Física Teórica 2

Pablo I. Tamborenea

Clase 3, 22/08/2023

Producto escalar en componentes

Tomemos dos kets $|\varphi\rangle$ y $|\psi\rangle$ que se expanden en la base $\{|u_i\rangle\}$:

$$|\varphi\rangle = \sum_{i} c_{i} |u_{i}\rangle \qquad |\psi\rangle = \sum_{j} d_{j} |u_{j}\rangle$$
 (1)

Calculemos su producto escalar:

$$\langle \varphi | \psi \rangle = \langle \varphi | \left(\sum_{i} |u_{i}\rangle \langle u_{i}| \right) | \psi \rangle = \sum_{i} \langle \varphi | u_{i}\rangle \langle u_{i}| \psi \rangle = \sum_{i} c_{i}^{*} d_{i}$$
 (2)

$$= \begin{pmatrix} c_1^* & c_2^* & c_3^* & \cdots \end{pmatrix} \begin{pmatrix} d_1 \\ d_2 \\ d_3 \\ \vdots \end{pmatrix} = \begin{pmatrix} \langle \varphi | u_1 \rangle & \langle \varphi | u_2 \rangle & \langle \varphi | u_3 \rangle & \cdots \end{pmatrix} \begin{pmatrix} \langle u_1 | \psi \rangle \\ \langle u_2 | \psi \rangle \\ \langle u_3 | \psi \rangle \\ \vdots \end{pmatrix}$$
(3)

El bra es el adjunto o conjugado Hermítico del ket. Se pasa de la columna a la fila y se conjugan los coeficientes.

Elemento de matriz de un operador: $\langle \varphi | \hat{A} | \psi \rangle$

Sea un operador A y tomemos dos kets $|\varphi\rangle$ y $|\psi\rangle$. Calculamos el elemento de matriz o "sandwich" del operador A:

$$\langle \varphi | A | \psi \rangle = \langle \varphi | \sum_{i} |u_{i}\rangle \langle u_{i} | A | \sum_{j} |u_{j}\rangle \langle u_{j} | \psi \rangle = \sum_{ij} \langle \varphi | u_{i}\rangle \langle u_{i} | A | u_{j}\rangle \langle u_{j} | \psi \rangle \tag{4}$$

$$= \sum_{ij} c_i^* A_{ij} d_j \tag{5}$$

$$= \begin{pmatrix} c_1^* & c_2^* & c_3^* & \cdots \end{pmatrix} \begin{pmatrix} A_{11} & A_{12} & A_{13} & \cdots \\ A_{21} & A_{22} & A_{23} & \cdots \\ A_{31} & A_{32} & A_{33} & \cdots \\ \vdots & & & \end{pmatrix} \begin{pmatrix} d_1 \\ d_2 \\ d_3 \\ \vdots \end{pmatrix}$$

$$(6)$$

Desafío: Expresar en componentes el operador de transición $|\varphi\rangle\langle\psi|$.

Valor medio del operador: $\langle \varphi | \hat{A} | \varphi \rangle$

Sea A y ahora tomemos un solo ket, $|\varphi\rangle$. Hacemos el "sandwich" de A con ese ket:

$$\langle \varphi | A | \varphi \rangle = \langle \varphi | \sum_{i} |u_{i}\rangle \langle u_{i} | A | \sum_{j} |u_{j}\rangle \langle u_{j} | \varphi \rangle = \sum_{ij} \langle \varphi | u_{i}\rangle \langle u_{i} | A | u_{j}\rangle \langle u_{j} | \varphi \rangle$$
 (7)

$$= \sum_{ij} c_i^* A_{ij} c_j \tag{8}$$

$$= \begin{pmatrix} c_1^* & c_2^* & c_3^* & \cdots \end{pmatrix} \begin{pmatrix} A_{11} & A_{12} & A_{13} & \cdots \\ A_{21} & A_{22} & A_{23} & \cdots \\ A_{31} & A_{32} & A_{33} & \cdots \\ \vdots & & & \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \\ \vdots \end{pmatrix}$$
(9)

Esto nos da el valor medio del operador A cuando el estado del sistema es $|\varphi\rangle$. Por ejemplo, podemos pensar en el valor del operador posición \hat{X} cuando la función de onda es un dado $\varphi(x)$:

$$\langle \varphi | \hat{X} | \varphi \rangle = \int dx \, \varphi(x)^* \hat{X} \varphi(x)$$
 (10)

$$= \int dx \, \varphi(x)^* x \varphi(x) \tag{11}$$

$$= \int dx \, |\varphi(x)|^2 x \tag{12}$$

Operador adjunto

Calculemos el **complejo conjugado** del elemento de matriz $\langle \varphi | A | \psi \rangle$.

$$\langle \varphi | A | \psi \rangle^* = \sum_{ij} c_i A_{ij}^* d_j^* = \sum_{ij} c_j A_{ji}^* d_i^* = \sum_{ij} d_i^* A_{ji}^* c_j \tag{13}$$

Aparecen los elementos de matriz en la base A_{ji}^* . Estos son los elementos de matriz del operador adjunto de A, que denotamos A^{\dagger} :

$$\langle \varphi | A | \psi \rangle^* = \langle \psi | A^{\dagger} | \varphi \rangle \tag{14}$$

En particular, tenemos que $(A^{\dagger})_{ij} = A_{ji}^*$. Por ejemplo

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \longrightarrow A^{\dagger} = \begin{pmatrix} A_{11}^* & A_{21}^* \\ A_{12}^* & A_{22}^* \end{pmatrix}$$
 (15)

En el siguiente gráfico visualizamos la relación entre un dado operador y su operador adjunto:

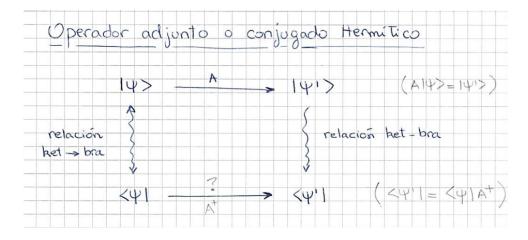


Figure 1: El operador A^{\dagger} se define por $|\psi'\rangle = A|\psi\rangle \iff \langle\psi'| = \langle\psi|A^{\dagger}$

Conjugación Hermítica de una expresión

Receta: vemos que para hacer el complejo conjugado de una expresión, invertimos el orden de los elementos y hacemos la conjugación hermítica de los elementos:

$$|\psi\rangle \longrightarrow \langle\psi|$$
 (16)

$$A \longrightarrow A^{\dagger}$$
 (17)

$$\lambda \longrightarrow \lambda^*$$
 (18)

Operadores Hermíticos

Los operadores que satifacen:

$$A^{\dagger} = A \tag{19}$$

se denominan operadores Hermíticos o auto-adjuntos (son iguales a su adjunto). Tenemos

$$A_{ji}^* = (A^{\dagger})_{ij} = A_{ij}^{\dagger} \tag{20}$$

Notar que: $A_{ii}^* = A_{ii} \Rightarrow A_{ii} \in \mathbb{R}$

Cambio de base o representación

Al cambiar de base, digamos de $\{|u_i\rangle\}$ a $\{|v_j\rangle\}$, los coeficientes de los kets y los operadores cambian de acuerdo a las fórmulas de cambio de base del álgebra lineal. Esto se hace de manera bastante cómoda y conveniente en la notación de Dirac. Queda como ejercicio, se puede ver en el libro o en el apunte Herramientas Matemáticas 2.

Autovalores y autoestados de operadores

Definición: $|\psi\rangle$ es autovector del operador A con autovalor λ si:

$$A|\psi\rangle = \lambda|\psi\rangle \tag{21}$$

Esta es la ecuación de autovalores del operador A. El conjunto de valores que toma λ , $\{\lambda\}$, constituye el espectro de A.

Un dado autovalor λ puede ser:

- No-degenerado: autovector asociado único
- Degenerado: $|\psi^i\rangle$, $i=1,\ldots,g$ g es el grado u orden de la degeneración. Los $|\psi^i\rangle$ son linealmente independientes, forman subespacio de dimensión g.

Teorema: Los autovalores de un operador Hermítico son reales

Sea A Hermítico (o sea $A=A^{\dagger}$). Si tenemos $A|\psi\rangle=\lambda|\psi\rangle$, veamos que: $\lambda\in\mathbb{R}$

Demostración

$$A|\psi\rangle = \lambda|\psi\rangle \Rightarrow \langle\psi|A|\psi\rangle = \lambda\langle\psi|\psi\rangle \tag{22}$$

Pero, dado que A es Hermítico:

$$\langle \psi | A | \psi \rangle = \langle \psi | A^{\dagger} | \psi \rangle^* = \langle \psi | A | \psi \rangle^* \in \mathbb{R}$$
 (23)

Como también $\langle \psi | \psi \rangle \in \mathbb{R}$, entonces $\lambda \in \mathbb{R}$. ///

Fin de la clase 3