CHAPTER III*

Fluctuations in Coin Tossing
and Random Walks

This chapter digresses from our main topic, which is taken up again
only in chapter V. Its material has traditionally served as a first orientation
and guide to more advanced theories. Simple methods will soon lead us
to results of far-reaching theoretical and practical importance. We shall
encounter theoretical conclusions which not only are unexpected but
actually come as a shock to intuition and common sense. They will reveal
that commonly accepted notions concerning chance fluctuations are without
foundation and that the implications of the law of large numbers are
widely misconstrued. For example, in various applications it is assumed
that observations on an individual coin-tossing game during a long time
interval will yield the same statistical characteristics as the observation of
the results of a huge number of independent games at one given instant.
This is not so. Indeed, using a currently popular jargon we reach the
conclusion that in a population of normal coins the majority is necessarily
maladjusted. [For empirical illustrations see section 6 and example (4.5).]

Until recently the material of this chapter used to be treated by analytic
methods and, consequently, the results appeared rather deep. The
elementary method! used in the sequel is therefore a good example of the
newly discovered power of combinatorial methods. The results are fairly
representative of a wider class of fluctuation phenomena? to be discussed

* This chapter may be omitted or read in conjunction with the following chapters.
Reference to its contents will be made in chapters X (laws of large numbers), XI (first-
passage times), XIII (recurrent events), and XIV (random walks), but the contents
will not be used explicitly in the sequel.

! The discovery of the possibility of an elementary approach was the principal
motivation for the second edition of this book (1957). The present version is new and
greatly improved since it avoids various combinatorial tricks.

% See footnote 12.
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68 RANDOM WALKS [I11.1

in volume 2. All results will be derived anew, independently, by different
methods. This chapter will therefore serve primarily readers who are not
in a hurry to proceed with the systematic theory, or readers interested in
the spirit of probability theory without wanting to specialize in it. For
other readers a comparison of methods should prove instructive and
interesting. Accordingly, the present chapter should be read at the reader’s
discretion independently of, or parallel to, the remainder of the book.

1. GENERAL ORIENTATION.
THE REFLECTION PRINCIPLE

From a formal point of view we shall be concerned with arrangements
of finitely many plus ones and minus ones. Consider n = p 4 ¢ symbols
€1, - - - » €,, €ach standing either for +1 or for —1; suppose that there
are p plus ones and ¢ minus ones. The partial sum s, = ¢, + - - - + ¢,
represents the difference between the number of pluses and minuses
occurring at the first k£ places. Then

(1.1) Sp— Sy = €, = +1, So = 0, S, =p—q,

where k=1,2,...,n

We shall use a geometric terminology and refer to rectangular coordinates
t, z; for definiteness we imagine the 7-axis is horizontal, the z-axis vertical.
The arrangement (e, ..., ¢,) will be represented by a polygonal line
whose kth side has slope ¢, and whose kth vertex has ordinate s,. Such
lines will be called paths.

Definition. Let n> 0 and x be integers. A path (sy, s, ...,S,)
Jrom the origin to the point (n, x) is a polygonal line whose vertices have
abscissas 0,1,...,n and ordinates sy, s,,...,s, satisfying (1.1) with
S, = .

We shall refer to n as the length of the path. There are 2" paths of
length n. If p amongthe ¢, are positive and ¢ are negative, then

(1.2) n=p+gq, x=p-—q.

A path from the origin to an arbitrary point (n, ) exists only if » and
x are of the form (1.2). In this case the p places for the positive ¢, can
be chosen from the n = p 4 g available places in

(1.3) N,, = (pw;q) — (pw;q)

different ways. For convenience we define N, = 0 whenever n and
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are not of the form (1.2). With this convention there exist exactly N, .
different paths from the origin to an arbitrary point (n, x).

Before turning to the principal topic of this chapter, namely the theory
of random walks, we illustrate possible applications of our scheme.

Examples. (a) The ballot theorem. The following amusing proposition
was proved in 1878 by W. A. Whitworth, and again in 1887 by J. Bertrand.

Suppose that, in a ballot, candidate P scores p votes and candidate Q
scores q votes, where p > q. The probability that throughout the counting
there are always more votes for P than for Q equals (p—q)/(p+q).

Similar problems of arrangements have attracted the attention of students
of combinatorial analysis under the name of ballot problems. The recent
renaissance of combinatorial methods has increased their popularity, and
it is now realized that a great many important problems may be reformu-
lated as variants of some generalized ballot problem.?

A"

0 N

Figure 1. Illustrating positive paths. The figure shows also that there are exactly as
many strictly positive paths from the origin to the point (2n,0) as there are non-
negative paths from the origin to (2n—2, 0).

The whole voting record may be represented by a path of length p + ¢
in which ¢, = 41 if the kth vote is for P; conversely, every path from
the origin to the point (p 4 ¢, p — ¢g) can be interpreted as a record of
a voting with the given totals p and g. Clearly s, is the number of votes
by which P leads, or trails, just after the kth vote is cast. The candidate
P leads throughout the voting if, and only if, s; > 0,...,s, > 0, that
is, if all vertices lie strictly above the #-axis. (The path from 0 to N, in
figure 1 is of this type.) The ballot theorem assumes tacitly that all
admissible paths are equally probable. The assertion then reduces to the
theorem proved at the end of this section as an immediate consequence of
the reflection lemma. |

(b) Galton’s rank order test.* Suppose that a quantity (such as the height

8 A survey of the history and the literature may be found in Some aspects of the
random sequence, by D. E. Barton and C. L. Mallows [Ann. Math. Statist., vol. 36
(1965), pp. 236-260]. These authors discuss also various applications. The most recent
generalization with many applications in queuing theory is due to L. Takacs.

* J. L. Hodges, Biometrika, vol. 42 (1955), pp. 261-262.
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of plants) is measured on each of r treated subjects, and also on each of
r control subjects. Denote the measurements by a,,...,a, and b, ...,
b,, respectively. To fix ideas, suppose that each group is arranged in
decreasing order: a;>a;>::- and b, >b,>.... (To avoid
trivialities we assume that no two observations are equal.) Let us now
combine the two sequences into one sequence of n = 2r numbers ar-
ranged in decreasing order. For an extremely successful treatment all the
a’s should precede the b’s, whereas a completely ineffectual treatment
should result in a random placement of a’s and &’s. Thus the efficiency
of the treatment can be judged by the number of different a’s that
precede the b of the same rank, that is, by the number of subscripts
k for which a, > b,. This idea was first used in 1876 by F. Galton
for data referred to him by Charles Darwin. In this case r equaled
15 and the a’s were ahead 13 times. Without knowledge of the actual
probabilities Galton concluded that the treatment was effective. But,
assuming perfect randomness, the probability that the a’s lead 13
times or more equals %. This means that in three out of sixteen cases a
perfectly ineffectual treatment would appear as good or better than the
treatment classified as effective by Galton. This shows that a quantitative
analysis may be a valuable supplement to our rather shaky intuition.

For an interpretation in terms of paths write ¢, = +1 or —1 according
as the kth term of the combined sequence is an a or a b. The resulting
path of length 2r joins the origin to the point (2r,0) of the r-axis.
The event a;, > b, occurs if, and only if, s,,_, contains at least k plus
ones, that is, if sy, ; > 0. This entails s, > 0, and so the (2k—1)st and
the 2kth sides are above the r-axis. It follows that the inequality a, > b,
holds » times if, and only if, 2» sides lie above the t-axis. In section 9
we shall prove the unexpected result that the probability for thisis 1/(r+1),
irrespective of ». (For related tests based on the theory of runs see II, 5.5.)

(¢) Tests of the Kolmogorov-Smirnov type. Suppose that we observe two
populations of the same biological species (animals or plants) living at
different places, or that we wish to compare the outputs of two similar
machines. For definiteness let us consider just one measurable charac-
teristic such as height, weight, or thickness, and suppose that for each of
the two populations we are given a sample of r observations, say
ay,...,a, and by, ..., b, The question is roughly whether these data
are consistent with the hypothesis that the two populations are statistically
identical. In this form the problem is vague, but for our purposes it is
not necessary to discuss its more precise formulation in modern statistical
theory. It suffices to say that the tests are based on a comparison of the
two empirical distributions. For every ¢ denote by A(¢z) the fraction
k[n of subscripts i for which a; < ¢. The function so defined over the
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real axis is the empirical distribution of the a’s. The empirical distribution

B is defined in like manner. A refined mathematical theory originated

by N. V. Smirnov (1939) derives the probability distribution of the maxi- -
mum of the discrepancies |A(#) — B(¢)| and of other quantities which can

be used for testing the stated hypothesis. The theory is rather intricate,

but was greatly simplified and made more intuitive by B. V. Gnedenko

who had the lucky idea to connect it with the geometric theory of paths.

As in the preceding example we associate with the two samples a path of
length 2r leading from the origin to the point (2r,0). To say that the

two populations are statistically indistinguishable amounts to saying that

ideally the sampling experiment makes all possible paths equally probable.

Now it is easily seen that |A(z) — B(¢)] > & for some ¢ if, and only if,

|sy| > &r for some k. The probability of this event is simply the proba-

bility that a path of length 2r leading from the origin to the point (0, 2r)

is not constrained to the interval between =+&r. This probability has

been known for a long time because it is connected with the ruin problem

in random walks and with the physical problem of diffusion with absorbing

barriers. (See problem 3.) \

This example is beyond the scope of the present volume, but it illustrates
how random walks can be applied to problems of an entirely different
nature.

(d) The ideal coin-tossing game and its relation to stochastic processes.
A path of length » can be interpreted as the record of an ideal experiment
consisting of n successive tosses of a coin. If +1 stands for heads, then
s, equals the (positive or negative) excess of the accumulated number of
heads over tails at the conclusion of the kth trial. The classical description
introduces the fictitious gambler Peter who at each trial wins or loses a
unit amount. The sequence sy, s,, . .., s, then represents Peter’s succes-
sive cumulative gains. It will be seen presently that they are subject to
chance fluctuations of a totally unexpected character.

The picturesque language of gambling should not detract from the
general importance of the coin-tossing model. In fact, the model may
serve as a first approximation to many more complicated chance-dependent
processes in physics, economics, and learning theory. Quantities such as
the energy of a physical particle, the wealth of an individual, or the
accumulated learning of a rat are supposed to vary in consequence of
successive collisions or random impulses of some sort. For purposes of a
first orientation one assumes that the individual changes are of the same
magnitude, and that their sign is regulated by a coin-tossing game. Refined
models take into account that the changes and their probabilities vary from
trial to trial, but even the simple coin-tossing model leads to surprising,
indeed to shocking, results. They are of practical importance because they
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show that, contrary to generally accepted views, the laws governing a
prolonged series of individual observations will show patterns and averages
far removed from those derived for a whole population. In other words,
currently popular psychological tests would lead one to say that in a
population of “normal’’ coins most individual coins are “maladjusted.”

It turns out that the chance fluctuations in coin tossing are typical for
more general chance processes with cumulative effects. Anyhow, it stands
to reason that if even the simple coin-tossing game leads to paradoxical
results that contradict our intuition, the latter cannot serve as a reliable
guide in more complicated situations. <

Figure 2. Illustrating the reflection principle.

It is as surprising as it is pleasing that most important conclusions can be
drawn from the following simple lemma.

Let A= (a,«) and B = (b, f) be integral points in the positive
quadrant: b >a >0, « > 0, § > 0. By reflection of 4 on the z-axis
is meant the point A’ = (a, —«). (See figure 2.) A path from 4 to B
is defined in the obvious manner.

Lemma.® (Reflection principle.) The number of paths from A to B
“which touch or cross the x-axis equals the number of all paths from A’ to B.

Proof. Consider a path (s, = o, $;1,...,8 =f) from A to B
having one or more vertices on the z-axis. Let ¢ be the abscissa of the
first such vertex (see figure 2); thatis,choose ¢ sothat s, >0,...,5, ; >0,
s, =0. Then (=85, —Soy1>---> =515 =0,8;,1,8;,9,...,5) 15 a

5 The reflection principle is used frequently in various disguises, but without the
geometrical interpretation it appears as an ingenious but incomprehensible trick. The
probabilistic literature attributes-it to D. André (1887). It appears in connection with
the difference equations for random walks in XIV, 9. These are related to some
partial differential equations where the reflection principle is a familiar tool called
method of images. 1t is generally attributed to Maxwell and Lord Kelvin. For the use
of repeated reflections see problems 2 and 3.




I11.2] RANDOM WALKS: BASIC NOTIONS AND NOTATIONS 73

path leading from A’ to B and having T = (7, 0) as its first vertex on
the r-axis. The sections AT and A'T being reflections of each other,
there exists a one-to-one correspondence between all paths from A’ to
B and such paths from A4 to B that have a vertex on the z-axis. This
proves the lemma. >

As an immediate consequence we prove the result discussed in example
(a). It will serve as starting point for the whole theory of this chapter.

The ballot theorem. Let n and x be positive integers. There are
x
exactly - N,.. paths (sy,...,s, = x) from the origin to the point (n, x)
such that s; > 0,...,s, > 0.

Proof. Clearly there exist exactly as many admissible paths as there
are paths from the point (1, 1) to (n, ) which neither touch or cross the
t-axis. By the last lemma the number of such paths equals

+q—1 p+q—1
Nn—l,m——l - Nn—l,m-{—l = (pp_q_l ) - ( P )

with p and ¢ defined in (1.2). A trite calculation shows that the right
side equals N, .(p—q)/(p+9g), as asserted. >

2. RANDOM WALKS: BASIC NOTIONS AND
NOTATIONS

The ideal coin-tossing game will now be described in the terminology
of random walks which has greater intuitive appeal and is better suited
for generalizations. As explained in the preceding example, when a path
($1,...,5,) 1s taken as record of p successive coin tossings the partial
sums s, ...,S5, represent the successive cumulative gains. For the
geometric description it is convenient to pretend that the tossings are
performed at a uniform rate so that the nth trial occurs at epoch® n. The
successive partial sums s,, . .., s, will be marked as points on the vertical
z-axis; they will be called the positions of a ‘““particle’ performing a
random walk. Note that the particle moves in unit steps, up or down, on a

¢ Following J. Riordan, the word epoch is used to denote points on the time axis
because some contexts use the alternative terms (such as moment, time, point) in
different meanings. Whenever used mathematically, the word time will refer to an
interval or duration. A physical experiment may take some time, but our ideal trials
are timeless and occur at epochs.
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line. A path represents the record of such a movement. For example, the
path from O to N in figure 1 stands for a random walk of six steps
terminating by a return to the origin.

Each path of length p can be interpreted as the outcome of a random
walk experiment; there are 2” such paths, and we attribute probability
2-7 to each. (Different assignments will be introduced in chapter XIV.
To distinguish it from others the present random walk is called symmetric.)

We have now completed the definition of the sample space and of the
probabilities in it, but the dependence on the unspecified number p is
disturbing. To see its role consider the event that the path passes through
the point (2, 2). The first two steps must be positive, and there are 2°/-2
paths with this property. As could be expected, the probability of our
event therefore equals  regardless of the value of p. More generally, for
any k < p it is possible to prescribe arbitrarily the first k& steps, and
exactly 2°~* paths will satisfy these k conditions. It follows that an
event determined by the first k < p steps has a probability independent of
p. In practice, therefore, the number p plays no role provided it is
sufficiently large. In other words, any path of length »n can be taken as
the initial section of a very long path, and there is no need to specify the
latter length. Conceptually and formally it is most satisfactory to consider
unending sequences of trials, but this would require the use of non-
denumerable sample spaces. In the sequel it is therefore understood that
the length p of the paths constituting the sample space is larger than the
number of steps occurring in our formulas. Except for this we shall be
permitted, and glad, to forget about p.

To conform with the notations to be used later on in the general theory
~we shall denote the individual steps generically by X;, X,,... and the
positions of the particle by S;,S,,.... Thus

(2.1) S,=X,+ - +X,, S,=0.

From any particular path one can read off the corresponding values of
X;, X,, . .. ; that is, the X, are functions of the path.” For example,
for the path of figure 1 clearly X; =X, =X,=1 and X;=X;=
=X, = —1.

We shall generally describe all events by stating the appropriate con-
ditions on the sums S,. Thus the event “at epoch n the particle is at the
point > will be denoted by {S, = r}. For its probability we write p,, ,.
(For smoother language we shall describe this event as a “visit” to r at

7 In the terminology to be introduced in chapter IX the X, are random variables.
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epoch n.) The number N, , of paths from the origin to the point (n, r)
is given by (1.3), and hence
n
(2.2) Por=P{S,=rt=n+rj2,
: 2

where it is understood that the binomial coefficient is to be interpreted as
zero unless (n4-r)/2 is an integer between 0 and 7, inclusive.

A return to the origin occurs at epoch k if S, = 0. Here k is neces-
sarily even, and for k& = 2» the probability of a return to the origin equals
Pavo- Because of the frequent occurrence of this probability we denote it
by u,,. Thus
2.3) g, = (2”)7:2”.

v .
When the binomial coefficient is expressed in terms of factorials, Stirling’s
formula II, (9.1) shows directly that

(2.4) Uy, ~ ——
. Y
where the sign ~ indicates that the ratio of the two sides tends to 1 as
v — o0; the right side serves as excellent approximation® to u,  even for
moderate- values of ».
Among the returns to the origin the first return commands special
attention. A first return occurs at epoch 2» if

(2.5 S1#0,...,8,,,#0, bur S, =0.
The probability for this event will be denoted by f;. By definition
fo = 0.

The probabilities f,, and u,, are related in a noteworthy manner. A
visit to the origin at epoch 2n may be the first return, or else the first
return occurs at an epoch 2k < 2n and is followed by a renewed return
2n — 2k time units later. The probability of the latter contingency is
Jorto, oy, because there are 2%f,, paths of length 2k ending with a first
return, and 2%"~?*y, , paths from the point (2k,0) to (2n,0). It
follows that

(26) u2‘n =f‘2u2n—2 +f?4u2n—4 + o +f‘2nu03 n Z 1
(See problem 5.)

8 For the true value u,, = 0.2461 we get the approximation 0.2523; for u,, =
0.1762 the approximation is 0.1784. The per cent error decreases roughly in inverse
proportion to ».
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The normal approximation. Formula (2.2) gives no direct clue as to the range within
which S, is likely to fall. An answer to this question is furnished by an approximation
formula which represents a special case of the central limit theorem and will be proved®
in VII, 2.

The probability that a < S, < b is obtained by summing probabilities p,,, over
all r between a and b. For the evaluation it suffices to know the probabilities for all
inequalities of the form S, > a. Such probabilities can be estimated from the fact
that for all x as n— o

- 1 ©
2.7 P{S, > x\/n} -1 - NEx) = —\-/?TL e—3% g4y

where 9 stands for the normal distribution function defined in VIL, 1. Its nature is of
no particular interest for our present purposes. The circumstance that the limit exists

shows the important fact that for large n theratios S,/Vn are governed approximately
by the same probabilities and so the same approximation can be used for all large .

The accompanying table gives a good idea of the probable range of S,. More and
better values will be found in table 1 of chapter VII.

TABLE 1
x 0.5 1.0 1.5 2.0 2.5 3.0
P{S, > zV ;_z} 0.309 0.159 0.067 0.023 0.006 0.001

3. THE MAIN LEMMA

As we saw, the probability of a return to the origin at epoch 2» equals
the quantity u,, of (2.3). As the theory of fluctuations in random walks
began to take shape it came as a surprise that almost all formulas involved
this probability. One reason for this is furnished by the following simple
lemma, which has a mild surprise value of its own and provides the key
to the deeper theorems of the next section.

Lemma 1.° The probability that no return to the origin.occurs up to and
including epoch 2n is the same as the probability that a return occurs at
epoch 2n. In symbols,

(3.1) P{Sl#0,...,Szn?£0}=P{Szn=0}=u2n.

® The special case required in the sequel is treated separately in VII, 2 without
reference to the general binomial distribution. The proof is simple and can be inserted
at this place.

10 This lemma is obvious from the form of the generating function X f;.s%* [see
XI, (3.6)] and has been noted for its curiosity value. The discovery of its significance
is recent. For a geometric proof see problem 7.
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Here, of course, n > 0. When the event on the left occurs either all the
S, are positive, or all are negative. The two contingencies being equally
probable we can restate (3.1) in the form

(3.2) P{Sl > 0, ce ey Szn > 0} - ‘%‘U2n.

Proof. Considering all the possible values of S,,, it is clear that

(3.3) P{Sl>0,...,52n>0}=ZP{SI>0,...,Szn_1>0,52n=2r}
r=1

(where all terms with r > n vanish). By the ballot theorem the number
of paths satisfying the condition indicated on the right side equals
Non_1.2r-1 — Nap_1.9,.1, and so the rth term of the sum equals

%(P2n-—1,2r—1 - P2n—1,2r+1)-

The negative part of the rth term cancels against the positive part of the
(r+1)st term with the result that the sum in (3.3) reduces to §p, ;. It
is easily verified that p,, ; ; = u,, and this concludes the proof. >

The lemma can be restated in several ways; for example,
(3.4) P{S;>0,...,S;, 2> 0} = uy,.

Indeed, a path of length 2» with all vertices strictly above the x-axis passes
through the point (1, 1). Taking this point as new origin we obtain a path
of length 2n — 1 with all vertices above or on the new z-axis. It follows
that

(3.5 P{S;>0,...,S,, >0} =3P{S; >0, ..., Sy 1> O

But S,, ; is an odd number, and hence S,, ; > 0 implies that also
S;, > 0. The probability on the right in (3.5) is therefore the same as
(3.4) and hence (3.4) is true. (See problem 8.)

Lemma 1 leads directly to an explicit expression for the probability
distribution for the first return to the origin. Saying that a first return
occurs at epoch 2n amounts to saying that the conditions

SI#O"“’SWC#O

are satisfied for k =n — 1, but not for k = n. In view of (3.1) this
means that

(36) f2n = Ugy 2 — Ugy, n= 13 23 oo




78 RANDOM WALKS [II1.4

A trite calculation reduces this expression to

1
= u
2n — 1

(37) f2n

2ne

We have thus proved

Lemma 2. The probability that the first return to the origin occurs at
epoch 2n is given by (3.6) or (3.7).

It follows from (3.6) that f,+ f;+ -+ = 1. In the coin-tossing
terminology this means that an ultimate equalization of the fortunes
becomes practically certain if the game is prolonged sufficiently long. This
was to be anticipated on intuitive grounds, except that the great number of
trials necessary to achieve practical certainty comes as a surprise. For
example, the probability that no equalization occurs in 100 tosses is about
0.08.

4. LAST VISIT AND LONG LEADS

We are now prepared for a closer analysis of the nature of chance
fluctuations in random walks. The results are startling. According to
widespread beliefs a so-called law of averages should ensure that in a
long coin-tossing game each player will be on the winning side for about
half the time, and that the lead will pass not infrequently from one player
to the other. Imagine then a huge sample of records of ideal coin-tossing
games, each consisting of exactly 2n trials. We pick one at random and
observe the epoch of the last tie (in other words, the number of the last
trial at which the accumulated numbers of heads and tails were equal).
This number is even, and we denote it by 2k (so that 0 < k < n).
Frequent changes of the lead would imply that & is likely to be relatively
close to n, but this is not so. Indeed, the next theorem reveals the
amazing fact that the distribution of k is symmetric in the sense that any
value k has exactly the same probability as n — k. This symmetry
implies in particular that the inequalities k¥ > n/2 and k < n/2 are
equally likely.!! With probability } no equalization occurred in the second
half of the game, regardless of the length of the game. Furthermore, the
probabilities near the end points are greatest; the most probable values
for k are the extremes 0 and n. These results show that intuition leads
to an erroneous picture of the probable effects of chance fluctuations. A
few numerical results may be illuminating.

11 The symmetry of the distribution for k was found empirically by computers and
verified theoretically without knowledge of the exact distribution (4.1). See D. Blackwell,
P. Dewel, and D. Freedman, Ann. Math. Statist., vol. 35 (1964), p. 1344.
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Examples. (@) Suppose that a great many coin-tossing games are con-
ducted simultaneously at the rate of one per second, day and night, for a
whole year. On the average, in one out of ten games the last equalization
will occur before 9 days have passed, and the lead will not change during
the following 356 days. In one out of twenty cases the last equalization
takes place within 2} days, and in one out of a hundred cases it occurs
within the first 2 hours and 10 minutes.

(b) Suppose that in a learning experiment lasting one year a child was
consistently lagging except, perhaps, during the initial week. Another
child was consistently ahead except, perhaps, during the last week. Would
the two children bejudged equal? Yet, letagroup of 11 children be exposed
to a similar learning experiment involving no intelligence but only chance.
One among the 11 would appear as leader for all but one week, another as
laggard for all but one week.

The exact probabilities for the possible values of k are given by

Theorem 1. (Arc sine law for last visits.) The probability that up to and
including epoch 2n the last visit to the origin occurs at epoch 2k is given by

4.1) k=0,1,.

Kog,2n = Ugplon_ oy,

Proof. We are concerned with paths satisfying the conditions S,, = 0
and Sy #0,...,S,, 7 0. The first 2k vertices can be chosen in
2%y,, different ways. Taking the point (2k,0) as new origin and using
(3.1) we see that the next (2n—2k) vertices can be chosen in 22"y, ..
ways. Dividing by 22" we get (4.1). >

It follows from the theorem that the numbers (4.1) add to unity. The
probability distribution which attaches weight oy, 5, to the point 2k
will be called the discrete arc sine distribution of order n, because the
inverse sine function provides excellent numerical approximations. The
distribution is symmetric in the sense that oy, 5, = 05, sy 2, FOr n =2
the three values are 2, 2, 2; for n = 10 see table 2. The central term is
always smallest.

The main features of the arc sine distributions are best explained by

TABLE 2
DISCRETE ARC SINE DISTRIBUTION OF ORDER 10
k=0 k=1 k=2 k=3 k=4 k=5
k=10 k=9 k=28 k=17 k=6
Cok, 20 0.1762 0.0927 0.0736 0.0655 0.0617 0.0606
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means of the graph of the function

1
7/ 2(1—x)

Using Stirling’s formula it is seen that u,, is close to 1/+/7n, except when

I &

(4.2) flx) = 0< z< 1.

a -
| &~
\\ A
— —
% -
| | | ] I | I ! | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 08 0.9 1.0

Figure 3. Graph of f(z) =

— The construction explains the approximation
4.3). 7Va(l — x)

n is very small. This yields the approximation

@4.3) n (@), where @, =&
n n

the error committed is negligible except when k is extremely close to 0
or n. The right side equals the area of a rectangle with height f(x;)
whose basis is the interval of length 1/n centered at z, (see figure 3).
For 0 < p < ¢ <1 and large n the sum of the probabilities oy, 5, with
pn < k < gn is therefore approximately equal to the area under the graph
of f and above the interval p < x < ¢. This remains true also for p = 0
and g =1 because the total area under the graph equals unity which is
also true of the sum over all a5, Fortunately (4.2) can be integrated
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explicitly and we conclude that for fixed 0 < x < 1 and n sufficiently
large

(4.9 D Ggpan N 2 arc sin \/z

k<zgn w

approximately. Note that the right side is independent of n which means

TABLE 3

2 . -
THE CONTINUOUS ARC SINE DISTRIBUTION A(x) = — arc sin Vx
w

x A(x) z A(x) z A(x)
0.00 0.000 0.20 0.295 0.40 0.236
0.01 0.064 0.21 0.303 0.41 0.442
0.02 0.090 0.22 0.311 0.42 0.449
0.03 0.111 0.23 0.318 0.43 0.455
0.04 0.128 0.24 0.326 0.44 0.462
0.05 0.144 0.25 0.333 0.45 0.468
0.06 0.158 0.26 0.341 0.46 0.474
0.07 0.171 0.27 0.348 0.47 0.481
0.08 0.183 0.28 0.355 0.48 0.487
0.09 0.194 0.29 0.362 0.49 0.494

0.50 0.500
0.10 0.205 0.30 0.369
0.11 0.215 0.31 0.376
0.12 0.225 - 0.32 0.383
0.13 0.235 0.33 0.390
0.14 0.244 0.34 0.396
0.15 0.253 0.35 0.403
0.16 0.262 0.36 0.410
0.17 0.271 0.37 0.416
0.18 0.279 0.38 0.423
0.19 0.287 0.39 0.429

Forxz > L use A(1 —2) = 1 — A(x).

that table 3 suffices for all arc sine distributions of large order. (Actually
the approximations are rather good even for relatively small values of n.)

We saw that, contrary to popular notions, it is quite likely that in a long
coin-tossing game one of the players remains practically the whole time
on the winning side, the other on the losing side. The next theorem
elucidates the same phenomenon by an analysis of the fraction of the total
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time that the particle spends on the positive side. One feels intuitively that
this fraction is most likely to be close to 4, but the opposite is true: The
possible values close to 4 are least probable, whereas the extremes k = 0
and k = n have the greatest probability. The analysis is facilitated by the
fortunate circumstance that the theorem again involves the discrete arc
sine distribution (4.1) (which will occur twice more in section 8).
Theorem 2. (Discrete arc sine law for soj'ozu}‘%itimes.) The probability
that in the time interval from O to 2n the particle spends 2k time units on
the positive side and 2n — 2k time units on the negative side equals oy, o,

(The total time spent on the positive side is necessarily even.)

Corollary.? If 0 <z < 1,the probability that < xn time units are
spent on the positive side and 2 (1 — x)n on the negative side tends to

2 arcsin vz as n— .
T

Examples. (c) From table 4 it is seen that the probability that in
20 tossings the lead never passes from one player to the other is about
0.352. The probability that the luckier player leads 16 times or more is
about 0.685. (The approximation obtained from the corollary with
xz = % is 0.590.) The probability that each player leads 10 times is only
0.06.

(d) Let n be large. With probability 0.20 the particle spends about
97.6 per cent of the time on the same side of the origin. In one out of ten
cases the particle spends 99.4 per cent of the time on the same side.

(e) In example (a) a coin is tossed once per second for a total of 365 days.
The accompanying table gives the times ¢, such that with the stated

12 Paul Lévy [Sur certains processus stochastiques homogénes, Compositia Mathe-
matica, vol. 7 (1939), pp. 283-339] found this arc sine law for Brownian motion and
referred to the connection with the coin-tossing game. A general arc sine limit law for
the number of positive partial sums in a sequence of mutually independent random
variables was proved by P. Erdos and M. Kac, On the number of positive sums of inde-
pendent random variables, Bull. Amer. Math. Soc., vol. 53 (1947), pp. 1011-1020. The
wide applicability of the arc sine limit law appeared at that time mysterious. The
whole theory was profoundly reshaped when E. Sparre Andersen made the surprising
discovery that many facets of the fluctuation theory of sums of independent random
variables are of a purely combinatorial nature. [See Mathematica Scandinavica, vol. 1
(1953), pp. 263-285, and vol. 2 (1954), pp. 195-223.] The original proofs were exceed-
ingly complicated, but they opened new avenues of research and are now greatly
simplified. Theorem 2 was first proved by K. L. Chung and W. Feller by complicated
methods. (See sections XI1,5-6 of the first edition of this book.) Theorem 1 is new.
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probability p the less fortunate player will be in the lead for a total time
less than 7.

P 1 P Iy

0.9 153.95 days 0.3 19.89 days
0.8 126.10 days 0.2 8.93 days
0.7 99.65 days 0.1 2.24 days
0.6 75.23 days 0.05 13.5 hours
0.5 53.45 days 0.02 2.16 hours
0.4 34.85 days 0.01 32.4 minutes

>

Proof of Theorem 2. Consider paths of the fixed length 27 and denote
by bsx 2, the probability that exactly 2k sides lie above the r-axis. We
have to prove that

(4-5) b2k,2v = Kag,2v-

Now (3.4) asserts that b,, ,, = u,, and for reasons of symmetry we have
also by 5, = u,,. It suffices therefore to prove (4.5) for 1 <k <v— 1.

Assume then that exactly 2k out of the 2n time units are spent on the
positive side, and 1 < k < p— 1. In this case a first return to the origin
must occur at some epoch 2r < 2n, and two contingencies are possible.
First, the 2r time units up to the first return may be spent on the positive
side. In this case r < k < n — 1, and the section of the path beyond the
vertex (2r,0) has exactly 2k — 2r sides above the axis. Obviously the
number of such paths equals $}-2%f, - 22" 2, . 5. ,. The other
possibility is that the 2r time units up to the first return are spent on the
negative side. In this case the section beyond the vertex (2r, 0) has
exactly 2k sides above the axis, whence n — r > k. The number of such
pathsequals § - 2%7f, - 22"~%7p,, . .. Accordingly,when 1 <k <n—1

1 k ln—k
(4-6) b2k,2n = Ezf2rb2k—2'r,2n—2'r + 5 z f2'rb2k,2n—2r'
r=1 r=1

We now proceed by induction. The assertion (4.5) is trivially true for
v = 1, and we assume it to be true for » < n — 1. Then (4.6) reduces to

k n—k
4.7) b2k,2n = %Uzn—zk zf2ru2k—2r + duy, zf2ru2n——2k—2r'
r=1 r=1

In view of (2.6) the first sum equals wu,, while the second equals u,,, o.
Hence (4.5) is true also for » = n. i
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[A paradoxical result connected with the arc sine law is contained in
problem 4 of XIV,9.]

*§. CHANGES OF SIGN

The theoretical study of chance fluctuations confronts us with many
paradoxes. For example, one should expect naively that in a prolonged
coin-tossing game the observed number of changes of lead should increase
roughly in proportion to the duration of the game. In a game that lasts
twice as long, Peter should lead about twice as often. This intuitive
reasoning is false. We shall show that, in a sense to be made precise, the

number of changes of lead in n trials increases only as +/n: in 100n
trials one should expect only 10 times as many changes of lead as in n
trials. This proves once more that the waiting times between successive
equalizations are likely to be fantastically long. “

We revert to random walk terminology. A change of sign is said to
occur at epoch n if S, ; and S,,; are of opposite signs, that is, if the
path crosses the axis. In this case S, = 0, and hence 7 is necessarily an
even (positive) integer.

Theorem 1.* The probability &, ,,.1 that up to epoch 2n + 1 there
occur exactly r changes of sign equals 2py, .1 5,11. In other words

(5.1) 57..2”_*_1 = 2P{S2n+1 == 2r + 1}, r = O, 1, PR

Proof. We begin by rephrasing the theorem in a more convenient
form. If the first step leads to the point (1, 1) we take this point as the
origin of a new coordinate system. To a crossing of the horizontal axis
in the old system there now corresponds a crossing of the line below the
new axis, that is, a crossing of the level —1. An analogous procedure is
applicable when S; = —1, and it is thus seen that the theorem is fully
equivalent to the following proposition: The probability that up to epoch
2n the level —1 is crossed exactly r times equals 2py,.; 0,41-

Consider first the case r = 0. To say that the level —1 has not been
crossed amounts to saying that the level —2 has not been touched (or
crossed). In this case S,, is a non-negative even integer. For k > 0 we
conclude from the basic reflection lemma of section 1 that the number of
paths from (0, 0) to (2n, 2k) that do touch the level —2 equals the
number of paths to (2n, 2k + 4). The probability to reach the point

* This section is not used explicitly in the sequel.
13 For an analogous theorem for the number of returns to the origin see problems 9-10.
For an alternative proof see problem 11.
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(2n, 2k) without having touched the level —2 is therefore equal to
Pan.2k — Pan2ria- 1he probability that the level —2 has not been touched
equals the sum of the quantities for £ =0, 1,2,.... Most terms cancel,
and we find that our probability equals p,, o + ps,... This proves the
assertion when r = 0 because

(5.2) : Peniia = %(Pzn,o+P2n,2)

as is obvious from the fact that every path through (2n + 1,1) passes
through either (2n, 0) or (2n, 2).

Next let r = 1. A path that crosses the level —1 at epoch 2v — 1
may be decomposed into the section from (0, 0) to (2v, —2) and a path
of length 2n — 2v starting at (2», —2). To the latter section we apply the
result for r = 0 but interchanging the roles of plus and minus. We
conclude that the number of paths of length 2n — 2w starting at (2v, —2)
and not crossing the level —1 equals the number of paths from (2v, —2)
to (2n 4+ 1, —3). But each path of this kind combines with the initial
section to a path from (0, 0) to (2n + 1, —3). It follows that the number
of paths of length 2n that cross the level —1 exactly once equals the
number of paths from the origin to (2n + 1, —3), thatis, 22"*'p,, ., .
This proves the assertion for r = 1.

The proposition with arbitrary r now follows by induction, the argu-
ment used in the second part of the proof requiring no change. (It was
presented for the special case r = 1 only to avoid extra letters.) >

An amazing consequence of the theorem is that the probability &, ,
of r changes of sign in n trials decreases with r:

(53) fo,n Z fl,n > 52,7; > e

This means that regardless of the number of tosses, the event that the lead
never changes is more probable than any preassigned number of changes.

Examples. (a) The probabilities z, for exactly r changes of sign in
99 trials are as follows:

r z, r x,
0 0.1592 7 0.0517
1 0.1529 8 0.0375
2 0.1412 9 0.0260
3 0.1252 10 0.0174
4 0.1066 11 0.0111
5 0.0873 12 0.0068
6 0.0686 13 0.0040
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(b) The probability that in 10,000 trials no change of sign occurs is about
0.0160. The probabilities x, for exactly r changes decrease very slowly;
for r = 10, 20, 30 the values are z, = 0.0156, 0.0146, and 0.0130. The
probability that in 10,000 trials the lead changes at most 10 times is about
0.0174; in other words, one out of six such series will show not more than
10 changes of lead. >

A pleasing property of the identity (5.1) is that it enables us to apply the normal
approximation derived in section 2. Suppose that 7 is large and = a fixed positive

number. The probability that fewer than aV'n changes of sign occur before epoch n

is practically the same as 2P{S, < 2:c_\/r—z }, and according to (2.7) the last probability
tends to N(2x) — } as n — o0/ We have thus

Theorem 2. (Normal approximation.) The probability that fewer than zV'n changes
of sign occur before epoch n tends to 2R(2x) — 1 as n — co.

It follows that the median for the number of changes of sign is about 0.337\/1_1;
this means that for n sufficiently large it is about as likely that there occur fewer than

0.337Vn changes of sign than that occur more. With probability +'5 there will be fewer
than 0.0628V'n changes of sign, etc.!4

A 6. AN EXPERIMENTAL ILLUSTRATION

Figure 4 represents the result of a computer experiment simulating
10,000 tosses of a coin; the same material is tabulated in example I, (6.c).
The top line contains the graph of the first 550 trials; the next two lines
represent the entire record of 10,000 trials the scale in the horizontal
direction being changed in the ratio 1:10. The scale in the vertical
direction is the same in the two graphs.

When looking at the graph most people feel surprised by the length of
the intervals between successive crossings of the axis. As a matter of fact,
the graph represents a rather mild case history and was chosen as the
mildest among three available records. A more startling example is
obtained by looking at the same graph in the reverse direction; that is,
reversing the order in which the 10,000 trials actually occurred (see section
8). Theoretically, the series as graphed and the reversed series are equally
legitimate as representative of an ideal random walk. The reversed random

14 This approximation gives +'s for the probability of at most 6 equalizations in 10,000
trials. This is an underestimate, the true value being about 0.112.
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-

walk has the following characteristics. Starting from the origin

the path stays on the

negative side positive side
for the first 7804 steps next 8 steps
next 2 steps next 54 steps
next 30 steps next 2 steps
next 48 steps next 6 steps
next 2046 steps
Total of 9930 steps Total of 70 steps
Fraction of time: 0.993 Fraction of time: 0.007

This looks absurd, and yet the probability that in 10,000 tosses of a
perfect coin the lead is at one side for more than 9930 trials and at the
other for fewer than 70 exceeds 5. In other words, on the average one
record out of ten will look worse than the one just described. By contrast,
the probability of a balance better than in the graph is only 0.072.

The original record of figure 4 contains 78 changes of sign and 64 other
returns to the origin. The reversed series shows 8 changes of sign and 6
other returns to the origin. Sampling of expert opinion revealed that even
trained statisticians expect much more than 78 changes of sign in 10,000
trials, and nobody counted on the possibility of only 8 changes of sign.
Actually the probability of not more than 8 changes of sign exceeds 0.14,
whereas the probability of more than 78 changes of sign is about 0.12.
As far as the number of changes of sign is concerned the two records stand
on a par and, theoretically, neither should cause surprise. If they seem
startling, this is due to our faulty intuition and to our having been exposed
to too many vague references to a mysterious “law of averages.”

7. MAXIMA AND FIRST PASSAGES

Most of our conclusions so far are based on the basic lemma 3.1, which
in turn is a simple corollary to the reflection principle. We now turn our
attention to other interesting consequences of this principle.

Instead of paths that remain above the z-axis we consider paths that
remain below the line x = r, that is, paths satisfying the condition

(7.1) S, <r, S, <r,..., S5, <r.

We say in this case that the maximum of the pathis < r. (The maximum
is >0 because S, =0.) Let 4 =(nk) be a point with ordinate
k <r. A path from 0 to A touches or crosses the line z=r if it
violates the condition (7.1). By the reflection principle the number of such
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paths equals the number of paths from the origin to the point 4’ =
= (n, 2r — k) which is the reflection of 4 ontheline x = r. This proves

Lemma 1. Let k< r. The probability that a path of length n leads
to A = (n, k) and has a maximum > r equals p, ,,_, = P{S, = 2r — k}.

The probability that the maximum equals r is given by the difference
Pr.2r—ic — Pn.2ri2—x Summing over all k <r we obtain the probability
that an arbitrary path of length » has a maximum exactly equal to r.
The sum is telescoping and reduces to p, , + p,.,+1. Now p, . vanishes
unless # and r have the same parity, and in this case p, .., = 0. We
have thus

Theorem 1. The probability that the maximum of a path of length n
equals r > 0 coincides with the positive member of the pair p, . and

Pn,'r+1'

For r = 0 and even epochs the assertion reduces to
(7’2) P{SISO’S2SO"°°’S2nSO}=u2n'

This, of course, is equivalent to the relation (3.4) which represents one
version of the basic lemma. Accordingly, theorem 1 is a generalization of
that lemma.

We next come to a notion that plays an important role in the general
theory of stochastic processes. A first passage through the point r > 0 is
said to take place at epoch n if

(7.3) S, <r,...,S,,.<r, S,=r.

In the present context it would be preferable to speak of/a first visit, but
the term first passage, which originates in the physical literature, is well
established; furthermore, the term visit is not applicable to continuous
processes.

Obviously a path satisfying (7.3) must pass through (n — 1,r — 1) and
its maximum up to epoch n — 1 must equal r — 1. We saw that the
probability for this event equals p,_;.,.1 — Pn_1,r+1» and so we have

Theorem 2. The probability ¢, , that the first passage through r occurs
at epoch n is given by

(74) DPr,n = %[Pn—l.'r-—l _Pn—1.7‘+1]'

A trite calculation shows that

n
(75) (p'r,n = £<n+r>2—"
n
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[as always, the binomial coefficient is to be interpreted as zero if (n+r)/2
is not an integer]. For an alternative derivation see section 8.b.

The distribution (7.5) is most interesting when r is large. To obtain the probability
that the first passage through r occurs before epoch N we must sum ¢, , over all
n < N. It follows from the normal approximation (2.7) that only those terms will
contribute significantly to the sum for which r*/n is neither very large nor very close
to 0. For such terms the estimates of VII, 2 provide the approximation

(76) Pron ~ \/%‘ "‘—":‘: e——r2/2n .
T 3

In the summation it must be borne in mind that » must have the same parity as r.
The sum is the Riemann sum to the integral in (7.7), and one is led to

Theorem 3. (Limit theorem for first passages.) For fixed t the probability that the
first passage through r occurs before epoch tr* tends to'®

(7.7) \/Ef e~ ds = 2[1 - m(L_)]
v V't

as r — oo, where N is the normal distribution defined in VI11,1.

It follows that, roughly speaking, the waiting time for the first passage through r
increases with the square of r: the probability of a first passage after epoch $r* has a
probability close to 3. It follows that there must exist points k& < r such that the
passage from k to k -+ 1 takes a time longer than it took to go from 0 to .

The distribution of the first-passage times leads directly to the distribu-
tion of the epoch when the particle returns to the origin for the rth time.

Theorem 4. The probability that the rth return to the origin occurs at
_epoch n is given by the quantity ¢, ,_, of (1.5).

In words: An rth return at epoch n has the same probability as a first
passage through r at epoch n —r.

Proof.’® Consider a path from the origin to (1, 0) with all sides below
the axis and exactly r — 1 interior vertices on the axis. For simplicity
we shall call such a path representative. (Figure 5 shows such a path with
n =20 and r =5.) A representative path consists of r sections with
endpoints on the axis, and we may construct 2" different paths by assign-
ing different signs to the vertices in the several sections (that is, by mirroring
sections on the axis). In this way we obtain all paths ending with an rth
return, and thus there are exactly 2" times as many paths ending with an
rth return at epoch n as there are representative paths. The theorem may

15(7.7) defines the so-called positive stable distribution of order 4. For a general-
ization of theorem 3 see problem 14 of XI1V,9.
1% For a proof in terms of generating functions see XI,(3.17).
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be therefore restated as follows: There are exactly as many representative
paths of length 7 as there are paths of length n — r ending with a first
passage through r. This is so, because if in a representative path we delete
the r sides whose left endpoints are on the axis we get a path of length
n —r ending with a first passage through r. This procedure can be
reversed by inserting r sides with negative slope starting at the origin and
the r — 1 vertices marking the first passages through 1,2,...,r — 1.
See figure 5. - b

( g ) ? ! o g -g \eufi & | 2

<
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]/LX) \\ /o~ ;
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Figure 5. Illustrating first passages and returns to the origin.

It follows that the limit theorem for first returns is also applicable to
rth returns as r-— co: the probability that the rth return to the origin
occurs before epoch tr? tends to the quantity (7.7).

This result reveals another unexpected feature of the chance fluctuations
inrandom walks. In the obvious sense the random walk starts from scratch
every time when the particle returns to the origin. The epoch of the rth
return is therefore the sum of r waiting times which can be interpreted as
‘““measurements of the same physical quantity under identical conditions.”
It is generally believed that the average of r such observations is bound to
converge to a ‘“‘true value.” But in the present case the sum is practically
certain to be of the order of magnitude r%, and so the average increases
roughly in proportion to r. A closer analysis reveals that one among the
r waiting times is likely to be of the same order of magnitude as the whole
sum, namely 2. In practice such a phenomenon would be attributed to an
““experimental error’” or be discarded as ‘““outlier.”” It is difficult to see
what one does not expect to see.

8. DUALITY. POSITION OF MAXIMA

Every path corresponds to a finite sequence of plus ones and minus ones,
and reversing the order of the terms one obtains a new path. Geometrically




92 RANDOM WALKS [1I1.8

the new path is obtained by rotating the given path through 180 degrees
about its right endpoint, and taking the latter as origin of a new coordinate
system. To every class of paths there corresponds in this way a new class
of the same cardinality. If the steps of the original random walk are
X, X,, . .., X,, then the steps of the new random walk are defined by

(8.1) X' =X,...,X=X,.

The vertices of the new random walk are determined by the partial sums

(8.2) S =X+ +X;=S,—-S,,

(whence Sf = 0 and S¥ = S,). We shall refer to this as the dual random
walk. To every event defined for the original random walk there cor-
responds an event of equal probability in the dual random walk, and in
this way almost every probability relation has its dual. This simple method
of deriving new relations is more useful than might appear at first sight.
Its full power will be seen only in volume 2 in connection with general
random walks and queuing theory, but even in the present context we can
without effort derive some interesting new results.

To show this we shall review a few pairs of dual events, listing in each
case the most noteworthy aspect. In the following list »n is considered
given and, to simplify language, the endpoint (n, S,) of the path will be
called terminal point. 1t is convenient to start from known events in the
dual random walk. ‘

(a) First-passage times. From (8.2) it is clear that the events defined,
respectively, by

(8.3) ST >0, i=12,...,n,
and
(8.4) S, > S, j=01,...,n—1

are dual to each other. The second signifies that the terminal point was not
visited before epoch n. We know from (3.2) that the first event has prob-
ability 3u,, when n = 2v > 0 iseven; for n =2v + 1 the probability
is the same because S¥ > 0 implies S ., > 0. Accordingly, the prob-
ability that a first passage through a positive point takes place at epoch n
equals Lu,, where v = 3n or v = §(n—1). (This is trivially true also
for n =1, but false for n = 0.) The duality principle leads us here to
an interesting result which is not easy to verify directly.

(b) Continuation. In the preceding proposition the terminal point was
not specified in advance. Prescribing the point r of the first passage means
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supplementing (8.4) by the condition S, = r. The dual event consists of
the path from the origin to (n, r) with all intermediate vertices above the
axis: The number of such paths follows directly from the reflection lemma
[with 4 = (1,1) and B = (n, r)], and we get thus a new proof for (7.4).

(¢) Maximum at the terminal point. A new pair of dual events is defined
when the strict inequalities > in (8.3) and (8.4) are changed to >. The
second event occurs whenever the term S, is maximal even when this
maximum was already attained at some previous epoch.!” Referring to
(3.4) one sees that the probability of this event equals u,, where v = n or
v = §(n+1). It is noteworthy that the probabilities are twice the prob-
abilities found under (a).

(d) The event that k returns to the origin have taken place is dual to the
event that k visits to the terminal point occurred before epoch n. A
similar statement applies to changes of sign. (For the probabilities see
section 5 and problems 9-10.)

(e) Arc sine law for the first visit to the terminal point. Consider a
randomly chosen path of length n = 2v. We saw under (@) that with
probability {u,, the value S,, is positive and such that no term of the
sequence S, S;,...,S,, ; equals S,,. The same is true for negative
S.,, and hence the probability that the value S,, is not attained before
epoch 2v equals u,,; this is also the probability of the event that S,, = 0
in which the terminal value is attained already at epoch 0. Consider now
more generally the event that the first visit to the terminal point takes place
at epoch 2k (in other words, we require that S,, = S,, but S;% S,, for
J < 2k). This is the dual to the event that the last visit to the origin took
place at epoch 2%, >fnd Wesaw in section 4 that such visits are governed by
the discrete arE'éine distribution. We have thus the unexpected result
that with probability o o, = Uy Uy, o, the first visit to the terminal point
S,, took place at epoch2v—2k (k =0, 1, .., »). It follows, in particular,
that the epochs 2k and 2v — 2k are equally probable. Furthermore, very
early and very late first visits are much more probable than first visits at
other times.

(f) Arc sine law for the position of the maxima. As a last example of the
usefulness of the duality principle we show that the results derived under
(@) and (¢) yield directly the probability distribution for the epochs at which
the sequence S,, S;, ..., S, reaches its maximum value. Unfortunately
the maximum value can be attained repeatedly, and so we must distinguish

7 In the terminology used in chapter 12 of volume 2 we are considering a weak
ladder point in contrast to the strict ladder points treated under (a).
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between the first and the last maximum. The results are practically the
same, however.

For simplicity let n = 2v be even. The first maximum occurs at epoch
k if

(8.52) Se<S,  ....S.1<S,
(85b) Sk+1 S Ska s s S2v S Sk

Let us write k in the form k = 2p or k= 2p 4 1. According to (a)
the probability of (8.5a) equals }u,,, except when 8= 0. The event
(8.5b) involves only the section of the path following the epoch k and
its probability obviously equals the probability that in a path of length
2v — k all vertices lie below or on the r-axis. It was shown under (c¢)
that this probability equals u,, 5,. Accordingly, if 0 < k < 2v the prob-
ability that in the sequence S,, . . ., S,, the first maximum occurs at epochs
k=2p or k=2p + 1 is given by dus,us, 5, For k =0 and k = 2v
the probabilities are u,, and %u,,, respectively.

(For the /ast maximum the probabilities for the epochs 0 and 2v are
interchanged; the other probabilities remain unchanged provided k is
written in the form & =2p or k. =2p — 1.)

We see that with a proper pairing of even and odd subscripts the position
of the maxima becomes subject to the discrete arc sine distribution. Con-
trary to intuition the maximal accumulated gain is much more likely to
occur towards the very beginning or the very end of a coin-tossing game
than somewhere in the middle.

9. AN EQUIDISTRIBUTION THEOREM

We conclude this chapter by proving the theorem mentioned in connec-
tion with Galton’s rank order test in example (1.5). It is instructive in that
it shows how an innocuous variation in conditions can change the character
of the result.

It was shown in section 4 that the number of sides lying above the z-axis
is governed by the discrete arc sine distribution. We now consider the same
problem but restricting our attention to paths leading from the origin to a
point of the x-axis. The result is unexpected in itself and because of the
striking contrast to the arc sine law.

Theorem. The number of paths of length 2n such that S,, =0 and
exactly 2k of its sides lie above the axis is independent of k and equal to
22Uy, [(n41) = 227+.f, .. (Here k=0,1,...,n)
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Proof. We consider the cases k =0 and k =n separately. The
number of paths to (2n,0) with all sides above the wz-axis equals the
number of paths from (1, 1) to (2n, 0) which do not touch the line directly
below the z-axis. By the reflection principle this number equals

©.1) (2}1—1) _ (2n—1) 1 (2n)
n n+1 n+1

This proves the assertion for k = n and, by symmetry, also for k = 0.

For 1 <k <n—1 we use induction. The theorem is easily verified
when n = 1, and we assume it correct for all paths of length less than 2n.
Denote by 2r the epoch of the first return. There are two possibilities.
If the section of the path up to epoch 2r is on the positive side we must
have 1 < r < k and the second section has exactly 2k — 2r sides above

the axis. By the induction hypothesis a path satisfying these conditions
can be chosen in

22n—2r 2271.—2

9.2 Yy = —
9.2) 12 ot 1T Kt D)

Uar_oUsp_or

different ways. On the other hand, if the section up to the first return to the
origin is on the negative side, then the terminal section of length 2n — 2r
contains exactly 2k positive sides, and hence in this case n — r > k.
For fixed r the number of paths satisfying these conditions is again given
by (9.2). Thus the numbers of paths of the two types are obtained by
summing (9.2) over 1 <r<k and 1 <r<n—k, respectively. In
the second sum change the summation index r to p =n + 1 — r. Then
p runsfrom k + 1 to n, and the terms of the sum are identical with (9.2)
when r isreplaced by p. It follows that the number of paths with k posi-
tive sides is obtained by summlng (9.2) over 1 < r < n. Since k does not
appear in (9.2) the sum is independent of k as asserted. Since the total
number of paths is 2%"u,, this determines the number of paths in each
category. (For a direct evaluation see problem 13.) >

An analogous theorem holds also for the position of the maxima. (See
problem 14.)

10. PROBLEMS FOR SOLUTION

1. (@) If a >0 and b > 0, the number of paths (s, S5, ..., s,) such that
s> —b,...,8%_41> —b,s, =a equals N, , — N, g, 0.

(b) If b > a > 0 there are N, , — N, q-, paths satisfying the conditions
s1<b,...,s5,4<b,s, =a.

2. Let a>c >0 and b > 0. The number of paths which touch the line
xz = q and then lead to (n, ¢) without having touched the line * = —b equals
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Np.2a—c = Np,2aq204c- (Note that this includes paths touching the line = = —b
before the line = = a.)

3. Repeated reflections. Let a and b be positive, and —b < ¢ < a. The
number of paths to the point (n, ¢) which meet neither the line # = —b nor
z = a is given by the series

Z (Nn.2k(a+b)+c - n.2k(a+b)+2a—c)a

the series exténding over all integers k& from — o to o, but having only finitely
many non-zero terms.
Hint: Use and extend the method of the preceding problem.

Note. This is connected with the so-called ruin problem which arises in
gambling when-the two players have initial capitals a and b so that the game
terminates when the accumulated gain reaches either @ or —b. For the
connection with statistical tests, see example (1.c).

(The method of repeated reflections will be used again in problem 17 of
XIV,9 and in connection with diffusion theory in volume 2; X,5.)

4. From lemma 3.1 conclude (without calculations) that

Uglon + Uglop o + *° ° + Ugply = 1.

—(—1)"( ) f2n=<—1)n—1(i).

Derive the identity of the preceding problem as well as (2.6) from II, (12.9).

6. Prove geometrically that there are exactly as many paths ending at
(2n + 2,0) and having all interior vertices strictly above the axis as there are
paths endlng at (2n, 0) and having all vertices above or on the axis. Therefore
P{S; >0,...,S5, 3 >0,S,, =0} =2fp,.5.

Hint: Refer to figure 1.

7. Prove lemma 3.1 geometrically by showing that the following construc-
tion establishes a one-to-one correspondence between the two classes of paths:

Given a path to (2n, 0) denote its leftmost minimum point by M = (k, m).
Reflect the section from the origin to M on the vertical line ¢+ = k& and slide
the reflected section to the endpoint (2n,0). If M is taken as origin of a
new coordinate system the new path leads from the origin to (2n, 2m) and has
all vertices strictly above or on the axis. (This construction is due to E. Nelson.)

8. Prove formula (3.5) directly by considering the paths that never meet the
line x = —1.

9. The probability that before epoch 2n there occur exactly r returns to
the origin equals the probability that a return takes place at epoch 2n and is
preceded by at least r returns. Hint: Use lemma 3.1.

10. Continuation. Denote by z,,, the probability that exactly r returns to
the origin occur up to and including epoch 2n. Using the preceding problem
show that z, 5, = p.on + pri1,2n + * - Where p, o, is the probability that the
rth return occurs at epoch 2n. Using theorem 7.4 conclude that

1 2n—r
zr'2n = 52—71—:-1-_ * n .

5. Show that

wlr—a
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11. Alternative derivation for the probabilities for the number of changes of sign.
Show that

1 n=1
5r.2n—1 = 5 zlfzk[ér—1.2n—1—2k + 5r,2n—1—2k]-
k=

Assuming by induction that (5.1) holds for all epochs prior to 2n — 1 show
that this reduces to

n—1
‘;r.2n—1 =2 z f2kp2n—2k.2r
1

which is the probability of reaching the point (2n, 2r) after a return to the origin.
Considering the first step and using the ballot theorem conclude that (5.1) holds.

12. The probability that S,, = 0 and the maximum of S,, ..., S;,_; equals
k is the same as P{S,, = 2k} — P{S,, = 2k + 2}. Prove this by reflection.

13. In the proof of section 9 it was shown that

n 1 1
7;1 r—(n"_r—_H) Ugr_oUopn or = 7+ 1 Uap.

Show that this relation is equivalent to (2.6). Hint: Decompose the fraction.

14. Consider a path of length 2n with S,, =0. We order the sides in
circular order by identifying 0 and 2n with the result that the first and the
last side become adjacent. Applying a cyclical permutation amounts to viewing
the same closed path with (k, S;) as origin. Show that this preserves maxima,
but moves them k steps ahead. Conclude that when all 2n cyclical permuta-
tions are applied the number of times that a maximum occurs at r is independent
of r.

Consider now a randomly chosen path with S,, =0 and pick the place of
the maximum if the latter is unique; if there are several maxima, pick one at
random. This procedure leads to a number between 0 and 2n — 1. Show
that all possibilities are equally probable.




