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Bogoliubov transformations and exact isolated solutions
for simple nonadiabatic Hamiltonians
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We present a new method for finding isolated exact solutions of a class of non-
adiabatic Hamiltonians of relevance to quantum optics and allied areas. Central to
our approach is the use of Bogoliubov transformations of the bosonic fields in the
models. We demonstrate the simplicity and efficiency of this method by applying it
to the Rabi Hamiltonian. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1490406#

I. INTRODUCTION

There exists a class of simple, nonintegrable, nonadiabatic Hamiltonians of the type that find
application as models of light–matter interactions, for which it is possible to find exact isolated
solutions. Generally these models involve some atomic system, typically characterized by a simple
two-level ~or multilevel! system, interacting with a number of bosonic fields. Making the familiar
rotating-wave approximation usually renders these models completely soluble, but avoiding this
approximation maintains the nonintegrability of the models, and gives rise to the possibility of
isolated exact solutions. This was first demonstrated for the Jahn–Teller model by Judd,1 and these
solutions are often referred to as Juddian solutions. Probably the simplest model for which these
solutions have been found is the Rabi Hamiltonian~RH!, which describes a two-level atom
interacting with a single-mode bosonic field via a dipole interaction.2 The Juddian solutions of the
RH were first discovered by Reik and co-workers,3 where they were seen to occur at the level
crossings in the energy schema of the system. This turns out to be a general and important feature
of these solutions.

Apart from being of interest for what they tell us about the structure and symmetries of these
models, the Juddian solutions are of considerable further value. Simple quantum optics and related
models, such as the RH, have long been utilized as test cases for various calculational
techniques,4–6 and the possession of exact solutions facilitates their accurate assessment. Further-
more, the existence of isolated exact solutions in nonintegrable quantum models is also of interest
from the perspective of studying possible quantum chaos in such systems.7,8 In addition, it is
hoped that these exact solutions may serve as useful starting points for perturbative treatments of
the entire spectra of these models.

In this paper we present a new and more general method for finding these isolated exact
solutions, which we believe to have several advantages over the methods hitherto employed. Judd
and Reik, working in the Bargmann representation, have used power series and Neumann series
ansätze for the field mode. Neither of these approaches is particularly intuitive and the resulting
algebra can become complicated. Kus´ and Lewenstein9 have given a more concise approach
which, as we describe later, is clearly related to the method that we describe here. For models such
as the RH they used Bargmann representation ansa¨tze for the field consisting of a finite number of
bosonic excitations on top of a coherent state. They have also extended their method to some
further systems, such as a three-level system and an auto-ionizing ion.

We believe that the method we outline in this paper is both more intuitive and more efficient
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than those discussed previously, and that it reflects the essential physics of the systems to a greater
degree. At the heart of the method is a simple canonical transformation of the bosonic field
operators of the models. This transformation suggests the existence of exact solutions in a most
direct manner. Our method also has the advantage that it is easy to generalize, and is readily able
to be extended to ‘‘two-photon’’ type interactions, in which two photons are required to induce an
atomic transition.10

The remainder of this paper is organized as follows. In Sec. II we outline our method for
finding the Juddian solutions. We describe in some detail the theory of Bogoliubov transforma-
tions of a boson mode and pay particular attention to their relation to the coherent and squeezed
states. We then use these transformations to investigate the displaced and squeezed harmonic
oscillators, to develop insight into the reasoning behind this approach. In Sec. III we apply this
method to the Rabi Hamiltonian, as an example of the use of this method. We then finish with
some conclusions and indications of further work.

II. METHODOLOGY

The models that we consider here consist of an atomic system interacting with one or more
bosonic modes. Each of these modes is described by annihilation and creation operators,b andb†,
respectively, which obey the usual commutation relation,

@b,b†#51. ~1!

In general the atomic system will be described in terms of a set of matrices. For example, the
two-level system in the RH is described by the SU~2! Pauli matrices.

Our method for finding exact isolated solutions for such systems involves two components.
First, one must choose an appropriate representation for the atomic matrices and then, crucially,
one performs a Bogoliubov transformation of the operators of the field mode. The nature of this
transformation depends upon the type of interaction being considered and, with the correct choice
of parameters, it leaves the Schro¨dinger equation in a form that admits exact solutions with very
simple ansa¨tze.

A. Bogoliubov transformations

A Bogoliubov transformation is a transformation from one description of a field mode in terms
of the bosonic operators,b andb†, to a description in terms of new bosonic operators,b̃ andb̃†,
say. This transformation is canonical so that the new operators obey the same commutation
relation as the old ones, namely

@ b̃,b̃†#51. ~2!

The most general linear Bogoliubov transformation may be viewed as a rotation plus trans-
lation of the original oscillator Hilbert space to the new oscillator space,

b̃5e2 ib~12usu2!21/2~b2sb†2z!,
~3!

b̃†5eib~12usu2!21/2~b†2s* b2z* !,

wheres and z are complex numbers describing the amplitudes of the rotation and translation,
respectively.b is a simple, and usually rather unimportant, phase factor. From the outset it is
important to note the restrictionusu,1 in order to preserve the unitarity of the transformation. In
the following we consider two specializations of this transformation, namely a pure translation and
a pure rotation. These transformations may be very simply related to the familiar coherent and
squeezed states of quantum optics and it is from this standpoint that we introduce the transforma-
tions.
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B. Coherent bosons

The usual Glauber coherent states,uz&, may be defined as eigenkets of the single-mode
bosonic annihilation operator,11

buz&5zuz&, ~4!

where z is a complex number. Such states are readily constructed as the following equivalent
forms:

uz&5e2 1/2 uzu2ezb†
u0& ~5!

5e(zb†2z* b)u0&, ~6!

where we have normalized the coherent state such that^zuz&51. The exponential operator in Eq.
~6! is denoted as follows:

D~z![e(zb†2z* b), ~7!

and is called the displacement operator. It is a unitary operator and we may readily use it to
perform a unitary transformation of the field operators,

D~z!bD†~z!5b2z[a,
~8!

D~z!b†D†~z!5b†2z* [a†.

The operatorsD(z) form a representation of the Weyl~or Heisenberg–Weyl! group when multi-
plied by a trivial phase factor exp(if), with f real. The operatorsa and a† obey the same
commutator relation as the original operators, and thus we see this transformation to be a Bogo-
liubov transformation of the type described earlier as a pure translation. Equations~4! and ~8!
clearly imply

auz&50, ~9!

from which we see that the operatora annihilates the coherent stateuz&. Thus uz& may be
considered as the vacuum state of thea-type bosons, and we rewrite it accordingly asu0;z&
[uz&,

au0;z&50. ~10!

We shall call thesea-type bosons ‘‘coherent bosons’’ and write their number states asun;z&, such
that a†aun;z&5nun;z&.

C. Displaced harmonic oscillator

The simplest application of the coherent bosons is to the displaced harmonic oscillator,

HD5 1
2 ~x1&l!21 1

2 p2, ~11!

in which the center of the oscillator is shifted by an amount2&l. Introducing the harmonic
oscillator operators via

x[
1

&
~b†1b!,

~12!

p[
i

&
~b†2b!,
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the Hamiltonian reads

HD5b†b1l~b†1b!1 1
2 1l2. ~13!

By performing a Bogoliubov transformation of the original bosonic operators to a new set of
coherent bosons,a† anda, such that

a[b1l, a[b†1l, ~14!

we may rewrite the Hamiltonian of Eq.~13! in the form

HD5a†a1 1
2. ~15!

The eigenstates of this Hamiltonian are thus clearly seen to be the number states of thea-type
bosons, with corresponding eigenenergiesEn5n1 1

2.

D. Squeezed bosons

Following Bishop and Vourdas12 we construct the most general squeezed state,uz;r,u,b&, by
acting upon the bosonic vacuumu0& first with the displacement operatorD(z) of Eq. ~7! and then
with the pure squeezing operatorS(r,u,b),

uz;r,u,b&5S~r,u,b!D~z!u0&, ~16!

The squeezing operator is given by

S~r,u,b![exp~2 1
4 re2 iub†21 1

4 reiub2!exp~ ibb†b!, ~17!

wherer,u,b are real parameters. It is a unitary operator,S†S51, and provides a representation of
the group SU~1,1!. Using a relationship given by Perelomov,13 we are able to write the squeezing
operator in the equivalent form

S~s,b!5exp~ 1
2 sb†2!~12usu2!b†b/211/4exp~2 1

2 s* b2!exp~ ibb†b!, ~18!

whereb is the same real parameter as above, ands is a complex number with modulususu,1,

given bys[2e2 iu tanh(12r). Using this expression, we can use the squeezing operator to make
unitary transformations of the bosonic annihilation and creation operators,

S~s,b!bS†~s,b!5e2 ib~12usu2!21/2~b2sb†![c,
~19!

S~s,b!b†S†~s,b!5eib~12usu2!21/2~b†2s* b![c†.

The operatorsc andc† satisfy the commutation relation@c,c†#51 and thus the transforma-
tion b,b†→c,c† is a Bogoliubov transformation of the rotation type. From Eq.~19!, it follows that
for any functionf (b,b†),

S f~b,b†!S†5 f ~c,c†!↔S f~b,b†!5 f ~c,c†!S. ~20!

Equation~20! implies thatSb5cSand henceuz;sb&[uz;rub& are eigenstates of the annihilation
operatorc,

cuz;sb&5cS~s,b!uz&5S~s,b!buz&5zuz;sb&. ~21!

If we consider the squeezed vacuumSu0&5u0;s,b&5u0;s&, we see that it is independent of
b and that

cu0;s&50. ~22!
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The number states of thec-type bosons are denotedun;sb&, such thatc†cun;sb&5nun;sb&. We
call thec-type bosons ‘‘squeezed’’ bosons.

E. Squeezed harmonic oscillator

In position representation the squeezed harmonic oscillator has the form

HS5 1
2 ~112l!x21 1

2 ~122l!p2, ~23!

where the real parameterl determines the degree of squeezing, with the restriction thatulu, 1
2.

Translating this into the standard bosonic representation defined by Eq.~12! we have

HS5b†b1 1
2 1l~b†21b2!. ~24!

We introduce squeezedc-type bosons defined by

c†5
b†1sb

A12s2
, c5

b1sb†

A12s2
, ~25!

and leaves real but undetermined for the moment. Making these substitutions into Eq.~24!, we
have

HS5
1

~12s2! H @2s1l1ls2#~c21c†2!1~s21124ls!S c†c1
1

2D J . ~26!

We eliminate the first term in this Hamiltonian by choosing

2s1l1ls250, ~27!

giving, as one of the two solutions,

s5
~12V!

2l
, V[A124l2. ~28!

With this choice, the Hamiltonian becomes

HS5$c†c1 1
2%V. ~29!

The eigenstates of this Hamiltonian are clearly the number states of the squeezedc-type bosons,
with eigenenergies

En5$n1 1
2%V. ~30!

We note that the other solution of Eq.~27! with s5 (11V)/2l leads to the unphysical oscillator
with HS52(c†c1 1

2)V, and since this Hamiltonian does not have square-integrable solutions, we
discard it.

III. APPLICATION TO THE RABI HAMILTONIAN

The Rabi Hamiltonian~RH! describes a two-level atom interacting with a single mode of
quantized electromagnetic radiation via a dipole interaction.2 It is usually written in the form

HRabi5
1
2 v0sz1vb†b1g~b†1b!~s11s2!, ~31!
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wherev0 is the atomic level splitting,v is the frequency of the boson mode, andg is the coupling
strength of the atom to the field. The two-level atom is described by the Pauli pseudo-spin
operators, which satisfy the SU~2! commutation relations

@sk ,s l #52i«klmsm , ~32!

where k,l ,mP$x,y,z% with kÞ l and «klm is the antisymmetric Levi-Civita symbol. We have
defined the raising and lowering operators as

s1[sx1 isy , s2[sx2 isy . ~33!

It is convenient to rescale the Hamiltonian asHRabi5vH̃Rabi, where

H̃Rabi5ṽsz1b†b1l~b†1b!sx , ~34!

and ṽ[ v0/(2v) andl[ 2g/v. There is a conserved parityP associated with the Hamiltonian,

P[exp@ ip~b†b1 1
2 ~sz11!!#52sz cos~pb†b!, ~35!

such that@HRabi,P#50. The parity operatorP has two eigenvalues,p561. The RH is not
known to be integrable, but isolated exact solutions do exist. Here we use the above-outlined
technique to find these Juddian solutions.

In order to do this we first require an appropriate matrix representation for the Pauli matrices,
which for this model is one in whichsx is diagonal. We shall use

sx5F1 0

0 21G , sy5F 0 i

2 i 0G , sz5F0 1

1 0G . ~36!

In terms of the two-component wave function,uC&5( uC2&
uC1&), the time-independent Schro¨dinger

equation for the system,H̃RabiuC&5EuC&, then reads

ṽuC2&1~b†b1l~b†1b!2E!uC1&50,
~37!

ṽuC1&1~b†b2l~b†1b!2E!uC2&50.

We now make the Bogoliubov transformation to the coherent bosons,a† anda, specified by

a†5b†2l, a5b2l. ~38!

The vacuum state of these bosons is the coherent stateul&. It should be noted that this choice of
transformation may be intuited from considering theṽ50 limit of the Hamiltonian, where the
same transformation is used to solve the model exactly in this limit, which is essentially equivalent
to the displaced oscillator considered earlier. With this transformation Eq.~37! becomes

ṽuC2&1$a†a12l~a†1a!13l22E%uC1&50,
~39!

ṽuC1&1$a†a2l22E%uC2&50,

where the ketsuC1,2& are now in the transformed representation. For these kets we choose the
ansatz
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uC1&5 (
n50

N21

pnun;l&5 (
n50

N21

pn

~a†!n

An!
u0;l&5PN21~a†!u0;l&,

~40!

uC2&5 (
n50

N

qnun;l&5 (
n50

N

qn

~a†!n

An!
u0;l&5QN~a†!u0;l&,

where un;l& are number states of the coherent bosons,a†aun;l&5nun;l&, and we have intro-
duced the polynomialsPN21 andQN of orderN21 andN, respectively. Making these substitu-
tions we have

ṽ (
n50

N

qnun;l&1 (
n50

N21

pn~n13l22E!un;l&

12l (
n50

N21

pnAn11un11;l&12l (
n51

N21

pnAnun21;l&50,

~41!

ṽ (
n50

N21

pnun;l&1 (
n50

N

qn~n2l22E!un;l&50.

Considering the highest number state,uN;l&, in the second of these equations, we see that for
this equation to hold we require

~N2l22E!qN50. ~42!

SinceqNÞ0 by ansatz, we obtain a determination of the energy

E5N2l2. ~43!

This equation identifies the Juddian baseline energies, along which the Juddian solutions lie.
Comparing the coefficients of the remaining number states gives us 2N11 linear equations for the
2N11 coefficients (pm , 0<m<N21) and (qk , 0<k<N). To obtain nontrivial solutions, we
clearly require the determinant of this equation set to be zero. This gives the compatibility con-
dition, providing the locations of the Juddian points. The first two conditions (N51,2) have the
explicit forms

ṽ214l251, for N51, ~44!

ṽ41~12l225!ṽ2132l4232l21450, for N52, ~45!

as have been given by Kus´ and Lewenstein.9 Thus, for a givenN, we have a polynomial ofNth
order inl2 andṽ2. Each of these hasN roots forl2 in terms ofṽ2, which all turn out to be real,
thus giving the location ofN Juddian solutions. Before we look at these results, it is of interest to
consider the other possible type of finite ansatz at the Juddian points. These are found by using the
coherent bosons

a†5b†1l, a5b1l, ~46!

and interchanging the roles ofuC1& and uC2&.
Results. By solving the complementary conditions we have calculated the first ten Juddian

points for the resonant RH. These are displayed in Table I, listed to ten decimal places.
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The location of these Juddian points in the energy schema of the Hamiltonian is displayed in
Fig. 1, where the schema was obtained by approximate numerical diagonalization via a standard
configuration-interaction method, using a basis size of the lowest 101 harmonic oscillator states.14

Also plotted are the Juddian baselines from Eq.~43!.
From Fig. 1 we see that the Juddian points occur at the level crossings in this diagram. Thus

we see that they occur when two solutions of different parityP become degenerate in energy, and
this degeneracy is the key to the existence of the Juddian solutions. The coherent-boson number
statesun;l& are not eigenstates ofP, and thus the ansa¨tze ~40! is not of definite parity. It is
precisely because we can construct wave functions of mixed parity that allows us to find such
simple ansatz at the Juddian points.

We are now able to make explicit the connection between this method and that used by Kus´
and Lewenstein9 in investigating the RH. They worked in the Bargmann representation,15 in which
the bosonic operators are represented by

b†→z; b→ d

dz
~47!

and postulated the following forms for the two components of the wave function:

FIG. 1. The first ten Juddian points of the Rabi Hamiltonian~diamonds!. Also plotted are the energy levels obtained by
numerical diagonalization~dark lines!, and the Juddian base lines~light lines!. The Hamiltonian is resonant;v5v051.

TABLE I. The couplings, energies, andN, of the first ten Juddian points of
the resonant Rabi Hamiltonian (v5v051).

g E N

0.216 506 351 0 0.812 500 000 0 1
0.166 164 073 2 1.889 558 003 1 2
0.446 040 357 8 1.204 191 996 9 2
0.140 088 959 0 2.921 500 334 3 3
0.366 471 488 7 2.462 794 592 0 3
0.616 382 915 3 1.480 288 407 1 3
0.123 422 939 9 3.939 067 116 1 4
0.319 907 578 1 3.590 636 565 8 4
0.524 339 512 0 2.900 272 304 5 4
0.758 249 241 5 1.700 232 351 1 4
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C1~z!5e2uzu2/2^zuC1&5 P̃N21~z!elz,
~48!

C2~z!5e2uzu2/2^zuC2&5Q̃N~z!elz,

where P̃N21(z) and Q̃N(z) are polynomials inz of orderN21 andN, respectively. Bearing in
mind the form of the coherent state~6!, these wave functions are simply seen to be of the form of
polynomials in the bosonic creation operator,b†, acting upon a coherent state of amplitudel. In
our ansatz~40!, we have the same coherent state but now being acted upon by polynomials in
a†5(b†2l), which shares a closer connection to the coherent state thanb†.

The polynomials of Kus´ and Lewenstein are simply related to those of ansatz~40! by
P̃N(z)5PN(z2l). In the present case where we have only used displacements of the boson
mode, the difference between the two approaches is thus minimal. However, this is not the case
when we require the use of squeezed bosons. Generally, an ansatz posited in the squeezed repre-
sentation would contain polynomials of the formPN(c†), wherec† is the creation operator of the
squeezed bosons. The analogous ansatz to Eq.~48! would still contain a polynomial inz, P̃N(z)
say. If we assume the simplest type of squeezing and writec†5(b†1sb)/(A12s2) as in Eq.
~25!, then the Kus´ and Lewenstein polynomial can be written

P̃N~z!5PN
S z1s

d

dz

A12s2
D , ~49!

which, crucially, contains bothz and its derivative, and although formal relationships do exist
between the polynomials of the two methods, these relationships are generally not trivial, espe-
cially if one considers the more general form of the Bogoliubov transformation. So the ansa¨tze of
the two methods are seen to be significantly different, and we conjecture that the one described
here has several advantages which we shall discuss in the conclusion.

IV. CONCLUSIONS

We have presented a method for finding isolated exact solutions of a class of nonadiabatic
models, of the type frequently used in quantum optics and related fields.

Compared with the original approaches of Judd and Reik, the above-mentioned method is
more transparent and considerably simpler, advantages that it shares with the technique of Kus´ and
Lewenstein. However, we believe that the use of transformed bosons is more obviously physically
meaningful than the use of wave functions in Bargmann space, especially given the connection of
these bosons to the coherent and squeezed states, so important in quantum optics.

As an example of the use of this technique, we have applied it to the Rabi Hamiltonian and
obtained in a simple fashion the known Juddian solutions of this model. In this example, we have
used the coherent bosons to obtain Juddian solutions for a problem with an interaction of the type
l(b†1b)sx . It is hopefully now clear how one may apply this method to further problems
containing the same type of interaction. We have not as yet mentioned the application of the
squeezed bosons in performing this kind of calculation. This second type of Bogoliubov transfor-
mation is useful in finding Juddian solutions of models containing two-photon type interactions.
An obvious example is the two-photon Rabi Hamiltonian,16 which has the Hamiltonian

H5ṽsz1b†b1l~b†21b2!sx . ~50!

Using squeezed bosons we are able to obtain a set of Juddian solutions for this model and these
results will be discussed in a future publication.

Due to the intuitive nature and simplicity of this technique it is easy to extend to other
systems. For example, in view of their mode of construction we expect that our displaced and
squeezed coherent states will be of particular use in any quantum field theory that has underlying
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dynamical symmetry of the Weyl group or the SU~1,1! group, or to which the~inhomogeneous or
homogeneous! Bogoliubov transformation may be profitably applied. The obvious group-
theoretical foundations of the technique also point the way to other approximations, since, for
example in the squeezed~two-photon! case, SU~1,1! is not the only relevant group. Thus, the
three-dimensional Lorentz group SO~2,1!, which is the group of rotations in three-dimensional
Minkowski space with two space and one time dimensions, is locally isomorphic to SU~1,1!.
Similarly, both the groups SL~2,R! of real second-order matrices with unit determinant and the
symplectic group Sp~2,R! are also locally isomorphic to SU~1,1!.

One may also readily generalize the current approach for the two-level models involving
linear or quadratic interactions with a single boson~or canonical quantum mode! to the corre-
sponding case of linear or bilinear interactions involving several distinct bosons or modes. For the
linear models involving only displacements this is essentially trivial. However, for models involv-
ing squeezing, in the case ofn bosons or modes the various bilinear products of operatorsbi

†bj
† ,

bibj andbi
†bj , i , j 51,2,...,n now form a realization of the higher symplectic algebra Sp(2n,R).

As before one can simply construct a unitary representation of this group by exponentiating the
skew-adjoint operators in the algebra. For example, Bishop and Vourdas17 have shown explicitly
how to construct the most general two-mode squeezed states associated with a unitary represen-
tation of the group Sp~4,R!. Once again such states are the ordinary coherent states with respect to
the new destruction operatorsc1 andc2 , which are themselves general linear Bogoliubov trans-
formations of the original destruction operatorsb1 , b2 and their Hermitian-conjugate creation
operatorsb1

† , b2
† . The Sp~4,R! algebra has various subalgebras corresponding to different sorts of

linear pairing terms. For example, whereas the single-mode paring operatorsK1
( i )[ 1

2(bi
†)2; K2

( i )

[ 1
2bi

2 ; K0
( i )[ 1

2bi
†bi1

1
4 for i 51,2 correspond to the so-called (1

4,
3
4) representations of SU~1,1!, the

mixed pairing operatorsL1[b1
†b2

† ; L2[b1b2 ; L0[ 1
2(b1

†b11b2
†b211) correspond to the

discrete-series representation of SU~1,1!. By contrast, the mixed pairing operatorsJ1[b1
†b2 ;

J2[b1b2
† ; J0[ 1

2(b1
†b12b2

†b2) correspond to the~Schwinger representation of! the angular mo-
mentum subalgebra SU~2!. Bishop and Vourdas have shown in a separate publication18 how
squeezed~pair! coherent states can also be used in connection with a rather broad class of quantum
Lagrangians which include the damped harmonic oscillator, and hence with problems involving
‘‘quantum friction’’ or fluctuation-dissipation phenomena in general. Within quantum optics for
example, the quantum theory of lasers and photon detection provide obvious applications. Such
problems can now also usefully be extended by our present treatment to the case of such damped
systems coupled to two level atoms.

The possibility of using these solutions as the basis of a perturbative approach extends the
method away from just the isolated exact points to the remainder of the spectrum of the system.
The properties of such an approach are yet to be investigated. Finally we note that the extension
to similar single-mode or multimode systems as considered earlier coupled ton-level atoms with
n>2 is also straightforward in principle.
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