaussian .and positive everywhere.

In the classical limit #iw/ky T €1, the distribution P(a)
in Eq. (87) becomes the classical distribution

P(a) = (fiw/mky T)exp( — fiw|a|*/ky T). (88)

The general case of determining P(a) from p has been
discussed by Sudarshan.?

D. Differential representation of operators

The differential representations of a' and a can be ob-
tained from the two relations

(ala’|¥) = a*(a|) (89)
and
(alala’) =a'{a|a’). (90)

From Eq. (89) it follows that a' is represented by multipli-
cation by a*. Substituting from Eq. (47) for (a|a’) in Eq.
(90) we have

N=a _oeat _aat | oy

(alala’) =« exp( 5 +a a)

_(a d '
Hence

(alal) =77 [(alala’) (@ |)a’
(£ +-L)o [ ale) @raa
(e, 9
h (2 + aa*)(aw' o2

Hence the representation of a is @/2 + d /da* in the
space of the functions (a|¢). In general, the operator
F(a',a) has the representation

<a|F<a*,a>|¢>=F(a*,i+ J )<a|¢>. (93)

2 da*

The derivatives inside F act on terms containing a¢* in
(a|y¥) as well as those in Fitself. For example,

t —{& d *
(alaatp) = (£ + =L Javalp).
From Eq. (47) we have

J (-«

(%) @) =(- 2 +8) alp). (94)
Hence,
(a]aa’|B) = (a*B + 1) (a|B).

When F is in the normal ordered form, all @' are on the
right of all g in each term of F. In this case there is no term
in F where d /da* can act giving nonzero values. Thus the
normal ordered form of aa' is a'a + 1. Hence

(a|aa’|B) = (a|a’a + 1|B)
—at9 L9
(242 @lp) + (alp)

= (a*B8+ 1){a|B).
Using Eq. (94) we can write

(a|F(a'a)|B) = (a|B )F(a*,ﬁ+

J
A0 0 (95
8a*) 3)
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The diagonal elements of F are given by

J ).1, (96)

da*

(a|F(a'a)|a) = F(a*,a +

which is a very useful formula. The left-hand side of Eq.
(96) is a function of ¢ and a* that we shall write as
F, (a,a*) which is also equal to {a|: F(a',a):|a), where
:F(a',a): mean the normal ordered form of F(a',a). When
the operator function F is in the normal ordered form, the
diagonal element is simply obtained by substituting a for a
and a* for a'.

As an example of the use of the above formalism let us
consider the time development of a quantum mechanical
system with Hamiltonian H (a,a’,t). The state vector satis-
fies the Schrodinger equation

WL -
:ﬁ(E)w(t)) = Hlpn). (97)

The unitary evolution operator U(¢) is defined by!?
[Y(6)) = U |¢(0)). (98)
It is well known that U(#) satisfies the operator equation

iﬁ(i)U(t) — HU(), (99)
at

with U(0) = 1. The problem is to determine U(¢) by solv-
ing Eq. (99).

Operator equations are usually complicated to solve.
However, we can obtain an equation for the normal or-
dered associated function U, (¢) as follows:

iﬁ(g;) U, (a*a,t) = iﬁ(g;) (a|U(a%a,)|a)
= (a|H(d',a,t) U(a',a,t)|a)

J
- 21
a*,a + S

d
XU(a*,a +—,t)
da*

a
= H(a*,a + —5;: ,t)U,, (a*a,t),
(100)

which is an equation involving ¢ numbers only.

Let us consider the forced harmonic oscillator (interac-
tion of a classical current with a single mode of the em
field) for which

H=fwdta + 4] f(a+ f*()a'].

=)
da*

d
#if(t
+Af( )(a+aa*)

Equation (100) then becomes

iﬁ(i) U,(a*a,t) = {ﬁwa*(a +
ot

+ hf*(t)a*]U,,(a*,a,t),

which is a c-number equation that can be solved in various
ways. Similarly the Liouville equation for the density ma-
trix can be reduced to a c-number equation that is compara-
tively easier to handle than the original operator equa-
tion.”*
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V. FLUCTUATIONS OF OPERATORS

The fluctuation (A4), of a Hermitian operator in any
state |3} is defined by

(AA).p E\/('M (4—{4 )./,)ZW') ,
where

A4),=l4]¢).

The fluctuations (Ax), and (Ap), in the number state
|n) is easily evaluated:

(Ax), =V (mhw/2) Y2n + 1), (101)

(Ap), =V#/(2mw) Y(2n + 1), (102)

where we have used (x), = ( p), = 0. The uncertainty
product is then

(Ax),(Ap), = fi(n +1). (103)

It follows that among the number states the ground state
|0) is the only minimum uncertainty state with
(Ax)(Ap) = /2.

To deal with the fluctuations in x and p in the CS, we
define for convenience,

a,=y[maw/(2#)] x,
a,=\[1/2mfiw)] p,

so that from the definition of @ in Eq. (6), we have

a=a, +ia,.

(104)

For a radiation oscillator, a, and a, are identified as the
amplitudes of the two quadrature phases (the negative and
positive frequency components) of the field.

From the commutation relation between x and p it fol-
lows that

fay,a,] =i/2. (105)
The uncertainty relation corresponding to Eq. (105) is
(Aa,)?(Aay)*>1/16, (106)

where the averages are calculated for any arbitrary state.
For the CS, |a), we have

(@) = (ala|a)
=Rea (107)
(a}) = (Rea)’ + 1. (108)
We can derive similar expressions for a,. Hence in any co-
herent state |a), we have
(Aa))* = (a}) — (a,)* =}, (109)
(Ag,)? =1 (110)
Hence all coherent states are minimum uncertainty states
with equal fluctuations in the two quadratures. [ Definition
(c) in Sec. I.] We also have
(Aa,)? + (Aay)* =1

[ Definition (d) in Sec. I.]

The equivalence of the definitions of the CS given in Sec.
Iis now established for the harmonic oscillator. The equiv-
alence is due to the particular commutation relations of the

(111)
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operators /, a, a', aa’, that is, the particular structure of the
Lie algebra of those operators. If in the case of a certain
system the operators satisfy different type of commutation
relations, the definitions (a) and (b) in Sec. I, may not be
at all equivalent.”®

The average value of an operator in a coherent state can

~ be easily calculated first by normal ordering the operator

and then substituting a for a and a* for a' in the normal
ordered form. The fluctuations can then be evaluated.

VI. CONCLUSION

We have discussed here the properties of coherent states
of the harmonic oscillator. These are the states for which
the energy of the oscillator is a constant of motion with the
same value as that of a classical particle moving with the
center of the packet under the harmonic potential (the
zero-point energy is subtracted). These states are genera-
ted by applying a time-varying force to the oscillator ini-
tially in the ground state.
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