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4.5.1 Model of the NH3z Molecule

The ammonia molecule NH; has the shape of a pyramid (Fig. 4.7a), where
the nitrogen atom is at the apex and the three hydrogen atoms form the
base in the shape of an equilateral triangle. The plane of the three hydrogen
atoms is denoted P and the perpendicular to this plane passing through the
nitrogen atom is denoted D. The distance x represents the position of the
intersection of P with D. The position of the nitrogen atom is chosen as the
origin of the z axis. For low excitation energies, the molecule preserves its
pyramidal shape and the nitrogen atom remains fixed.

Qualitatively, the variations of the potential energy V(x) with z are as
follows. At the equilibrium position z = b, V(z) has a minimum (Fig. 4.7b).
If we force z to become smaller, the energy increases; it goes through a
maximum for z = 0, which corresponds to an unstable state where the four
atoms are in the same plane. If x becomes negative, the molecule is turned
over like an umbrella in the wind. For symmetry reasons there exists another
minimum for = —b and the potential energy satisfies V(x) = V(~z).

In the following we replace the actual potential V(z) by the simplified
square-well potential V() represented by dotted lines in Fig. 4.7b. For this
potential, which reproduces the main interesting features of V(x), we study
the quantum motion of a “particle” representing the collective motion of the
three hydrogen atoms, assuming that they stay in the same plane. The mass
m of the particle is equal to 3my, where my is the mass of a hydrogen atom.
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Fig. 4.7. The ammonia molecule: (a) the two classical configurations; (b) the
actual potential (full line) and the simplified potential (dotted line) which describes
the inversion of the molecule

4.5.2 Wave Functions

Following the same procedure as in Sect. 4.3, it is straightforward to find
the stationary states in this problem. We concentrate on the case E < Vg,
for which the classical motion of the “particle” is confined in one of the
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potential wells (left or right), i.e. the molecule cannot turn over classically.
The solutions to the quantum problem are sinusoids in the regions L and R
and exponentials in the middle region M. Since the wave functions have to
vanish for z = £(b+ a/2), the eigenstates of the Hamiltonian can be written

Y(z) = £Asink(b + a/2 + ) region L,
_fpcoshKzx symmetric solution .

w(z) = { u sinh Kz antisymmetric solution } region M, (4.57)

P(x) = Asink(b+ a/2 — z) region R,

where we set, as previously, kK = v2mE/h and K = /2m(Vy — E) /h. These

two types of solutions are represented in Fig. 4.8.

v

Fig. 4.8. Symmetric solution (a) and antisymmetric solution (b), in the symmetric
double-well model of the ammonia molecule

The continuity equations for the wave function and its derivative at the
points z = £(b — a/2) lead to the conditions

k
tanka = % coth K(b—a/2) for a symmetric solution g,

k
tanka = X tanh K'(b — a/2) for an antisymmetric solution 4 .

In order to obtain some physical insight with simple algebra, we consider
the case where the ground-state energy' E is very small compared with the
height Vp of the potential barrier. This leads to K ~ +/2mVy/h > k. In
addition, we assume that the central potential barrier is wide enough that
KA > 1, where A = 2b — a is the width of this barrier. These assumptions
hold in the case of the ammonia molecule, as we shall see below. We then .
have

k

tanka > —— (1 +2e7K2) | (4.58)
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Fig. 4.9. (a) Graphical determination of the energy levels in the double well; (b)
positions of the two first energy levels. They are both lower than the ground-state
energy of a single potential well similar to L or R (Ey — Ej), and we observe a
splitting of these levels (E; — Ea and Es) owing to the coupling between the two
wells due to quantum tunneling

where the + sign corresponds to ¢s and the — sign to 4. This equation
allows us to calculate the quantized values of ka. These values appear on
the graph in Fig. 4.9 as the abscissae of the intersections of the successive
branches of y = tan ka with the two straight lines y = —epka and y = —eska.
These intersections are located in the vicinity of ka ~ 7. The two constants
€A and eg are

1 1

ea=g (1-275%)  es= o (142075%). (4.59)

They are close to each other and such that ep < eg < 1, since Ka >> ka ~ .

4.5.3 Energy Levels

We denote by ks and ks the two (close) values of & corresponding to the
eigenstates 1pg and 1pa of lowest energy. The graph in Fig. 4.9 shows the
following;:

1. The two quantities ks and ka are slightly smaller than 7/a, which is the
lowest value of the wave number in an individual well, similar to L or R,
of width a with infinitely high and thick walls.

2. The quantity kg is slightly smaller than k; consequently the respective
energies of the two lowest-lying levels

Es=h%%k2/2m,  Ex=h%k2/2m (4.60)

are such that Fg < Ej4.
In the range of parameters considered here (K > k, Ka > 1), we find
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™ ™

ks~ ———,  ka~ ——
57 a1+ es) A7 a(l+ea)

(4.61)

with eg and €5 < 1. Putting together (4.58), (4.60) and (4.61), we obtain
the mean energy E{ = (Ea + Eg)/2:

Rin2 2
Bl ——{1-—}. 4.62

07 2ma2 ( K a) (4.62)
The splitting Ep — Es between these two energy levels will be of particular

interest. It is given by

1 1

1+5A)2 - (1 +5S)2 (4.63)

R2n2
Eyn —Es=2A~
AT 2ma? [(

where
R2r2 4e KA
" 2ma? Ka

(4.64)

Since K is approximately equal to /2mV;y/h, we see that A decreases expo-
nentially when the width A or the height V, of the intermediate potential
barrier increases. We also note that A vanishes as exp (—const./h) in the limit
h— 0.

4.5.4 The Tunnel Effect and the Inversion Phenomenon

Classically, for E < Vj, the plane of the three hydrogen atoms in the mole-
cule is either on the right or on the left. No transition L < R is possible.
There are two ground states of equal energy, one in the L configuration, the
other in the R configuration. In contrast, the two lowest-lying energy states
of the quantum molecule have different energies. The two corresponding wave
functions have well-defined parities: one is symmetric (3s), the other is anti-
symmetric (14 ). In both cases the probabilities (modulus squared of +) that
the particle (or the triangle of hydrogen atoms) is on the right and on the
left are equal.

For both eigenstates 1 and /s the probability density is nonzero in the
M region, which is classically forbidden. Again we are facing the possibility
that a quantum particle can be located in regions where its total energy is
less than the local potential energy. This results in a lowering of the energies
of the two lowest eigenstates of the Hamiltonian with respect to the case
Vo = oco. Indeed, in that case there would be two possible ground states
for the molecule, corresponding to the L and R configurations (or to any
linear combination of these states), with the same energy Eq = h?n? /(2ma?).
Because Vj is finite the molecule sees an effective size of each well (L or R)
which is slightly larger than a (aeg ~ a+ K 1); this explains the lowering of
the mean energy Eq — Ej.
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This global lowering is followed by a splitting £y — FEj + A into two
sublevels. The physical origin of this splitting is the tunneling effect, i. e. the
possibility for the particle to cross the potential barrier and pass from one
well to the other. We now investigate this very important phenomenon in
more detail.

The wave functions 15 and s are eigenstates of the Hamiltonian. We
can combine them to form other physically acceptable states of the system.
Two linear combinations are particularly interesting:

Pr, = (s — 1)/ V2 and YR = (5 +Pa)/V2. (4.65)

These wave functions describe states for which the probability density is
concentrated nearly entirely on the left for 41, and on the right for ¢)g. These
correspond to the “classical” configurations, for which the molecule is oriented
towards either the left- or the right-hand side (Fig. 4.10).
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Fig. 4.10. Classical configurations of the ammonia molecule

Consider a wave function ¢)(z,t) equal to ¢r at time ¢t = 0. It describes

a molecule localized in the “right” configuration. Its time evolution is
1 . .
P(z,t) = \/—5 <ws(w)e_‘ESt/h + Ya(z) e_lEAt/h>

o—iBst/h

== (vs(z) + pa(z)e ™) | (4.66)

where we have introduced the Bohr frequency hw = Ep — Eg = 2A.

We notice that after a time t = n/w = wh/(2A), the wave function
¥(z,t) is, up to a phase factor, proportional to v, and the molecule is
in the left configuration! At time ¢ = 27/w the wave function (z,1) is
again proportional to ¢r: the molecule is back to the right configuration. In
other words the superposition (4.66) represents a state of the molecule which
oscillates from right to left at the Bohr frequency v = w/27. The ammonia
molecule prepared in a classical configuration at ¢ = 0, turns over periodically
because of quantum tunneling. This phenomenon, called the inversion of the
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NHj3; molecule, plays a fundamental role in the principle of the ammonia
maser, which we shall discuss in Chap. 6.

The quantity A controls the frequency at which the transition from one
minimum of the potential to the other occurs. Comparing the expression
(4.64) for A with the tunneling probability found in Sect. 3.6.4, we notice that
the two expressions are very similar, the essential point being the presence
of the exponential term. For ammonia, the energy difference 24 is small
compared with typical binding energies in atomic and molecular physics:
2A ~ 107* eV. The frequency v and period T of the oscillation are

w 24 1 _h -11
As we shall see in Chap. 6, the oscillation is associated with the emission
or absorption of electromagnetic radiation. The corresponding wavelength is
A = ¢/v = 1.25cm. This wavelength can be measured with great accuracy,
and it constitutes a “fingerprint” of ammonia, which, for instance, allows us
to detect the presence of this molecule in the interstellar medium.

4.6 Other Applications of the Double Well

The general formalism we have just developed for the ammonia molecule can
be extended to many other symmetric double-well situations. Consider for
instance two identical atoms A; and As at a distance A from one another.
An electron sees a double well, sketched in Fig. 4.11, each minimum being
centered on one of the atoms. We choose the origin of energy such that V' — 0
for x — oo. If A is sufficiently large, one may, to a good approximation,
consider that V' ~ 0 in the middle region between the two atoms.

An electron bound to one atom in a given energy level Ey < 0 must cross
a potential barrier of height |Ey| and width A in order to jump to the other
atom. We want to estimate, in terms of A and Ey, the order of magnitude of
the typical time T needed for this transition.
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Fig. 4.11. Double well seen by an electron when two atoms are separated by a
distance A
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We shall assume here that the kinetic energy Ey of the bound electron is
of the order of |Ep| (for hydrogen atoms, this is exact because of the virial
theorem applied to the Coulomb potential). In the exponential related to
the tunnel effect, we have K = \/2m|Ey|/h. Since the electron is bound
in an atom, we have Ka ~ 7 (see Chap. 11). The essential result of the
previous section, i.e. the exponential dependence of the oscillation frequency
on the parameter KA, remains valid. Therefore we rewrite (4.64) in the form
A ~ Exe K2 ~ |Egle K2 where we neglect a numerical factor of order
unity.

In a molecule or in a solid, the interatomic distance is of the order of one
or a few angstroms. In a gas at room temperature and atmospheric pressure,
the interatomic distance is ~ 30 A. The least bound electrons in an atom
(valence electrons) have binding energies of a few e¢V; we then find

Solid: A=2A|Ey|=4eV, A=1eV;T=10Y5,
Gas: A=30A; |Eg)=4eV  A=10"12eV; T=10"3s.

We see that tunneling is important for valence electrons inside a molecule or in
a solid. These electrons jump rapidly from one atom to another, and they are
delocalized in the global molecular structure. In contrast, the corresponding
phenomenon is completely negligible in gases. Indeed, because of the thermal
motion, two given atoms or molecules in a gas remain at a relative distance
of the order of 30 A only for a time shorter than 1071°s. The oscillation
associated with the tunneling effect has a period of 1073 s and it cannot have
an appreciable effect on a timescale as short as 107%s. In a gas, it is justified
to consider that even the least bound electrons “belong” to a given atom.

The essential ingredient in the above reasoning is the exponential variation
of A with A and K = \/2m|FEy|/h. This very large variation explains why, in
going from a system to another one which seems similar, the characteristic
times may be extremely different. For a system where KA is slightly too
large, the oscillation period T' can become so incredibly large that tunneling
may safely be neglected.

The particularly interesting case of NH3 and the similar molecules NDjg,
PHj3, AsHj, etc. is treated in detail by Townes and Schawlow,? who give more
realistic forms of the potentials. Consider, for instance, the passage from NHj3
to AsHj:

NHs: Vo =025eV, b=04A : 1y=24x10""Hz;
AsH3: Vo=15eV,b=2A : 1 =16x10"%Hz.
A change by a factor 6 in V; and a factor 5 in b induces a dramatic decrease

of the inversion frequency, by 18 orders of magnitude! The frequency found
for AsHjs corresponds to one oscillation every two years, and its detection

2 C.H. Townes and A.L. Schawlow, Microwave Spectroscopy, Chap. 12, McGraw-
Hill, New York (1955).
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is completely beyond the reach of current experimental techniques. In other
words AsH3, which seems to differ only moderately from NH3, behaves as a
classical object from the point of view of the tunneling phenomenon that we
have considered here, simply because the As atom is ~5 times larger than
the nitrogen atom.

The stability of systems which do not have definite symmetry properties
is frequently encountered on the microscopic scale. Among many examples,
there is the case of optical isomers in organic chemistry. The simplest exam-
ple is the molecule CHCIFBr. The tetrahedral structure of the bonding of
carbon results in the fact that two nonequivalent configurations exist. They
are represented in Fig. 4.12 and are called optical isomers. Such isomers have
different optical, chemical and biological properties. The situation for these
isomers is similar to the situation we have just described. Such molecules
should, in principle, oscillate from one configuration to the other. However,
both types of such molecules are perfectly stable in practice. This is due to
the fact that the inversion period 7T is so large that one cannot detect the
oscillation.
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Fig. 4.12. Two optical isomers: can one detect the tunneling oscillation between
these two configurations?
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