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Abstract
We analyze and show experimental results of the conditional purity, the quantum discord and
other related measures of quantum correlation in mixed two-qubit states constructed from a pair
of photons in identical polarization states. The considered states are relevant for the description
of spin pair states in interacting spin chains in a transverse magnetic field. We derive clean
analytical expressions for the conditional local purity and other correlation measures obtained as
a result of a remote local projective measurement, which are fully verified by the experimental
results. A simple exact expression for the quantum discord of these states in terms of the
maximum conditional purity is also derived.

Keywords: quantum information, measures of quantum correlations, experimental test with
single photons

(Some figures may appear in colour only in the online journal)

1. Introduction

Quantum correlations are at the heart of quantum information
theory, constituting one of the key features that distinguishes
quantum from classical composite systems. They are recog-
nized as the essential resource that enables several quantum
information processing schemes [1], such as quantum tele-
portation [2] and quantum algorithms exhibiting an expo-
nential speed-up over their classical counterparts [3, 4].
Although quantum entanglement [5, 6] is the strongest type of
quantum correlations, it does not encompass all non-classical
correlations that can be exhibited by mixed states of com-
posite systems. For such states, other measures of quantum-
like correlations have been proposed [7], starting with
quantum discord [8–13], which was then followed by other
related measures [7, 14–16]. The presence of discord-like
correlations has been shown to be important in various
quantum information processes [7], including quantum state
merging [17], quantum state discrimination [18], quantum
cryptography [19], quantum metrology [20] and quantum

protocols [21]. Accordingly, several studies and verifications
of these correlations in distinct contexts have been made
[7, 22–26]. Furthermore, a quantum resource theory based on
quantum coherence has recently been developed [27, 28] and
some quantifiers of this resource have been directly related to
measures of quantum discord [29, 30].

Quantum discord for a bipartite system can be defined [8]
as the minimum difference between two distinct quantum
generalizations of the classical conditional von Neumann
entropy, one being the standard formal extension of the
classical expression while the other one, introduced in [8],
involves a local measurement on one of the constituents. The
latter generalization measures the average conditional mix-
edness of the unmeasured component (A) after the local
measurement on the other component (B) and is always a
positive quantity, which is smaller or at least never larger than
the original marginal entropy ( )S A . Moreover, its minimum
over all local measurements at B is exactly the entanglement
of formation between A and a third system C purifying the
whole system [12]. This fundamental relation has enabled, in
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particular, the connection with quantum state merging, a
quantum information task where in a pure tripartite system
ABC, A transfers her state to C through classical commu-
nication and shared entanglement. The minimal entanglement
consumed in such process is given by the quantum discord
between A and B (with measurements at B). The measurement
dependent conditional entropy has been recently extended to
more general entropic forms [31], where a similar relation
with the corresponding generalized entanglement of forma-
tion holds. In particular, this generalization allows the use of
simple forms like the linear entropy, which can be more easily
evaluated and enables a clean analytical solution of the
associated optimization problem (i.e., that of selecting the
local measurement which minimizes the conditional entropy)
in general qudit–qubit states [31]. Moreover, such entropy is
directly related to the purity, an experimentally accessible
quantity whose determination does not require a full state
tomography [32, 33], and which in the case of a qubit is
formally related to the classical degree of polarization [34].

The aim of this work is to analyze and experimentally
obtain the conditional purity, the quantum discord and other
related measures of discord-like correlations [14, 16] in a
particular class of mixed states which can be faithfully
simulated through photonic quantum systems and linear
optics [35, 36]. These states, which are mixtures of non-
orthogonal aligned states, arise naturally in different contexts,
in particular as reduced pair states in the exact ground state of
spin 1/2 chains with anisotropic XY or XYZ couplings, in the
immediate vicinity of the factorizing magnetic field [37–39].
In these chains they can also provide a basic description of
reduced pair states in mean-field symmetry-breaking phases
( <B Bc) [22].

For such states, described in section 2.1, we first derive in
2.2–2.3 simple analytical expressions for the conditional
reduced state and its purity after a local measurement on one
of the qubits, including the average conditional purity and its
maximum among all possible local projective measurements.
We then derive in section 2.4 a simple closed analytical
expression for the quantum discord of these states in terms of
the maximum conditional purity. Note that the computation of
the quantum discord for general states is difficult due the
associated minimization, having recently been shown to be an
NP-complete problem [40]. Additionally, in 2.5 we present
expressions for the global post-measurement purity and its
minimizing measurement, which allows to evaluate the
associated information deficit and the geometric discord.
These quantities are also analyzed and compared. We have
then experimentally tested these theoretical results using
polarization-encoded photonic qubits that arise from a source
emitting a pair of photons in the same polarization state,
which enables to reproduce the mixed two qubit states. A
description of the experimental setup used to prepare the
desired state and perform the local measurements is given at
the beginning of section 3.1, with 3.2 devoted to present the
experimental results and their comparison with the theoretical
predictions. Conclusions are finally given in 4.

2. Theory

2.1. Initial state

We consider the symmetric two qubit mixed state

∣ ∣ ∣ ∣ ( )r qq qq q q q q= ñá + - - ñá- -p q , 1AB

where ∣ ∣ ∣ ∣ ∣ ∣qq qq q q q qñá º ñá Ä ñá , with

∣ ∣ ∣ ( )q ñ = ñ  ñq qcos 0 sin 1 , 2
2 2

pure single qubit states forming angles q with the z axis on
the Bloch sphere, and [ ]Îp 0, 1 , = -q p1 are the prob-
abilities of preparing both qubits in the states ∣qñ and ∣ q- ñ
respectively. Any rank 2 mixture of the form

∣ ∣ ∣ ∣r = WWñáWW + W¢W¢ñáW¢W¢p qAB , with ∣ ∣Wñ = ñ +qcos 0
2

∣ ñf qe sin 1i
2

a general qubit state, can be rewritten at once in the
form (1) by choosing a new z axis in the Bloch sphere half-
way between the directions ( )q fW = , and ( )q fW¢ = ¢ ¢,
(and the x axis in the plane determined by them). Moreover,
any mixture ∣ ∣ ∣ ∣r = W W ñáW W + W¢W¢ ñáW¢W¢p qAB 1 2 1 2 1 2 1 2 , where
the angle betweenW¢2 and W2 is identical with that between W¢1
and W1, can be also brought to the form (1) by applying local
rotations on one of the qubits that shift W2–W1 and W¢2–W¢1.
These rotations will not affect correlation measures.

Mixed states of the form (1) can arise in different con-
texts. For instance, they emerge naturally as reduced two-spin
states in the ground state of ferromagnetic-type spin 1/2
arrays with anisotropic XY or XYZ couplings in the immediate
vicinity of the transverse factorizing magnetic field
[22, 38, 39], where the exact ground state becomes two-fold
degenerate, being an arbitrary linear combination of uniform
completely separable states, i.e.

∣ ∣ ∣ ( )a qq b q qñ = ¼ ñ + - - ¼ ñGS , 3

where θ is determined by the coupling anisotropy [38]
(assumed constant for all coupled pairs). The state (3) leads to
the reduced two-spin state (1) with ∣ ∣a=p 2 , ∣ ∣b=q 2 for any
pair ¹i j, after tracing out the remaining qubits and
neglecting the complementary overlap ∣q q qá- ñ =- -cosn n2 2 ,
which decreases exponentially with increasing n if ∣ ∣q <cos 1.
And in the mean field approximation, a reduced state of the
form (1) with = =p q 1 2 naturally arises in the whole
parity breaking phase after parity symmetry restoration
[22, 38, 39], becoming exact at the factorizing point.

The states (1) can also be generated using a source
emitting a pair of photons in the same polarization state, e.g.
by spontaneous parametric down-conversion (SPDC) pro-
duced in nonlinear crystal cut for type I phase matching
[41, 42] and linear optics, such that

∣ ∣ ∣ ( )q ñ = ñ  ñq qV Hcos sin 4
2 2

are linearly polarized states at angles q 2 with the vertical
direction. Here ∣ ∣ ∣ ∣ñ º ñ ñ º ñV H0 , 1 denote the orthogonal
linearly polarized states in the vertical and horizontal direc-
tions respectively.

The purity of the state (1) is given by

( ) ( )r q= = - -P pqTr 1 2 1 cos 5AB AB
2 4

2
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and is an increasing function of the overlap
∣ ∣ ∣ ∣ ∣q q qá- ñ = cos . Since rAB is a rank 2 state, the purity (5)
completely determines its two non-zero eigenvalues

[ ] ( )l =  - P1 2 1 6AB AB
1

2

and hence, the value of any entropy

( ) ( ) ( ) ( ) ( )r r l l= = ++ -S f f fTr , 7f AB AB AB AB

where f is a concave function satisfying ( ) ( )= =f f0 1 0
[43, 44]. In particular, the von Neumann entropy ( )rS cor-
responds to ( )r r r= -f log2 , while the linear entropy ( )rS2
to ( ) ( )r r r= - -f 2 1 , in which case

( ) ( ) ( ) ( )r r= - = -S P2 1 Tr 2 1 . 8AB AB AB2
2

All entropies (7) will be decreasing functions of PAB, van-
ishing iff =P 1AB .

The state (1) is separable, i.e., a convex mixture of
product states [6]. Nonetheless, if ( )q pÎ 0, 2 and ¹pq 0,
it is not classically correlated, i.e., it is not diagonal in a
standard or conditional product basis, having entangled
eigenstates. It will then lead to a finite quantum discord
(section 2.4).

The reduced state of each of the qubits (or photons) is

∣ ∣ ∣ ∣ ( )r r q q q q= = ñá + - ñá-p qTr 9B A AB

( )
( ) ( )

q q
q q

=
+ -
- -

⎛
⎝⎜

⎞
⎠⎟

p q
p q

1

2

1 cos sin
sin 1 cos

, 10

where (10) is the representation in the standard basis
{∣ ∣ }ñ ñV H, , and corresponds to a Bloch vector

(( ) )sr q q= = -r p qTr sin , 0, cosB B . The local purity
=P PA B is then

( )r q= = -P pqTr 1 2 sin , 11B B
2 2

with the eigenvalues of rB given by (l =  1B

)-P2 1 2B . It is verified that P PB AB, l l+ +
B AB, in

agreement with the general majorization properties [45]

( )r rAB B A valid for separable mixed states rAB [46, 47].

2.2. Conditional local state and purity after remote local
measurement

Let us consider now a projective polarization measurement on
photon B, defined by the orthogonal projectors

∣ ∣ ∣ ∣ ( )f f f p f pP = ñá P = + ñá ++ -, , 12

where ∣ ∣ ∣fñ = ñ + ñf fV Hcos sin
2 2

, ∣ ∣f p+ ñ = - ñ +f Vsin
2

∣ ñf Hcos
2

and P + P =+ - 1. This means projecting onto
linearly polarized states at angles f 2 and f p+2 2
respectively. The probability of obtaining result + or − is

( ) [ ( )
( )]

( )r f q

f q

= Ä P =  -

 +
 r I p

q

Tr 1 cos

cos .
13AB A

1

2

(Obviously, a result ‘+’ for measurement angle f is equiva-
lent to a result ‘−’ for measurement angle f p+ ). As a
function of f, r is extremum for

( ) ( )f q= -p qtan tan , 14

with +r maximum for f = 0 if p=q and f between 0 and θ

if >p q (figure 1).
After a measurement at B with known result, the post-

measurement state of the unmeasured photon will have again
the form (9), but with modified probabilities ¢ ¢

 p q, , which
depend on both the measurement angle f and measurement
result±

( ) ∣ ∣ ∣ ∣
( )

r r q q q q= Ä P = ¢ ñá + ¢ - ñá-
-

  
r I p qTr ,

15
A B B AB A

1

with ¢ = - ¢
 q p1 and

( ) ( )q f¢ =
 -




p p
r

1 cos

2
. 16

It is of course verified that r r r+ =+ -+ -
r rA B A B A, i.e., that

the post-measurement state at A is unchanged if the result is
unknown. It is also seen that if f = 0 (or f p= ), ¢ =p p,
i.e., r r=

A B A irrespective of the values of θ, p and the result
of the measurement. Such measurement then leaves the

Figure 1. The probabilities ¢
p , equation (16), of the conditional

reduced states (15) of A after a measurement with result±at B
along angle f, for q p= 3 and initial values =p 0.5 (top) and
=p 0.7 (bottom), indicated by the horizontal dotted lines. It is seen

that ¢
p cover all values between 0 and 1, with ¢ =+p 1 at f p q= -

and 0 at f q p= - , while ¢ =-p 0 at f q= and 1 at f q= - . The
dashed lines depict the probabilities r±, equation (13), of obtaining
result±at B.

3
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marginal state of the unmeasured photon (but not the whole
rAB) unchanged.

As seen in figure 1, the new probabilities ¢
p cover all

possible values from 0 to 1 as the measurement angle f is
varied. For >p q, ¢

+p ( )¢-p stays above (below) the initial
value p for f 0, and the opposite behavior takes place for
f 0. The purities of the states (15) are given by

( )[ ( )][ ( )]

q

q

= - ¢ ¢

= - q f q f
 

 -  +




P p q

pq

1 2 sin

1 2 sin
17

A B

r

2

1 cos 1 cos

4
2

2

and can then be larger or smaller than the original purity
(11), satisfying

( ) q- P1 sin 1. 18A B
1

2
2

For -PA B , the upper limit is always reached if f q=  , as in
this case a—result implies with certainty a pure post-mea-
surement state ∣qñ in A, i.e., ¢ =-p 0 or 1, as verified in
figure 1. Such result has probability q=-r q sin2 ( qp sin2 ) if
f q= ( q- ). The same occurs for

+PA B if ( )f p q= - . On
the other hand, the lower limit in (18) corresponds to
¢ =p 1 2 and can be reached for angles f satisfying

( ) ( )f
q

q
=

-


p q

pq
tan

sin

cos 2
, 19

in which case ¢ =-p 1 2 for the roots of (19) [ ]pÎ 0, while
¢ =+p 1 2 for those [ ]pÎ - , 0 , as seen in figure 1. Hence by

suitable measurements and results at B it is always possible to
have the conditional post-measurement state at A pure or also
‘equilibrated’, i.e., with equal weights of both states of the
mixture.

2.3. Average conditional purity

The average conditional purity of A after the previous mea-
surement at B is given by

( )
g q

= +

= -
+ -f + -P r P r P

pq1 2 sin ,
20

A B A B A B

2

where

( ) ( )
[ ( ) ( )]

( )


g

q f q f
q f q f

=
¢ ¢ + ¢ ¢

=
- + +

- - + +

+ + + - - -r p q r p q

pq

p q

p q

sin sin

1 cos cos
1.

21
2 2

2

Hence, in contrast with PA B , fPA B is never lower than the
original purity

( )fP P , 22A B A

in agreement with the general results of [31]. Equation (20) is
in fact linearly related to the measurement dependent S2
conditional entropy [31], which becomes here

( ) ( ) ( )

( )
( )

r r

g q

= +

= - =

f + -

f

+ -
S A B r S r S

P pq2 1 4 sin
23

A B A B

A B

2 2 2

2

and is never greater than the original local
entropy ( )r q=S pq4 sinA2

2 .

The difference ( )g q- = -fP P pq2 1 sinA B A
2 is the

average conditional purity gain at A due to the local mea-
surement at B, and depends on the measurement angle f.
While it always vanishes for f = 0, where g = 1, it is
otherwise positive. Its maximum is attained for

( )f
q

=
-p q

tan
tan

, 24

in which case g q= cos2 , leading to

( )q qº = -
f

fP P pqMax 1 2 sin cos . 25A B A B
2 2

Moreover, at this point ¢ = ¢
+ -p q and hence

( )= =+ -P P P , 26A B A B A B

so that the maximum average gain is attained at an angle
where the post-measurement local purity (but not the local
state) is independent of the result of the measurement (see
also figure 4 in section 3.2). The maximum average purity
gain is thus qpq2 sin4 .

The maximum average conditional purity (25) has a deep
significance. The associated minimum S2 conditional entropy

( ) ( )

( )
( )

q

=

= - =
f

fS A B S A B

P pq

Min

2 1 sin 2 ,
27

A B

2 2

2

represents the squared concurrence [48] between A and a
third system C purifying the whole system ABC [12, 17, 31].
C can be here chosen as a single qubit due to the rank 2 of
rAB. As a consequence (see next subsection), the maximum
average conditional purity (25) will also determine the
quantum discord of the state (1), enabling a simple analytical
expression for the latter. The behavior of PA B as a function of
the ‘aperture’ angle θ of the state (1) is depicted on figure 2.
where it is seen that it reaches its maximum 1 just for q = 0
or p 2, i.e., when the state (1) is either a product state (q = 0)
or a classically correlated state (q p= 2), i.e., a state of zero
discord in both cases.

The maximizing f determined by (24) differs from q if
q > 0, >pq 0, as seen in the bottom panel of figure 2. It
satisfies f q if p q, with ( )f q q» + - p1 sin 2 for p
close to 1 and ( )f q» - -p p2 tan

2

1

2
for p above and close

to 1/2. Hence, for p=q it becomes independent of θ, pre-
ferring always a measurement along the x axis in the Bloch
sphere (i.e., projecting onto linearly polarized states at angles
p 4), as seen in figure 2.

The previous feature is in agreement with the general
considerations of [31]. The measurement direction k in the
Bloch sphere of A maximizing the conditional purity of B is
essentially that of maximum correlation and satisfies the
generalized eigenvalue equation [31] l=k kC C NT

B , with λ

the largest eigenvalue, where s s s s= á Ä ñ - á ñá ñmn m n m nC A B A B

is the correlation tensor of the system and = - r rN IB B B
T

3 ,
with s= á ñrB

B the original Bloch vector of qubit B. Here
(( ) ))q q= = -r r p q sin , 0, cosA B and

d d q=mn mn mC pq4 sin ,x
2 so that correlations arise just along

the x direction. The previous eigenvalues equation then leads
to a maximizing k in the xz plane, i.e., ( )f f=k sin , 0, cos ,

4
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with f satisfying equation (24). And for p=q, k becomes
parallel to the x axis as NB becomes diagonal.

2.4. Quantum discord and its analytical evaluation

As previously mentioned, the state (1) has a finite quantum
discord for ( )q pÎ 0, and ¹pq 0. As a function of the
measurement angle f, this quantity [8, 9] can be evaluated as
the minimum of the difference

( ) ( ) ( ) ( )= -f fD A B S A B S A B , 28

where ( ) ( ) ( )r r= -S A B S SAB B (l= -ån
n

= AB l -nlog AB2
)l ln nlogB B2 is the standard von Neumann conditional entropy

[43] and

( ) ( ) ( ) ( )r r= +f + -+ -
S A B r S r S , 29A B A B

the measurement dependent von Neumann conditional
entropy [8], determined by the conditional states (15) (ana-
logous to equation (23)). Hence, all quantities can be eval-
uated in terms of the purities PAB, PA and PA B (equations (5),
(11) and (17) respectively).

The actual quantum discord ( )D A B is the minimum
over f of equation (28) [8, 13]. The minimization should in
principle be extended to general POVM measurements, but in
the present case of a rank 2 state, it is sufficient to consider
just projective measurements [7, 49], which can here be
reduced to a measurement in the xz plane. Furthermore, the
minimum of (28) can be here evaluated analytically: the
minimizing measurement angle f is exactly that which max-
imizes the average conditional purity, determined by
equation (24), and the ensuing minimum is a decreasing
function of the maximum average conditional purity PA B,
equation (25) (even though for general f, (28) is not a direct
function of (20)). We obtain

( ) ( )

( )
( )

=

= - - -
f

f

+ + - -

D A B D A B

f f f f S A B

Min

log log ,
30

2 2

where

( )=
 -

f
P1 2 1

2
. 31

A B

Proof: according to the result of [12], the minimum of
( )fS A B is the entanglement of formation ( )E A C, between A

and a closing third system C purifying the whole system,
which can be chosen here as a single qubit. In such a case,

( )E A C, is determined by the concurrence [48] CAC between
A and C through ( ) = -ån n n=E A C f f, log , with

( )=  -f C1 1 2AC
2 . But CAC

2 is just the minimum S2
conditional entropy (27) of A given a measurement at B [31],
i.e. ( ) ( )= = -C S A B P2 1AB A B

2
2 , which leads to

equations (30)–(31). We have also verified this result
numerically.

For q = 0 (rAB product state) or q p= 2 (rAB classically
correlated), =P 1A B and hence ( ) =D A B 0. Otherwise

<P 1A B and ( ) >D A B 0, as appreciated in figure 2. Note,
however, that as a function of θ, PA B is minimum at p 4
(equation (25)), while ( )D A B is maximum at a slightly
higher aperture angle q p» 0.29 , due to the θ-dependence of
the term ( )S A B .

2.5. Global post-measurement purity

The average state of the whole system after the previous local
measurement at B is

( )r r r¢ = Ä P + Ä P+ + - -+ -
r r . 32AB A B A B

Its purity ( )r¢ = ¢P TrAB AB
2 is then given by

{ ( ) ( )]

[ ( ) ( )]}

( )q f q f

q q f q f

¢ = +

= - + +

- + + -

+ -+ -P r P r P

p q

pq

cos cos

2 sin 1 cos cos .

33

AB A B A B
2 2

1

2
2

2

Figure 2. Top: the maximum average conditional purity
( ) ºP A B PA B, equation (25), together with the quantum discord,

equation (31) and the minimum global purity difference,
equation (36), as a function of the aperture angle θ of the state (1) for
=p 0.5 (solid lines) and =p 0.7 (dashed lines). Bottom: the

measurement angles which maximize the average conditional purity
(20) (solid lines, equation (24) and the global post-measurement
purity (33) (dashed lines, equation (37)), as a function of the aperture
angle θ for =p 0.5 and =p 0.7. The dotted line depicts θ for
reference. For =p 0.5, the angle maximizing (33) undergoes a sharp

p0 2 transition at q = arccos 1 3 , which originates the sharp
peak in I2 seen in the top panel and which becomes smoothed out for
>p 1 2. The angle minimizing the quantum discord (28) coincides

here exactly with that maximizing the conditional purity (20)
(see text).

5
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In contrast with equation (22), this global post-measurement
purity cannot be greater than the original global purity (5), in
agreement with the general considerations of [16]

( )¢P P , 34AB AB

with ¢ <P PAB AB for ( )q pÎ 0, 2 and >pq 0. The difference
- ¢P PAB AB is just proportional to the S2 information deficit

[16]

( ) ( ) ( )
( ) ( )
r r= ¢ -

= - ¢
fI A B S S

P P

,

2 , 35
AB AB

AB AB

2 2 2

which is always non-negative. Equation (33) shows that it can
also be evaluated just with the conditional purities PA B , the
initial purity PAB and the probabilities r±.

Its minimum

( ) ( ) ( )=
f

fI A B I A B, Min , 362 2

which corresponds to maximum global post-measurement
purity ¢PAB, is proportional to the geometric discord
[14, 16, 26]. It will then be non-zero for ( )q pÎ 0, 2 and

¹pq 0, being maximum, like the quantum discord, at an
angle θ above p 4, as appreciated in figure 2. A Renyi
entropy based information deficit ( ) = - ¢fI A B P P, logR

AB AB2
can also be directly obtained from I2 [53].

The measurement angle f maximizing ¢PAB (and mini-
mizing ( )fI A B,2 ) satisfies

( )
( )

( )f
q

q
=

-
+ -

p q

pq pq
tan2

sin 2

1 cos 2
. 37

It is not greater than that maximizing fPA B (equation (24)) and
can be larger or smaller than θ, with ( )f q» - - p1

q qcos sin 22 for p 1. On the other hand, for p 1 2,
f p 2 just for qcos 1 3 , i.e. q q p> 0.309c , with
f  0 for q >cos 1 3 . Hence, for =p 1 2 a sharp
transition from 0 to p 2 in the maximizing measurement

angle of ¢PAB, occurs at q q= c [16]. Such sharp transition
becomes smoothed out for >p q, as seen in figure 2.

Since at fixed θ, the minimizing angle f of (35) can differ
from that minimizing the quantum discord, the behavior of
(35) as a function of the measurement angle f may become
out of phase with that of the quantum discord, as will be
appreciated in figure 5. In particular, for p=q and q q< c,
(35) is minimum at f = 0, where fPA B is minimum and hence

( )fD A B is maximum (as a function of f). This difference is
reflecting the distinct meaning of the optimizing angles of

fPA B and ( )fD A B on one side, and ( )fI A B,2 on the other
side. While the former chooses essentially the local direction
associated with maximum correlation, the latter represents the
direction of a least disturbing local measurement [16], which
produces the smallest global purity decrease. Accordingly,
differences can be significant for small aperture angles θ,
where the latter will be closer to the z axis, but will decrease
as θ increases, as seen in the bottom panel of figure 2. For
p=q they vanish in fact for q q> c.

Let us finally remark that the direction k in the Bloch
sphere of B of the measurement minimizing (35) satisfies the
standard eigenvalue equation [14, 16] ( )+ =r r kJ JT

B B
T

lk, with λ the maximum eigenvalue, where =mnJ
s s s sá Ä ñ = + á ñá ñm n mn m nCA B A B . In the present situation k will
lie in the xz plane, i.e., ( )f f=k sin , 0, cos , with f satis-
fying equation (37). Actually, the maximizing f is the
smallest positive root of (37), the other root corresponding to
the angle minimizing ¢PAB (lowest eigenvalue).

3. Experimental verification

3.1. Experimental setup

The experimental setup is depicted in figure 3. It can be
divided in three stages. In the first part, used for state

Figure 3. Experimental setup used to the preparation of a mixed polarization two-qubits state, and characterization of the single-qubit state in
A conditional to a projective measurement at B. QWP: quarter-wave plate; HWP: half-wave plate; P: linear polarizer; D: single photon
detector.
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preparation, a LiIO3 nonlinear crystal cut for type-I phase-
matching, is pumped by an horizontally polarized 405 nm
laser diode, that by means of SPDC produces pairs of twin
photons with wavelength l = 810 nm in the two-qubit
polarization state ∣ ñVV . A half-wave plate (HWP1) is used to
rotate the polarization of each photon to an arbitrary direction
qL in the laboratory reference system, where q = 0L corre-
sponds to vertically polarized photons. This angle defines the
state ∣qñ in the Bloch sphere through the relation q q= 2 L. In
order to generate the mixed two-qubit states described by
equation (1), we followed the idea presented in [50] switching
HWP1 between the two angles q 2L and q- 2L to obtain a
mixture of the two desired polarizations with probabilities p
and q.

In the second part of the setup, a local projective polar-
ization measurement is done in one of the subsystems. To this
end, a linear polarizer (P1) in the path B, set at an angle fL or
f p+ 2L in the laboratory reference system, implements the

action of the projector P+ or P- of equation (12) on the
single qubit state. After that, the light is collected by the
detector DB. The detector is conformed by an iris that acts as
spatial filter, and an interference filter centered at 810 nm
(10 nm bandwidth), followed by a lens that collects the light
and focuses it in a multi mode optical fiber coupled to a
photon counting module PerkinElmer SPCM-AQRH-13-FC.
During the total time T that P1 is set at the angle fL, DB

measures the number of single counts +n , and the same is
done when P1 is set at the complementary angle f p+ 2L to
register -n . Then, the probability of measuring + or − along
the direction f (r±) given in equation (13) is obtained
as ( )+ + -n n n .

Finally, the third part of the set up is used to perform a
complete single-qubit tomography on the subsystem A. An
array of a quarter-wave plate (QWP), a half-wave plate
(HWP2), and a linear polarizer (P2) in the path of the sub-
system is used to project the polarization state onto the

Figure 4. Experimental results obtained from each projective measurement described byP. It shows the purity of the state A after obtaining
the result − (left panels) or + (right panels) at B, PA B (equation (17)) (red circles), and the probability to obtain this result, r±
(equation (13)) (green points). Additionally, each graphic shows the average conditional purity fPA B , equation (20) (blue triangles). In all
cases the initial state is a two-qubit state with q p= 3. For the top panels p=0.5 and for the bottom panels p=0.7. Solid lines correspond
to the theoretical values for these measures as a function of f. The dashed line indicates the measured value of the local purity PA in the initial
state before conditional measurement.
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informational complete set of mutually unbiased basis
[51, 52], before being detected by DA. This detector consists
of the same components than DB, which was described above.
The measurements are performed in coincidence, using the
subsystem B as a trigger. In this way it is possible to recon-
struct the conditional density matrix r =A B of the reduced
state of A after obtaining the outcome±of the projective
measurement along direction f at B. Although these obser-
vables could be obtained by performing a conditional purity
measurement, the used set up aditionally allows to verify that
the post-measurement local conditional state was of the
form (15).

3.2. Results

As mentioned above, the first section of the experimental
setup generates a two-photon field in the polarization state
given by equation (1). In order to validate the generation
process, a previous complete tomography [54] for different
mixed two-qubit states was done. Afterwards, maximum
likelihood technique (ML) was applied to obtain the best state
estimation consistent with the requirements of a physical state
[55]. We quantified the quality of the preparation process by
means of the fidelity ( )sr sºF Tr between the density
matrix of the state intended to be prepared, σ, and the density
matrix of the state actually prepared and reconstructed by
tomography, ρ. In all cases, fidelities >F 0.98 for the initial
state rAB were obtained. After this previous characterization
we performed the projective measurements and the condi-
tional one-qubit tomography implemented in the second and
third parts of the setup (figure 3). The post measurement state
r

A B in equation (15) was obtained after applying the ML
technique to the experimental results. The plots in figure 4
show the probabilities for the projective measurements r± and
the conditional purities r


Tr A B

2 for two different initial states
together with the theoretical predictions given by

equations (13) and (17). Additionally, we plot the average
conditional purity fPA B which was obtained from the exper-
imental results as ++ -+ -r P r PA B A B and theoretically as

g q- pq1 2 sin2 (equation (20)). In figure 5 we plot the
experimental and theoretical results for ( )D A B and

( )fI A B,2 , whose minimum values as a function of the pro-
jective measurement Pf correspond to the quantum discord
and the geometric discord, respectively. As follows from
sections 2.4 and 2.5 both quantities can be evaluated from the
purities PAB, PA, and PA B . For this purpose, the density
matrix of the reduced state rA was obtained in a similar way to
r

A B but considering the single counts in DA without taking
in account the results in DB.

4. Conclusions

We have examined in full detail the quantum correlation
properties of the two-parameter mixed states (1), character-
ized by an aperture angle θ and a probability or weight p.
Such states arise naturally as reduced two-spin states of spin
1/2 chains, either at the mean field approximation level or
exactly in the vicinity of the factorizing field, and can be
easily generated by photonic qubit states in a linear-optics
architecture. We have derived simple exact analytical
expressions for the conditional purity of one of the qubits
after a local measurement on the other qubit, including its
maximum average. These quantities allow one to also deter-
mine quantum correlation measures.

In particular, we have derived a simple exact analytical
expression for the quantum discord of the state, which unveils
its direct connection with the previous maximum average
conditional purity, valid for the present states. This result
enables a straightforward experimental evaluation of the
quantum discord of the state through a conditional single
photon purity measurement. Such determination can assess,

Figure 5. Experimental results obtained from each projective measurement described by P. The minimum of the blue line (triangles) is the
value of the quantum discord while the minimum of the red line (circles) is the value of geometric discord (minimum global purity
difference). The initial state is a two qubit state corresponding to q p= 3 with p=0.5 (left panel) and p=0.7 (right panel). Solid lines
correspond to the theoretical values for these measures as a function of the measurement angle f.
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for instance, its potential for quantum protocols such as
quantum state merging. The global post-measurement purity
and the associated information deficit I2 were as well analy-
tically evaluated and compared with the previous measures.
The experimental results showed a remarkable agreement
with the theoretical predictions. The analysis indicates that the
form of the reduced state of the unmeasured photon A remains
unchanged after a remote measurement on photon B, although
selection of the measurement angle allows full control of the
probabilities characterizing this reduced state, including pure
and maximally mixed limits. At the same time, due to the
non-orthogonality of the states involved these probabilities do
affect the eigenstates of the conditional reduced states, and
any local measurement does affect the average post-mea-
surement global state. Possible applications to cryptography
and metrology are currently under investigation.
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