Magnetism and low

temperatu res

MAGNETIC INTERACTIONS are of considerable interest throughout much of
physics; they are of particular importance in the study of matter at low tem-
perature and provide also the means for attaining extremely low temperatures.
Before leaving the subject of systems in thermal equilibrium, we shall therefore
devote some attention to the application of thermodynamic ideas to these
topics.

The study of a macroscopic system at very low temperatures proyides an
opportunity for investigating this system when it is in its ground state and in
the quantum states which lie very close to it. The number of such states
accessible to the system, or its corresponding entropy, is then quite small.
The system exhibits, therefore, much less randomness, or a much greater
degree of order, than it would at higher temperatures. The low temperature
situation is thus characterized by a fundamental simplicity* and by the possi-
bility that some systems may exhibit in striking fashion a high degree of order
on a macroscopic scale. An example of such order is provided by a system of
spins all of which, at sufficiently low temperatures, become aligned parallel to
each other, thus giving rise to ferromagnetism. A more spectacular example is
provided by liquid helium, which remains a liquid down to absolute zero (pro-
vided that its pressure is not increased above 25 atmospheres). Below a
critical temperature of 2.18°K (the so-called ‘“lambda point”) this liquid
becomes “superfluid” ; it then exhibits completely frictionless flow and can pass
through extremely small holes with the greatest of ease. Another set of
spectacular examples is provided by many metals (e.g., lead or tin) which
become “‘superconducting’” below characteristic sharply defined critical tem-
peratures. The conduction electrons in these metals then exhibit completely
frictionless flow with the result that the metals become perfect conductors of
electricity (with strictly zero de electrical resistivity) and manifest striking
magnetic properties. We refer the interested reader to the references at the

* There ig at least simplicity in principle, since the task of understanding the nature of
the ground state of a many-particle system may, at times, be far from trivial.
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end of this chapter for more detailed discussions of these remarkable proper-
ties. The foregoing comments should, however, be sufficient to indicate why
the field of low temperature physics has become a well-developed active field
of current research.

It is worth inquiring just how close to its ground state a macroscopic
system can be brought in practice, i.e., to how low an absolute temperature it
can be cooled. The technique is to insulate the system at low temperatures
from its room temperature surroundings by enclosing it in a “dewar.” (This is
a glass or metal vessel which provides thermal insulation by a double-walled
construction; a vacuum maintained between these walls minimizes heat con-
duction by residual gases and proper polishing of the walls minimizes heat
influx due to radiation.)* Helium is the gas which liquefies at the lowest
temperature, at 4.2°K under atmospheric pressure. The temperature of the
liquid can be readily reduced further to about 1°K simply by pumping away
the vapor over the liquid and thus reducing its pressure to the lowest prac-
tically feasible value.t Thus it is quite easy by modern techniques to bring
any substance to 1°K simply by immersing it in a heat bath consisting of
liquid helium. By using liquid He?, the liquid consisting entirely of the rare
isotope He? (normally constituting less than 1 part in 10% of ordinary helium,
which consists almost entirely of He*), one can apply similar methods to attain
fairly readily temperatures down to 0.3°K. Appreciably greater effort and
different techniques are necessary in order to work at still lower temperatures.
By using a method (to be discussed in Sec. 11-2) which involves the perform-
ance of magnetic work by a thermally isolated system of spins, it is feasible to
attain temperatures as low as 0.01°K or even 0.001°K. Extensions of this
method have even made it possible to reach 10~*°K!

After these general remarks about low-temperature physics and some of
its connections with magnetism, we are ready to turn to a specific discussion
of magnetic systems. Any subject involving electromagnetism raises immedi-
ately the question of choice of units. Since we are discussing problems in
physies rather than in electrical engineering, we shall use the units which are
currently in most common use in the physics journals of all countries, namely
Gaussian cgs units. We recall that in these units all electrical quantities
(such as current and voltage) are measured in electrostatic units, while mag-
netic quantities (such as magnetic field or magnetization) are measured in
gauss.

11-1 Magnetic work

We consider a system of volume V in an externally applied field H,. The
system might, for example, be a sample consisting of a magnetic solid. In

* An ordinary thermos bottle is a familiar example of a dewar.

1 The principle of the method should be familiar to any hiker ambitious enough to have
cooked out of doors. The boiling point of water on a mountain top is reduced below that
at sea level because of the reduced atmospheric pressure.




i

440 secrion 11 -1

_ 7

Fig. 11:1-1 A long cylindrical sample in the presence of an externally ap-
plied magnetic field H.. Here H = H,and M, = xH.

order to avoid uninstructive complications and problems of detail which are
predominantly in the realm of electromagnetic theory, we shall focus attention
on a physically simple situation. We assume that the externally applied field
H,, even when it varies in space, is substantially uniform over the volume of
the relatively small sample. We further assume that the sample is in the
shape of a cylinder which is very long compared to its cross-sectional dimen-
sions, and that it is always kept oriented parallel to the direction of H,. Then
the mean magnetic moment per unit volume M, = M/V is essentially uniform
throughout the sample and parallel to H,. (These properties would also be
true for any ellipsoidal sample.) In addition, if H denotes the magnetic field
inside the sample, H = H, by virtue of the boundary condition that tangential
components of H must be continuous. We also recall that quite generally the
magnetic induction B is related to H by the relation

B = H + 4rM, @11-1-1)

Outside the sample where M, = 0, B = H,. The magnetic susceptibility x per
unit volume of the sample is defined by the ratio x = M ,/H so that (11-1-1)
can also be written

B =yH=(1+4rx)H (11-1-2)

where ' is called the magnetic permeability of the sample.

The starting point for applying macroscopic arguments of statistical
thermodynamies to such a magnetic system is again the fundamental relation
(3-9-6)

2Q = T dS = dE + dW (11-1-3)

valid for any quasi-static process. Here the system is, in general, characterized
by two external parameters, the volume V and the applied magnetic field H,.
Hence the total work dW done by the system includes not only the mechanical
work p dV done by the pressure in a volume change dV but also the magnetic
work dW associated with changes in H,. We proceed to derive an expression
for this magnetic work.

To keep the geometry simple by making the problem one dimensional, we
suppose that the applied magnetic field H, points in the 2 direction and that the
cylindrical sample is always oriented parallel to this direction. Then the
magnetic field H inside the sample (and its magnetic moment M) also points
in the z direction and H = H,. Suppose then that the sample is in a particular
state r, where its total magnetic moment is 3,, and that the external magnetic
field . = H at the position of the sample is changed slowly by a small amount.
The work done in this process cannot depend on just how the field is changed.
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Let us therefore imagine that the magnitude of the applied field is not quite
uniform in space, but that it vanishes at infinity and varies gradually so as to
attain the value H, in the region of experimental interest. The magnetic field
then exerts on the sample a force having a component F, = M,(8H/dz) in the
z direction (see Fig. 11-1-2). The magnetic field at the position of the sample
can now be changed by moving the sample slowly from a position # where
H = H(z) to a neighboring position ¢ + dz where H = H(z 4 dz). In this
process one must exert on the sample a force —F, in the z direction and must do
on the sample an amount of work dWw /™ which goes to increase the energy of
the sample in this state by an amount dE,. Thus

dwm = dB, = (—F) dz = (—M, ﬁl) e

dz
or* adW = dE, = —M,dH (11-1-4)
dE,
Thus M, = — et (11-1-5)

i.e., the magnetic moment is the “generalized force” conjugate to the magnetic
field regarded as an external parameter. Taking the statistical average of
(11-1-4) over an equilibrium statistical ensemble of similar systems, one then
obtains for the macroscopic magnetic work dW done by the sample when the
field in which it is located changes by an amount dH the result

AW = —dwm = N dH (11-1-6)

* Note that this expression justifies the familiar result B, = — M.H for the energy of a
magnetic moment of fized size in an external field H.

H(x) in = direction
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Fig. 11:1:2 Diagram illustrating the force exerted by a magnetic field H
on a magnetic moment represented by a small rectangular current loop.
There is a net x component of force given by F. = ¢7'I dy (0H /ox) dv =

M (3H /ox), where I is the current and M = ¢! I(dz dy) is the magnetic
moment of the loop. The force on a large sample can be regarded as due
to the superposition of forces on many such infinitesimal moments.
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where M is the total mean magnetic moment of the sample. Hence the fun-
damental thermodynamic relation (11-1-3) can be written

i T dS = dE + p dV + M dH (11-1-7)

where the last two terms represent the total work done by the sample in a
general infinitesimal quasi-static process.

The relation (11-1-7) can, as usual, be rewritten in a variety of other forms.
For example, if it is desired to consider M rather than H as an independent
variable, one can write M dH = d(MH) — H dM, so that (11-1-7) becomes

T dS = dB* + 5 dV — H dM (11-1-8)

where E* = F 4 MH is the analog of some kind of enthalpy. The thermody-
namic consequences of (11-1-8) or (11-1-7) are, of course, equivalent; the
essential content of these relations is that both dE and dE* are exact differ-
entials of well-defined quantities characteristic of the macrostate of the system.

Alternative point of view There is another way in which one can calculate
the magnetic work. Imagine that the sample is placed inside a close-fitting
solenoid whose length ! and area A are then equal to those of the sample so
that 1A = V, the volume of the sample. The solenoid is supposed to consist of
N turns of wire and to have negligible electrical resistance. It can be connected
to a source of emf (e.g., a battery) as shown in Fig. 11-1-3. Work must be
done by the source of emf on the system consisting of the coil and sample in
order to produce the desired magnetic field. The reason is that, in trying to
change the magnetic field inside the coil, a counter-emf U is induced across the
coil. The source of emf must then provide an emf U to overcome this induced
emf. If the current in the circuit is 7, the magnetic work d’¢» thus done by
the source in time di is

aw'en = I dt (11-1-9)

Let us now express U and [ in terms of the fields B and H inside the solenoid.
Since the magnetic flux passing through each turn of the solenoid is BA, the
magnitude of the induced emf is given by Faraday’s law as

Ry
v =CNZ(4B) (11-1-10)

Fig. 11'1'3 A magnetic sample placed inside
a solenoid.
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where the constant ¢ is the velocity of light (since we use Gaussian units) and

where B is expressed in gauss and U in statvolts. Also, by Ampere’s circuital
theorem, H inside the solenoid satisfies the relation

Hl = 47" () (i-1.11)
Hence (11-1-9) becomes

NAdB\ (c ! N
d‘“’"’=(73f)(@ﬁ )‘1‘—41“3

or dwIm = 4ZWHdB (11-1-12)
Using (11-1-1) and M = VM, this becomes
a 2 i

awm = %H(JH + drdd) = (Ys% L HAM (11-1-13)
This expression represents the work necessary to magnetize the sample and to
establish the magnetic field; i.e., it is the work done on the system consisting
of the sample plus the magnetic field. On the other hand, (11-1-6) represents
the work done on the sample in some given magnetic field, i.e., it is the work
done on the system consisting of the sample alone. It is, of course, equally
legitimate to consider either the sample alone, or the sample plus electromag-
netic field, as the system of interest.
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If one adopts the point of view that the system of interest consists of
sample plus field, the thermodynamic relation (11-1-3) becomes, using for
the magnetic work dW’'™ = —dWw’'™ done by this system the expression
(11-1-18),

TdS=d(E'—ZS$>+ﬁdV——HdM (11-1-14)

where E'denotes themean energy of thissystem. Putting B* = B/ — VH?/8r,
this relation is identical with (11-1-8) and thus equivalent to (11:1-7). This
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shows explicitly that the thermodynamic consequences of our discussion are the

same irrespective of which system one chooses to consider, 11 : 2 Magnetic cooling

Since it is possible to do work on a sample by changing the applied magnetic
field, it is also possible to heat or cool a thermally insulated sample by changing
a magnetic field. This provides a commonly used method to attain very low
temperatures. The nature of this method can be made clearer by comparing
it with a more familiar mechanical analogue. Suppose that it is desired to cool
a gas by means of mechanical work. One can proceed in the manner illustrated
in the top part of Fig. 11:2-1. The gas is initially in thermal contact with a
heat bath at temperature T, e.g., with a water bath. One can now compress
the gas to a volume V. In this process work is done on the gas, but it can give
off heat to the bath and thus remains at the temperature T after equilibrium
has been reached. The gas is then thermally insulated (e.g., by removing the
water bath) and is allowed to expand quasi-statically to some final volume V;.
In this adiabatic process the gas does work at the expense of its internal energy
and, as a result, its temperature falls to some final value 7', less than T..

The method of magnetic cooling is very similar and is illustrated in the
bottom part of Fig. 11-2-1. The system of interest is a magnetic sample
initially in thermal contact with a heat bath at temperature T;. In practice
this heat bath is liquid helium near 1°K, thermal contact of the sample with
the bath being established by heat conduction through some helium gas at low
pressure. One can now switch on a magnetic field until it attains some value
H;. In this process the sample becomes magnetized and work is done, but the
sample can give off heat to the bath and thus remains at the temperature T
after equilibrium has been reached. The sample is then thermally insulated
(e.g., by pumping off the helium gas which provided the thermal contact with
the bath) and the magnetic field is reduced quasi-statically to a final value H,
(usually H, = 0).* As a result of this “adiabatic demagnetization’” the tem-
perature of the sample falls to some final value 7', less than T;. In this way
temperatures as low as 0.01°K can readily be attained. Indeed, temperatures
close to 10~%°K have been achieved by elaboration of this method.

Let us now analyze the method in greater detail in order to understand how
the temperature reduction comes about. The first step is an isothermal
process: here the system is kept at a constant temperature 7; while it is brought
from some macrostate a to some other macrostate b by a change of external
parameter. The second step is an adiabatic process: here the system is ther-
mally isolated and is then brought quasi-statically from the macrostate b to a
macrostate ¢ by a change of external parameter. The entropy S of the system
therefore remains constant in this last step. The whole method is then most
conveniently illustrated in a diagram of entropy S versus temperature 7.
Such a diagram is shown schematically in Fig. 11-2-2 for a paramagnetic
sample where the significant external parameter is the magnetic field H. For
such a sample the entropy S becomes smaller when the individual atomic

* Internal equilibrium is usually attained rapidly enough that reducing the field to zero
in & few seconds is sufficiently slow to be considered quasi-static.




