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The calculation of the geometrical series is quite analogous to the procedure of Example 8.1.
Thus we obtain the result
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Example 14.11: Ultrarelativistic Fermi gas

We want to study the thermodynamic properties of an ultrarelativistic ideal Fermi gas. Ultra-
relativistic particles have the energy—momentum relationship € = |p|c, which follows from
the general formula € = (p2c? + m*c*)"/? for vanishing rest mass.

While there are certain bosons with this energy—momentum relation (e.g., photons,
phonons, and plasmons), the number of fermions with vanishing rest mass seems to be rather
small. Itis still not clear whether there are any fermions with vanishing rest mass. For instance,
one can assert only an upper bound for the rest mass of the neutrino which has relatively large
measurement errors, m, < 8 eV. On the other hand, the ultrarelativistic Fermi gas can be
used as a model system for a hot gas of fermions with nonvanishing rest mass, if the average
momenta in the gas are large compared to mc; i.e., if the average thermal energy kT is large
compared to the rest mass mc?.

From relativistic quantum mechanics it is known that one can create pairs of particles
and antiparticles (e.g., e~ and ™) out of the vacuum at the expense of the energy 2mc?. These
creation (and annihilation) processes will play a major role in an ultrarelativistic Fermi gas
(kT > mc?). Therefore, we must not consider a gas of Fermi particles alone; rather, we
have to add the corresponding antiparticles. The vacuum represents the particle reservoir of
the grand canonical ensemble, and particles and antiparticles are always exchanged with this
reservoir via creation and annihilation processes.

Thus, we deal with a mixture of two ideal Fermi gases, between which “chemical”
reactions are possible. In the case of the ultrarelativistic Bose gas it was not necessary to
consider the antiparticles explicitly, since particles and antiparticles are identical in the more
important applications (photons and phonons).

As a concrete example, we consider a hot gas of electrons and positrons. The logarithm
of the grand partition function consists of two parts,

InZ(T, V. ze,22) = 3 In(1 + z, exp{—Be,}) + »_ In(l + z_ exp{—Pe_})
€4 €_
The sums run over the one-particle states of free electrons and positrons. The term In Z
depends now on two fugacities z, and z_ or two chemical potentials ;. and p_, respectively,
which are related to the mean particle numbers N, and N_ of particles and antiparticles via

Ny=)_ !

— 27" exp(Bes) + 1

1
N_ = 14.12
2;’ 7! exp{Be-} + 1 ( 8)

Physically, it would not be sensible to fix all particle numbers N, and N_ separately and then
determine the chemical potentials p,. and p... In thermodynamic equilibrium the mean par-
ticle numbers will change via the continuously occurring creation and annihilation processes.

Moreover, they may strongly fluctuate.
The changes d N, and d N_ of the two particle numbers are related by the equation

dN+ = dN,
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If we write the reaction equation (for electrons and positrons) in the form
et + e~ = reaction products + AE (14.129)

we observe that an antiparticle is also created and annihilated with each particle. Here the
reaction products (e.g., photons) play no role, as long as we do not explicitly take them into
account in the gas. From Equation (14.129) it follows that the chemical potentials of particles
and antiparticles have to be equal (with opposite sign, cf. Chapter 3), since reaction products
like photons do not carry a chemical potential,

me + - =0, 42— =1 (14.130)

The particle numbers N, and N_ are indeed not independent of each other, and there are not
two independent fugacities, but actually only one. However, instead of N, and N_ one can fix
the difference N = N, — N_, the particle surplus, since it is not influenced by the creation
and annihilation processes:

N=N.—-N_=) -y exp{ﬂe T (14.131)

€4+>0 Z+ CXp{ﬂ6+} + 1 €->0 Z—

From this equation one has to determine the fugacity z, taking into account Equation (14.130).
We can provide the system with a certain surplus N of particles, which does not change via
pair creation or annihilation, but the mean particle numbers N, and N_ cannot be controlled.

We want to expand the result (14.130) and simultaneously explain it quantum
mechanically.

To this end, we consider the energy spectrum of the free Dirac equation (see
Figure 14.15). In the ultrarelativistic case we must of course let m — 0. As
+mc  one knows, in this spectrum there are also states of negative energy € < —mc?
besides the states of positive energy € > mc?. One can now describe particles and
antiparticles in the spectrum simultaneously, if one assumes that in the vacuum,
without particles, all states of the negative energy continuum are occupied by
(unobservable) electrons.

Figure 14.15. Energy In this picture missing electrons in the negative continuum (holes) are to be
spectrum of the free Dirac  interpreted as positrons (antiparticles). Let us now consider the general expression
equation. for the mean occupation number for Fermi particles:
1
(ne) = (14.132)

exp{B(e — w)} +1

In the derivation of this occupation number no restriction for the allowed
one-particle energies was made, and thus we can expect that Equation (14.132)
should correctly reproduce the occupation of all electron states. For T = 0 and
u = +mc? we have exactly a distribution as shown in Figure 14.16, since then
expression (14.132) has the form @ (mc? — €). The free Dirac equation has no
solutions in the range —mc? < € < +mc?, and thus there are no occupied states
inside the interval. The minimum energy an observable (real) electron has to
have is thus € = u = +mc?.

If the Dirac equation with an external potential has bound solutions in the
Figure 14.16. Spectrum of interval —mc? < € < +mc?, the bound states above the lower continuum
an electrongas at 7’ = 0. are successively filled with the observable electrons. The chemical potential at

T = 0is just equal to the energy of the highest occupied state.
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Even then, Equation (14.132) correctly describes the physical situation. If there are
further unoccupied states above the highest occupied state, a free electron without kinetic
energy (¢ = +mc?) can be captured by the system, because & < mc?. The energy difference
mc? — p is released.

A For an electron gas with N, electrons and a Fermi energy €, >

<Ng> mc* we have at T = 0 the situation shown in Figure 14.17. This
1+ S occupation of the electron states is correctly described by Equation

N;; , (14.132), if we replace u by the Fermi energy € of the electrons.
not observable obsérizable If we now increase the temperature of the electron gas, at first
electrons electrons electrons near the Fermi energy are excited into higher states € > €.
5 — 8 == This occurs in an energy range of approximate width kT around the

-mc¢  +mc F Fermi energy.

Figure 14.17. (n.) for an electron gas However, if the temperature is of the order 2mc?, more and more
atT = 0. electrons from the lower continuum can be excited into free states

€ > €. These electrons leave holes in the lower continuum, which
represent observable positrons. The number of observable electrons has also increased. The
difference N, — N_, however, is the same as before. The negative energy of the holes
€holes < —mc? is simply related to the positive energy of the corresponding positron via

€c+ = —€pgle-
The number of observable electrons and positrons can be calculated as follows:
Ne=)Y (n), N_=> (1-(n) (14.133)
€>0 €<0

with (n.) given by Equation (14.132) and ©# = p., as the chemical potential of the electrons
(particles). As one observes, only the chemical potential of the electrons (particles) appears
in this interpretation of particles and antiparticles, which is due to Dirac. On the other hand,
comparing Equations (14.133) and (14.129) we can establish a connection with the picture
of two different Fermi gases, between which chemical reactions are possible. Obviously, the
positive electron states correspond exactly to the free electron states €, in Equation (14.129).
The unoccupied electron states of negative energy € < 0have to be identified with the occupied
positron states with positive energy e_ > 0. The expression for N_ can now be transformed:

1
N-= 2 (1 T Z T explBe) + 1)

e<0

-y 2" exp{Be}
- z lexp{Be} + 1

€<0

1
_ ;) e (14.134)

Furthermore, the energy spectrum of the free Dirac equation is symmetric around € = 0.
Thus, one may substitute € — —e_ in Equation (14.134) and instead of counting electrons
with negative energy one counts present positrons with positive energy,

1
N-= Z zexp{Be_} +1

e_>0

A comparison with Equation (14.129) now yields in fact z = zZ'; ie., uy = —pu_, in
agreement with Equation (14.131). Both interpretations yield the same results, but in some

14
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cases Dirac’s particle-hole picture is more convenient. For instance, the particle excess in this
picture is simply

N=N.—N_=) (n)—> (- (n)

>0 €<0
= Z (ne) - Zl - Z (ns) - Z (né)vac
€ €<0 € €

The particle excess is thus always given by the difference between
the total number of all electrons (observable and unobservable) and the
vacuum state. Here the role of the vacuum without observable particles as
a reference state becomes especially obvious. Only the deviations from
the vacuum state are observable.

Let us add a comment at this place. The whole consideration can
also be performed in Dirac’s particle-hole picture, if the roles of particles
and antiparticles are reversed. For instance, electrons would then have to
be identified with holes in the negative energy continuum of the positrons.
The reason is the invariance of the free Dirac equation under charge con-
jugation, as long as there are no electromagnetic fields present. For sake
Figure 14.18. Possible processes in  of completeness we explicitly denote both possibilities:
the electron gas at kT ~ 2mc?. particles=electrons (index+), antiparticles=positrons (index —):

1
Ne= 2 explBle — p)} + 1

€>0

1
N_ = 1-— 14.135
Z ( exp{B(e — uy)} +1 ) ( )

€<0

particles=positrons (index —), antiparticles=electrons (index+):

1 1
N, = 1 - , N_ =
* X(; ( exp{f(e — u-)} + 1 ) ; exp{B(e — u_)} +1
(14.136)

Of course, Equations (14.135) and (14.136) are identical with y, = —pu_.
However, the way of consideration in Dirac’s particle-hole picture presented here has
a disadvantage, which should be mentioned. By marking the electrons as particles (or the

observable A
: <ng>
positrons €

TS
‘ | !
not observable T~ I
electrons :
I

-mc +mc € €
observable
electrons

Figure 14.19. (n;) for an electron gas at kT = 2mc2.
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positrons as particles, respectively) the symmetry of the theory with respect to charge conju-
gation is somewhat obscured. In the particle-hole picture antiparticles do not appear explicitly,
but are replaced by unoccupied states of negative energy. On the other hand, our initial idea
of two independent Fermi gases, which react chemically, is completely symmetric in particles
and antiparticles.

For fermions it does not matter which representation one uses, as long as one consistently
keeps to it. For bosons, which have the same energy spectrum as the fermions, a consistent
particle-hole picture is not possible, since for them the Pauli principle is not valid. In the
case of fermions (electron gas) the (unobservable) electrons of the negative energy continuum
prevent a “falling down” of electrons with positive energy towards infinitely negative energies
under steady energy gain. For bosons, however, this process cannot be prevented, and one has
to refer to the initial picture of two gases. Equation (14.130) still holds for bosons if the +1
in the denominator is replaced by —1.

We now want to proceed with the calculation. At first we rewrite the sums in Equation
(14.125) and (14.131) in terms of integrals, for which we need the state density g(e) of
ultrarelativistic particles (see Equation (13.6), with degeneracy factor g),

4V

8€) =g 753 €’
V. [*> ,
nZ=g pEp / € de [ln(l + exp{—pB(e — u)}) + In (1 + exp{—B(e + u)})]
0

or after integration by parts,

InZ = dnV B Yo [ ! + ! ](14137)
8w 3, explBle — )} +1  explBle+ml+1] "
N = N+ - N_

_ gtV /wezd [ ! - 1 ] (14.138)
8w )yl eplBe—mi+1  explBle+ )] 1 '

where we simply write y for the chemical potential 4, of the particles and —u for u_ of the
antiparticles. The integrals in Equations (14.137) and (14.138) fortunately can be evaluated
with analytical means, without using the special functions f,, (z). We substitute x = (e — )
in the first term and y = B(e + p) in the second. We then obtain for Equation (14.137)

3
-, -1
B
+p7 [ dy~t L
Bu e"+1 ﬁ Bu Y e,‘r'_*_l

nZ = ganVv B | _, °°d (%‘FM)S
ne= cAh? 3 p L

We now rewrite the integrals so that we can integrate from 0 to oo,

-3 ] 3 0 _ 3
1nz:g4nVﬂ_U ax B [ 4, 0 = P
0 0

chd 3 e’ + 1 e’ +1

+f° g EF AW’ _/”“d (y — Bw)’®
—Bu e’ + 1 0 Y e¥ +1

14
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The first two integrals can be directly combined, the last two after the substitution y = —x.
anVv -3 o] 2 3 6 2
nz = 87 B~ f dx 2x" + 6x(Bu)”
c3hd 3 0 et + 1

0 1 1
+ d 3
f_ﬂ“ Gt Bu) (ex+1 * e"‘+l):|

If we now consider (e* + 1)™! + (e™* + 1)~ = 1, we find

4V -3 [=] 3 oc Bu
mz =587 L [2 f dx —= + 6(Bu)? f dx — + / dzz’?
0 ] 0

ch? 3 e +1 e’ + 1
(14.139)
In the last integral we have substituted z = x + Bu. Analogously, we now treat Equation
(14.138):
. 2 . 2
R il ﬂ'l/m dx——(E +4) - wdy—(g )
c3h3 —Bu e* + 1 Bu e+ 1
_ 84V s fwdx (x + )’ ~f°°dy (& — Bu)’
c3h3 0 e +1 0 e’ +1
0 2 Bu . 2
+/ dx(xjﬂu) +/ dy(y‘ﬂu)}
—Bu e* + 1 0 ey + 1
gamVv /'°° x -/'ﬂ“ 2
= 4 d d 14.140
P [ﬂuo i1t 9= ( )

In the last line we have again combined the two last integrals from the preceding line and
substituted z = x + Bu. Note that this can be done only for N, — N_, and not for N, + N_.

For the total particle number there is no simple analytical solution, as well as for N, and
N_ separately. One can calculate these quantities with the help of the f,(z) functions.

The integrals occurring in Equations (14.139) and (14.140) can be expressed with the
help of Equation (14.27):

fow dx ex’il =T@ful) = 6(1 ~ %)cm) = %(:
fow dx exil —TQ ) = 1(1 - %) r(2) = ’1'_22 (14.141)
Therewith we have the results
n 2T, v, = 7 B2 [2% 6B T + %(ﬂu)“]
-t | T (8) T+ (5)' 5]
N(T,V, ) = g:jg g3 [4ﬂu’1’—22 + %(ﬂuf]

- S ¢ () 5+ 3 ()]
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From Equation (14.141) one can in principle calculate the internal energy via U =
—d(In Z)/98, but the following consideration is simpler:

U=U,+U- =) (n), e+ (n)_e

€+

_ g4mv /me3de|: 1 + 1 ]
IEEE I A exp{B(e — w)} +1 = exp{Be + w)} + 1

This is identical to Equation (14.137) up to a factor B8/3, so that

pv B
mz=2"_"y
n kT 3
or
1U *kTY* 1 [ Tn? (;L 2] IR
_1uv _ (AN DAY L 14.142
P=3v 8@y 3|120 " kT) 4+(kT) 82 ( )

By the way, the first term in Equation (14.142) is quite similar to the Stefan—Boltzmann law
for the ultrarelativistic photon gas (1 = 0).
The density of the particle surplus is

- N 3
7= =t () 1)+ () =]

The free energy density follows from § = % W — pas
F kD[ 1 (u)4+ 1 (u)z 1 7n?
v = 8 ey [8n2 \kr 2 \kr/) T 312
With this one can also calculate the entropy density 3 = £ (% — £):

N KT\’ 722 1/ u\2
7=2(5) |5 5 (&)]




