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NOTES AND DISCUSSIONS

Comment on “Not all counterclockwise thermodynamic cycles
are refrigerators” [Am. J. Phys. 84, 413–418 (2016)]

Jo~ao P. S. Bizarroa)

Instituto de Plasmas e Fus~ao Nuclear, Instituto Superior T�ecnico, Universidade de Lisboa, 1049-001 Lisboa,
Portugal

(Received 17 June 2016; accepted 17 September 2017)

Contrary to what Dickerson and Mottmann [Am. J. Phys. 84, 413–418 (2016)] state, the

temperatures at which a refrigerator’s working fluid absorbs heat need not always lie below those

at which it expels heat; nor must a refrigerator’s thermodynamic cycle have two adiabats.

Moreover, what Dickerson and Mottmann call a “comparison Carnot cycle” cannot always be

defined. These conclusions are illustrated here using a counter-clockwise Stirling cycle without

regeneration. A refrigerator’s cold reservoir can absorb some heat and its hot reservoir can expel

some heat, so long as the net heat flow is still out of the cold reservoir and into the hot reservoir.
VC 2017 American Association of Physics Teachers.
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I. INTRODUCTION

In a recent article in this journal,1 Dickerson and
Mottmann (D&M) stressed the fact that not all counterclock-
wise (CCW) thermodynamic cycles represent refrigerators.
However, some of the criteria that D&M suggested to be
necessary for a working refrigerator are too stringent.
Specifically, it is not true that the range of temperatures over
which the working fluid absorbs heat must be entirely below
the range of temperatures over which it expels heat; nor is it
true that a refrigeration cycle must employ two adiabats. As
explained below, a simple Stirling refrigerator (i.e., one
employing no heat regeneration) provides a counter-example
to both of these criteria.2

The flaw in D&M’s analysis is the assumption that a
refrigerator’s working fluid can extract heat only from the
cold reservoir and reject heat only to the hot reservoir. The
correct statement, instead, is that over the course of a full
cycle the cold reservoir must have given up a net amount of
heat (and therefore, necessarily, the hot reservoir must have
absorbed a net amount of heat). Much of the analysis in
D&M’s paper remains valid, and it is especially important to
understand their point that in many refrigeration cycles the
extreme temperatures are not the same as (or even close to)
the reservoir temperatures.

II. THE CCW STIRLING CYCLE

Consider the quasistatic CCW Stirling cycle shown in Fig.
1. The working fluid is n moles of an ideal gas, with a con-
stant molar specific heat CV. Its volume varies from Vmin to
Vmax and it is alternately in thermal contact with reservoirs at
temperatures T in and T out (there is no regenerator). The cycle
consists of four steps, with heat transfers that can be written
in terms of the preceding variables and the gas constant R:

• a ! b, an isothermal expansion from Vmin to Vmax with
the fluid in contact with the cold reservoir, from which
heat Q�in ¼ nRT inlnðVmax=VminÞ is extracted;

• b! c, an isochoric heating from T in to T out with the fluid
in contact with the hot reservoir, from which heat Q� ¼
nCVðT out � T inÞ is extracted;

• c! d, an isothermal compression from Vmax to Vmin with
the fluid in contact with the hot reservoir, to which heat
Q�out ¼ nRT outlnðVmax=VminÞ is rejected; and

• d! a, an isochoric cooling from T out to T in with the fluid
in contact with the cold reservoir, to which heat Q� ¼
nCVðT out � T inÞ is rejected.

Fig. 1. A CCW Stirling cycle. The working fluid is in contact with the cold

reservoir along d ! a ! b, and with the hot reservoir along b ! c ! d.

The dashed lines are continuations of the two isotherms. Also sketched to

the right is a CCW “comparison Carnot cycle” that utilizes the same two

reservoirs.
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Note that the reservoirs with which the fluid is in contact dur-
ing the isochors b! c and d! a are such that heat spontane-
ously “flows downhill,” consistently with the second law.3

The net amount of heat extracted from the cold reservoir
is Qin ¼ Q�in � Q�, while the net amount of heat rejected to
the hot reservoir is Qout ¼ Q�out � Q�, so the coefficient of
performance (COP) for the CCW Stirling cycle is

KStirling ¼
Qin

W
¼ Qin

Qout � Qin

¼ Q�in � Q�

Q�out � Q�in

¼ 1� Q�

Q�in

� �
KCarnot; (1)

where W is the net work delivered to the fluid in a cycle and
KCarnot ¼ T in=ðT out � T inÞ is the COP for a CCW Carnot
cycle operating between the same reservoir temperatures
(also sketched in Fig. 1). Note also that T out > T in entails
Q�out > Q�in and that, since Q�out and Q�in obey the Carnot-like
relation Q�out=T out ¼ Q�in=T in, the net entropy produced in a
single cycle can be written

DSStirling ¼
1

T in

� 1

T out

� �
Q�: (2)

This last result clearly shows that irreversibility in a quasi-
static Stirling cycle arises from heat exchanges over finite
temperature differences, and corresponds to a net transfer of
heat from T out to T in. This effect can be viewed as the
equivalent of a heat leak between the two reservoirs and
would vanish if the Stirling refrigerator used a regenerator
(so that Q* would not have to be moved from the hot to the
cold reservoir).

As a refrigerator, the CCW Stirling cycle has to effec-
tively extract heat from the cold reservoir T in (i.e., the
“freezer”) while rejecting heat to the hot reservoir T out (i.e.,
the “kitchen”). Hence Qin> 0, or Q�in > Q�, must apply,
which implies Q�out > Q�, or Qout> 0, ensuring not only that
KStirling> 0 but also that KStirling<KCarnot, in accordance
with the second law. This CCW Stirling cycle represents a
refrigerator where neither are the temperatures over which
the fluid absorbs heat entirely below the temperatures over
which it rejects heat, nor are there any adiabats, thus contra-
dicting D&M.

If Q� > Q�out instead of Q�in > Q�, so Q� > Q�in also, then
Qin< 0 and Qout< 0 both follow and the CCW Stirling cycle
no longer represents a refrigerator but is instead what D&M
refer to as a “cold pump,” a device that uses work to help
move heat from a hot to a cold reservoir.4

In the intermediate case Q�out � Q� � Q�in, so Qin� 0 and
Qout� 0, the CCW Stirling cycle describes neither a refriger-
ator nor a “cold pump”, but a device that takes work and
delivers heat to both reservoirs (or to a single reservoir if one
of the equalities applies). This device, which converts work
integrally into heat (i.e., a heater), can be named a “Joule
pump” in memory of Joule’s famous paddle-wheel experi-
ment.5,6 D&M’s statement that all CCW cycles can be
divided into two categories, refrigerators and “cold pumps”,
is thus contradicted, as has been reported previously.2 Note
that the CCW Stirling “Joule pump” does not admit what
D&M call a “comparison Carnot cycle,” as none of the reser-
voirs has heat extracted from it in this mode of operation
(i.e., there is no freezer). The usefulness of a comparison
Carnot cycle to distinguish between the different types of

devices represented by CCW cycles is thus limited, inas-
much as the net heat flows to and from the reservoirs have to
be worked out (which immediately identifies the device)
before one can ascertain the direction of the “comparison
Carnot cycle”.

Figure 2 summarizes the three possible modes of opera-
tion of a CCW Stirling cycle, i.e., Q�in > Q� (refrigerator or
heat pump), Q� > Q�out (“cold pump”), and Q�out � Q� � Q�in
(“Joule pump”).7 All three modes are consistent with the first
and second laws, and all three can be achieved through dif-
ferent choices of the temperature ratio T out=T in and the
expansion ratio Vmax/Vmin. For example, if T out ¼ 2T in and
CV¼ 5R/2, the cycle represents a refrigerator if lnðVmax=
VminÞ > 5=2, a “cold pump” if lnðVmax=VminÞ < 5=4, and a
“Joule pump” at intermediate values of the expansion ratio.
All three cases are represented by a diagram similar to that
of Fig. 1, with varying isotherm locations and lengths. Note
that, with KStirling� 0 for “cold pumps” and “Joule pumps”,
the COP condition 0<KStirling<KCarnot provides a solid,
quantitative criterion to discriminate between Stirling refrig-
erators and the other CCW Stirling cycles. Moreover, a simi-
lar analysis, with CV replaced by CP¼CVþR, can be
applied to the CCW Ericsson cycle (formed by two iso-
therms and two isobars).

III. REFRIGERATION CYCLES IN GENERAL

CCW cycles with two adiabats or two isotherms can repre-
sent refrigerators, examples of the former being the CCW
Otto, Diesel, Brayton, and Atkinson cycles, and of the latter
the CCW Stirling and Ericsson cycles.2 However, neither
adiabats nor isotherms are a necessity for refrigeration. In
fact, there is no need for the expansion process a! b in Fig.
1 to be isothermal, as long as the temperature of the working
fluid does not go above T in and the amount of heat d-Q
absorbed by the fluid at each point is never negative, thus
ensuring heat does “flow downhill” and from the “freezer”
into the fluid. For n moles of an ideal gas with constant
specific-heat ratio c¼CP/CV, these two conditions imply
PV=nR � T in and dP/dV � �cP/V for the corresponding
curve P(V). The last inequality means that the slope of such
a P(V) curve at each point never lies below that of the adia-
bat through the same point, and stems from imposing8–11

Fig. 2. Three possible modes of operation of a CCW Stirling cycle: (a) a

refrigerator or heat pump, (b) a “cold pump”, and (c) a “Joule pump”.
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d-Q ¼ nCV dT þ P dV ¼ CV

R
cP dV þ V dPð Þ � 0: (3)

A similar discussion applies, mutatis mutandi, to the com-
pression process c ! d, during which PV=nR � T out and
dP/dV � �cP/V must simultaneously hold, if heat is indeed
to be transferred from the fluid to the “kitchen”.12

Each of the two curves replacing, slightly below or above,
the isotherms in such a modified CCW Stirling cycle has
their endpoints at the same temperature, so the respective
change in internal energy is zero and the work delivered or
received by the ideal gas during the process must equal the
heat absorbed from, or expelled to the cold or hot reservoir,
respectively. For the expansion curve lying below the T in

isotherm, but joining it at the endpoints, the heat extracted
from the “freezer” (the area under the a ! b curve) is less
than Q�in in the CCW Stirling cycle, while the total work input
(the area enclosed by the cycle) is larger, thus leading to a
COP for the modified cycle smaller than the original KStirling.
Although it is less efficient than the original CCW Stirling
cycle, the modified CCW cycle just described is indeed a
refrigerator, but has neither adiabats (once again contradicting
D&M) nor isotherms. For instance, the isotherms in Fig. 1 can
be replaced with stepwise, stair-like P(V) curves formed by a
succession of alternating short adiabats and isochors.

Refrigeration (or heat pumping) requires that, in a cyclic
manner, a working fluid be put in thermal contact with a
“freezer” and a “kitchen”, from and to which, respectively, it
must extract and give off heat. Suppose the fluid has just fin-
ished expelling heat to the “kitchen” and must come subse-
quently into contact with the “freezer”; there are many ways
of doing this, as long as it is guaranteed that the fluid does
absorb some heat Q�in from the “freezer” somewhere along
the process. For the rest of the process the “freezer” may
eventually draw heat from the fluid in some quantity Q�cold

(Q�cold ¼ Q� in Fig. 1), provided Q�cold < Q�in so the net heat
rejected to the fluid is Qin ¼ Q�in � Q�cold > 0. Similarly
when, after extracting heat from the “freezer”, the fluid
comes into contact with the “kitchen”: during this process
the fluid must effectively expel some heat Q�out to the
“kitchen”, which may also give off some heat Q�hot

(Q�hot ¼ Q� in Fig. 1), as long as the net amount of heat
absorbed from the fluid obeys Qout ¼ Q�out � Q�hot > 0. In
addition, it must be ensured that, when Q�in and Q�out are
exchanged between fluid and reservoirs, they are transferred
in the appropriate direction, implying for the corresponding
thermodynamic processes dP/dV � �cP/V, in the case of an
ideal gas.

The CCW Otto, Diesel, Brayton, and Atkinson cycles,2

which operate with two adiabats (as too restrictively required
by D&M), correspond to putting Q�cold ¼ Q�hot ¼ 0 and letting
Q�in and Q�out be exchanged along isochors or isobars, whose
slopes are, respectively, dP/dV¼1 and dP/dV¼ 0, both
larger than the ideal-gas adiabat slope dP/dV¼�cP/V. In
particular, the CCW Otto cycle (formed by two adiabats and
two isochors and studied in detail by D&M) corresponds to
P(V) curves whose slopes are precisely the extreme values
allowed by the condition dP/dV � �cP/V. If Q�cold and Q�hot

do not vanish and are transferred isochorically or isobarically,
while the fluid temperature is pushed to the maximum and
minimum values that are still consistent with Q�in and Q�out
“flowing downhill” (which implies isothermal heat transfers
at T in and T out), the CCW Stirling and Ericsson cycles
follow.2

IV. SUMMARY AND CONCLUSIONS

The analysis by D&M1 on the ability of CCW thermo-
dynamic cycles to describe actual refrigerators has been
extended here to include cycles that do not employ two
adiabats and where the temperatures at which heat is
expelled by the working fluid do not lie entirely above
those at which heat is absorbed. The concept of a
“comparison Carnot cycle” has also been shown to be of
no great use in distinguishing between the different types
of devices described by CCW cycles. Basically, all that is
needed for a CCW cycle to represent a refrigerator, a
device that keeps the “freezer” (i.e., the reservoir from
which a net amount of heat is absorbed during the cycle)
cooler than the “kitchen” (i.e., the reservoir to which a
net amount of heat is rejected during the cycle), is that
its COP be physically meaningful (i.e., positive and not
greater than the COP of the Carnot cycle operating
between the same two reservoirs).
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I. INTRODUCTION

Our paper1 discussed the conditions for which a theoreti-
cal counterclockwise (ccw) and inherently irreversible cycle
could be a refrigerator. We found three necessary and self-
consistent criteria for refrigeration. One criterion required
that all heat absorption occurred at temperatures below those
at which heat was emitted. In addition we also speculated
that refrigerators required two adiabatic segments, although
by themselves adiabats were not a sufficient condition. Dr.
Bizarro’s Comment2 presents a ccw Stirling cycle as a coun-
terexample to our findings.

We maintain that the ccw Stirling cycle cannot function as
a viable refrigerator since it violates one of our criteria men-
tioned earlier, and has no adiabats. The Stirling cycle has
two isotherms and two isochors, as pictured in Fig. 1. As we
explain below, it is Bizarro’s handling of the isothermal seg-
ments that is the primary source of an error that invalidates
his analysis and conclusions. In Sec. III, we discuss isother-
mal processes in some detail. There will be no need to do
complex calculations. We never do more than apply the sim-
plest form of the second law: heat flows from hot to cold.

II. BIZARRO’S ANALYSIS

In the discussion that follows we distinguish between T
(the temperature of a cycle’s working substance) and T (the
temperature of a heat reservoir). Figure 1 is a PV diagram of
a ccw Stirling cycle. The labels for the various cycle seg-
ments are those from Bizarro’s Comment. The cycle is irre-
versible and operates with just two heat reservoirs, which

Bizarro asserts are at temperatures Tc and Ta. Figure 1
includes as dotted lines the isotherms of the heat reservoirs
at temperatures T ab¼ Ta and T cd¼ Tc.

Bizarro claims that during the isothermal compression c
! d the working substance at temperature Tc ejects heat into
a reservoir at the exact same temperature Tc. During the iso-
thermal expansion a! b the working substance at tempera-
ture Ta absorbs heat from a reservoir also at Ta.

A refrigerator’s basic function is to move heat from a “cold
place” into a “hot place.” Bizarro’s analysis achieves this since
according to him the working substance absorbs heat at low
temperature Ta and ejects heat at high temperature Tc. But in
the effort to make the Stirling a viable refrigeration cycle
Bizarro also requires that each of the reservoirs at Ta and Tc

must both absorb and eject heat during various parts of the
cycle. The absorption and ejection of heat by the same reser-
voir is a novel but necessary requirement of the Comment.

Dr. Bizarro’s analysis is incorrect. He employs miscon-
ceptions about isothermal processes that unfortunately may
also be accepted by others. We discuss this below.

III. ISOTHERMS

Consider first the isothermal expansion a! b. It is vital for
Dr. Bizarro’s analysis that T ab equals Ta. An endnote in the
Comment attempts to justify T ab¼ Ta: “Within the framework
of classical thermodynamics, heat ‘flowing downhill’ includes
the marginal situation of heat exchange along isothermals in
which the working fluid and reservoir are at the same tempera-
ture. The only situation strictly forbidden by the second law is
that of heat ‘flowing uphill.’ ” This statement is clearly wrong;
neither ‘downhill’ nor ‘uphill’ exists if the two objects are at
equal temperatures. The second law also prohibits heat
exchange between objects in thermal equilibrium.

Compare the above quote to a statement by Marcella
(emphasis added): “In an isothermal expansion the system at
constant temperature T absorbs an amount of heat Q from its
environment, necessarily at a higher temperature.”3 This
unambiguous statement makes clear that heat flows from hot
to cold and thus, during the isothermal process a ! b, heat
must come from a reservoir warmer than Ta. The appropriate
value for T ab is then T ab¼ Taþ dT>Ta, for some positive
difference dT, and “the transfer of heat approaches revers-
ibility only if the temperature difference is infinitesimal.”3 A
temperature difference, even if infinitesimal, is always man-
datory if there is to be any heat exchange. Figure 2 shows an
isotherm for a reservoir at temperature T ab>Ta as required
by the second law.

Dr. Bizarro also requires that the working substance and
reservoir be at identical temperatures during the isothermal
compression c! d. With apologies to Marcella we adapt his
quote given earlier: “In an isothermal compression the sys-
tem at constant temperature T ejects an amount of heat Q

Fig. 1. A PV diagram of a ccw Stirling cycle. Temperatures Ta and Tc are

those of the working substance while undergoing isothermal processes. The

dotted isotherms at T ab and T cd represent the reservoir temperatures as

envisioned by Bizarro.
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into its environment, necessarily at a lower temperature.”
The reservoir must be colder than the working substance if it
absorbs heat: T cd<Tc.

IV. THE STIRLING CYCLE

Figure 2 shows the isotherms of the two reservoirs at
T ab>Ta and T cd< Tc that are mandatory if the working sub-
stance is to absorb and eject heat as desired during the iso-
thermal steps. The required value for T ab is Tab¼Taþ dT
while the required value for T cd is T cd¼Tc� dT. But these
temperature limitations bring about a severe complication,
since the two reservoirs cannot account for how the working
substance actually gets up to temperature Tc above T cd or
down to temperature Ta below T ab.

The isochoric path b ! c cannot be accomplished by the
reservoir at temperature T cd since that reservoir is not hot
enough. In order for the working substance to reach Tc iso-
chorically, it would have to absorb heat from a reservoir at
some temperature T bc>Tc. Similarly, the isochoric path d
! a cannot be accomplished by the reservoir at temperature
T ab, because it is not cold enough. For the working

substance to reach Ta isochorically, there must be a reservoir
at some temperature T da<Ta.

We have already seen that the isothermal processes plotted
in Fig. 1 violate the second law. Yet if we modify the reser-
voir temperatures slightly, in order to fix this problem, then
the isochoric processes violate the second law. There is no
way to set the two reservoir temperatures to avoid both of
these problems, and therefore Bizarro’s analysis fails. A ccw
Stirling cycle cannot function as a refrigerator.

Perhaps Dr. Bizarro might be interested in pursuing an
idea that was suggested to us by a reviewer. From Fig. 2, we
know that the isochoric path b ! c cannot be fully accom-
plished by the reservoir at T cd since it is not hot enough.
However, in order to reach Tc one could insert an adiabatic
process in place of the sharp corner at c. This can be accom-
plished by ending the isochor slightly below T cd and con-
tinuing up to Tc via a short adiabat. The sharp corner at a can
be similarly replaced by another short adiabat. These con-
necting adiabatic segments can be made arbitrarily short and
thus the shape of the cycle closely mimics that of a Stirling.
These connecting adiabats would eliminate the need for res-
ervoirs above Tc and below Ta.

V. CONCLUSION

Complex calculations and complicated logic cannot over-
come a basic property of the universe: heat flows from hot to
cold. During an isothermal process the working substance
has a constant temperature by definition, but the term iso-
thermal does not imply that the working substance and its
thermally connected reservoir are at identical temperatures.
Bizarro’s analysis requires that the working substance and
connected reservoir have identical temperatures during parts
of the cycle, thus violating the second law. Since this is
impossible, it follows that much in the Comment is likewise
incorrect, or at least suspect.

a)Electronic mail: rdickers@calpoly.edu
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Three new heuristic derivations of the Planck scale are described. They are based on basic

principles or phenomena of relativistic gravity and quantum physics. The Planck scale quantities

thus obtained are within one order of magnitude of the “standard” ones. We contemplate the pair

creation of causal bubbles so small that they can be treated as particles, the scattering of a matter

wave off the background curvature of spacetime that it induces, and the Hawking evaporation of a

black hole in a single burst at the Planck scale. VC 2017 American Association of Physics Teachers.
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Fig. 2. The Stirling cycle of Fig. 1, with reservoir temperatures modified to

make the isothermal processes physically possible. However, these reser-

voirs cannot account for the isochoric segments.
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I. INTRODUCTION

General relativity and quantum mechanics are two great
achievements of twentieth century physics. Gravity is
completely classical in Einstein’s theory of general relativ-
ity, and quantum mechanics (broadly defined to include
quantum field theory and particle physics) incorporates spe-
cial relativity but excludes gravity. It is believed that these
two completely separate theories should merge at the Planck
scale, at which general-relativistic effects become compara-
ble to quantum ones. No definitive theory of quantum gravity
is available, although much work has gone into string theo-
ries, loop quantum gravity, and other approaches (e.g., Refs.
1–4, see also Ref. 5, and see Ref. 6 for a popular exposition).

The Planck scale was introduced by Planck himself7 in
1899, therefore predating the Planck law for blackbody radi-
ation. The importance of the Planck units was realized by
Eddington8 and the idea that gravitation and quantum
mechanics should be taken into account simultaneously at
this scale was spread by Wheeler9,10 and has bounced around
ever since. The themes that a fundamental system of units
exists in nature and that the values of these units can perhaps
be derived in a super-theory have been the subject of a large
literature (see Ref. 11 for an excellent introduction).

All derivations of the Planck scale more or less corre-
spond to taking various combinations of the fundamental
constants G (Newton’s constant) associated with gravity, c
(the speed of light in vacuo) characterizing relativity, and
the Planck constant h [or the reduced Planck constant
�h � h=ð2pÞ] which signals quantum mechanics. Usually the
Planck scale is deduced, following Planck, on a purely
dimensional basis7 or it is derived using the concept of a
black hole in conjunction with that of a matter wave. The
simplest derivation of the Planck scale notes that by com-
bining the three fundamental constants G, c, and �h one
obtains a unique quantity with the dimensions of a length,
the Planck length

lpl ¼
ffiffiffiffiffiffi
G�h

c3

r
¼ 1:6� 10�35 m : (1)

By combining lpl with G and c one then obtains the Planck
mass

mpl ¼
lplc

2

G
¼

ffiffiffiffiffi
�hc

G

r
¼ 2:2� 10�8 kg ; (2)

the Planck energy

Epl ¼ mplc
2 ¼

ffiffiffiffiffiffiffi
�hc5

G

r
¼ 1:3� 1019 GeV ; (3)

the Planck mass density

qpl ¼
mpl

l3
pl

¼ c2

l2
plG
¼ c5

�hG2
¼ 5:2� 1096 kg m�3 ; (4)

and the Planck temperature

Tpl ¼
Epl

kB

¼ lplc
4

kBG
¼

ffiffiffiffiffiffiffiffiffi
�hc5

Gk2
B

s
¼ 1:4� 1032 K ; (5)

where kB is the Boltzmann constant. We denote with xpl the
Planck scale value of a quantity x determined by dimensional
analysis as in the above. Two suggestive alternative deriva-
tions of the Planck scale appear in the literature and are
reviewed in Secs. I A and I B. At least six more roads to the
Planck scale, which are slightly more complicated, are
known and have been discussed in Ref. 15. How many ways
to obtain the Planck scale without a full quantum gravity the-
ory are possible? The challenge of finding them can be fun
and very creative. Other possibilities to heuristically derive
the Planck scale certainly exist: in Secs. II–IV we propose
three new ones based on pair creation of “particle-
universes,” the propagation of matter waves on a curved
spacetime, or the Hawking radiation from black holes.

A. A Planck size black hole

In what is probably the most popular derivation of the
Planck scale, one postulates that a particle of mass m and
Compton wavelength k ¼ h=ðmcÞ, which has Planck energy,
collapses to a black hole of radius RS ¼ 2Gm=c2 (the
Schwarzschild radius of a spherical static black hole of mass
m (Refs. 12 and 13)). Like all orders of magnitude estimates,
this procedure is not rigorous since it extrapolates the con-
cepts of black hole and of Compton wavelength to a new
regime in which both concepts would probably lose their
accepted meanings and would, strictly speaking, cease being
valid. However, this is how one gains intuition into a new
physical regime.

Equating the Compton wavelength of this mass m to its
black hole radius gives

m ¼
ffiffiffiffiffiffi
hc

2G

r
¼

ffiffiffi
p
p

mpl ’ 1:77 mpl : (6)

B. A universe of size comparable with its Compton

wavelength

It is not compulsory to restrict to black holes in heuristic
derivations of the Planck scale, although black holes cer-
tainly constitute some of the most characteristic phenomena
predicted by relativistic gravity.12,13 Why not use a relativis-
tic universe instead of a black hole? This approach is fol-
lowed in the following argument proposed in John Barrow’s
Book of Universes16 (but it does not appear in the technical
literature and it definitely deserves to be included in the ped-
agogical literature).

Cosmology can only be described in a fully consistent and
general way by a relativistic theory of gravity and one can
rightly regard a description of the universe as phenomenol-
ogy of relativistic gravity on par with the prediction of black
holes. Consider a spatially homogeneous and isotropic uni-
verse which, for simplicity, will be taken to be a spatially flat
Friedmann-Lemâıtre-Robertson-Walker spacetime with line
element

ds2 ¼ �dt2 þ a2ðtÞðdx2 þ dy2 þ dz2Þ ; (7)

and with scale factor a(t) and Hubble parameter HðtÞ � _a=a.
An overdot denotes differentiation with respect to the
comoving time t measured by observers who see the 3-space
around them homogeneous and isotropic. The size of the
observable universe is its Hubble radius cH�1 which is also,
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in order of magnitude, the radius of curvature (in the sense
of four-dimensional curvature) of this space. Consider the
mass m enclosed in a Hubble sphere, given by

mc2 ¼ 4p
3

q H�1cð Þ3 ¼ H�1c5

2G
; (8)

where q is the cosmological energy density and in the last
equality we used the Friedmann equation12,13

H2 ¼ 8pG

3c2
q (9)

(note that, following standard notation, qpl and q denote a
mass density and an energy density, respectively). The
Planck scale is reached when the Compton wavelength of
the mass m is comparable with the Hubble radius, i.e., when

c

H
� k ¼ h

mc
: (10)

This procedure implies that quantum effects (Compton
wavelength) are of the same order of gravitational effects
(cosmology described by the Friedmann equation). Clearly,
we extrapolate Eq. (9) to a new quantum gravity regime
from the realm of validity of general relativity and we
extrapolate the concept of Compton wavelength from the
realm of ordinary quantum mechanics. This extrapolation is
necessary in order to learn something about the Planck scale,
although it is not rigorous.

The expression (8) of m then gives

H2 ¼ c5

2Gh
: (11)

Using again Eq. (9) yields the energy density

q � 3c7

16pG2h
¼ 3c2

32p2
qpl ’ 10�2c2qpl ; (12)

from which the other Planck quantities (1)–(5) can be
deduced by dimensional analysis. One obtains

l ¼ cffiffiffiffiffiffiffi
Gq
p ’ 10 lpl ; (13)

m ¼ lc2

G
’ 10 mpl ; (14)

E ¼ mc2 ’ 10 Epl ; (15)

T ¼ E

kB

’ 10 Tpl : (16)

At first sight, the argument of a universe with size compara-
ble with its Compton wavelength is not dissimilar in spirit
from the popular argument comparing the Schwarzschild
radius of a black hole with its Compton wavelength. In fact,
it is commonly remarked that the universe is a relativistic
system by showing that the size of the observable universe is
the same as the Schwarzschild radius of the mass m con-
tained in it, for

RS ¼
2Gm

c2
¼ 2G

c2

4pR3

3

q
c2

� �
¼ 2G

c2

4p
3

q
c2

H�1cð Þ3

¼ 8pG

3c
H�3q : (17)

Equation (9) then yields RS ’ cH�1, which is often
reported in the popular science literature by saying that the
universe is a giant black hole. This argument is definitely too
naive because the Schwarzschild radius pertains to the
Schwarzschild solution of the Einstein equations,12,13 which
is very different from the Friedmann-Lemâıtre-Robertson-
Walker one. If one accepted this argument, then comparing
the size of the visible universe cH�1 with the Compton
wavelength of the mass contained in it would be numerically
similar to comparing its Schwarzschild radius with this
wavelength. However, the step describing the visible uni-
verse as a black hole (which is extremely questionable if not
altogether incorrect) is logically not needed in the procedure
expressed in Eq. (10).

Turning things around but in keeping with the spirit of the
derivation above, it has also been noted that equating the
Planck density to the density of a sphere containing the mass
of the observable universe produces the size of the nucleus
(or the pion Compton wavelength) as the radius of this
sphere.17

II. PAIR CREATION OF PARTICLE-UNIVERSES

Another approach to the Planck scale is the following. The
idea of a universe which is quantum-mechanical in nature
has been present in the literature for a long time and the use
of the uncertainty principle to argue something about the uni-
verse goes back to Tryon’s 1973 proposal that the universe
may have originated as a vacuum fluctuation.18 This notion
of creation features prominently also in recent popular litera-
ture.19 Consider now universes so small that they are ruled
by quantum mechanics and regard the mass-energies con-
tained in them as elementary particles. At high energies,
there could be production of pairs of such “particle-
antiparticle universes.” Again, one goes beyond known and
explored regimes of general relativity and ordinary quantum
mechanics by extrapolating facts well known in these
regimes to the unknown Planck regime. The Heisenberg
uncertainty principle DEDt � �h=2 can be used by assuming
that DE is the energy contained in a Friedmann-Lemâıtre-
Robertson-Walker causal bubble of radius R � H�1c con-
taining the energy DE ’ 4pqR3=3. Setting Dt � H�1 (the
age of this very young universe), DEDt ’ �h=2 gives

4p
3

q H�1cð Þ3H�1 ’ �h

2
(18)

which can be rewritten as

8pG

3
q

c3

GH4
¼ �h : (19)

Equation (9) then yields the mass density

q
c2
’ 3c5

8pG2�h
¼ 3

8p
qpl ; (20)

one order of magnitude smaller than the “standard”
Planck mass density (4). The other Planckian quantities can
then be derived from q and the fundamental constants G, c,
and h.
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III. SCATTERING OF A MATTER WAVE OFF THE

BACKGROUND CURVATURE OF SPACETIME

The second alternative road to the Planck scale comes from
the fact that, in general, waves propagating on a curved back-
ground spacetime scatter off it.20–23 This phenomenon is well
known and can be interpreted as if these waves had an effective
mass induced by the spacetime curvature. It is experienced by
waves with wavelength k comparable with, or larger than, the
radius of curvature L of spacetime. High frequency waves do
not “feel” the larger scale inhomogeneities of the spacetime
curvature and, as is intuitive, essentially propagate as if they
were in flat spacetime.12,21–23 The phenomenon is not dissimilar
from the scattering experienced by a wave propagating through
an inhomogeneous medium when its wavelength is comparable
with the typical size of the inhomogeneities. Again, we extrapo-
late the backscattering of a test-field wave by the (fixed) back-
ground curvature of spacetime to a new regime in which this
wave packet gravitates, bends spacetime and, at the Planck
scale, impedes its own propagation. Clearly, this extrapolation
is not rigorous, like all order of magnitude estimates. However,
we can gain some confidence in this procedure a posteriori by
noting that it produces a Planck scale of the same order of mag-
nitude as that obtained by the other methods exposed here.

Consider now a matter wave associated with a particle of
mass m and Compton wavelength k ¼ h=ðmcÞ scattering off
the curvature of spacetime. The Planck scale can be pictured
as that at which the spacetime curvature is caused by the
mass m itself and the radius of curvature of spacetime due to
this mass is comparable with the Compton wavelength.
Essentially, high frequency waves do not backscatter but, at
the Planck scale, there can be no waves shorter than the
background curvature radius. Dimensionally, the length scale
L associated with the mass m (the radius of curvature of
spacetime) is given by m ¼ Lc2=G and quantum and
gravitational effects become comparable when k � L, which
gives

h

Lc2=Gð Þc � L (21)

or

L ¼
ffiffiffiffiffiffi
Gh

c3

r
¼

ffiffiffiffiffiffi
2p
p

lpl ’ 2:51 lpl : (22)

In other words, if we pack enough energy into a matter
wave so that it curves spacetime, the curvature induced by
this wave will impede its own propagation when the Planck
scale is reached. When the energy of this wave becomes too
compact, the propagation of the matter wave is affected
drastically.

IV. HAWKING EVAPORATION OF A BLACK HOLE

IN A SINGLE BURST

Hawking’s discovery that, quantum mechanically, black
holes emit a thermal spectrum of radiation allowed for the
development of black hole thermodynamics by assigning a
non-zero temperature to black holes.14 In the approximation
of a fixed black hole background and of a test quantum field
in this spacetime, a spherical static black hole of mass m
emits a thermal spectrum at the Hawking temperature

TH ¼
�hc3

8pGkBm
: (23)

As is well known, the emitted radiation peaks at a wave-
length kmax larger than the horizon radius RS ¼ 2Gm=c2. In
fact, using Wien’s law of displacement for blackbodies

kmaxTH ¼ b ¼ hc

4:9651kB

’ 2:8978� 10�3 m K (24)

and Eq. (23), one obtains

kmax ¼
b

TH

¼ 8p2

4:9651

2Gm

c2
’ 15:90RS : (25)

Therefore, most of the thermal radiation is emitted at wave-
lengths comparable to, or larger than, the black hole horizon,
giving a fuzzy image of the black hole.

Heuristically, one can extrapolate Hawking’s prediction to
a Planck regime in which the loss of energy is comparable
with the black hole mass. Then the Planck scale is reached
when the entire black hole mass m is radiated in a single
burst of N particles of wavelength �kmax and energy

E ¼ hc

kmax

� hc

16RS

¼ hc3

32Gm
: (26)

Although certainly not rigorous, this procedure provides a
Planck scale of the same order of magnitude as the other pro-
cedures considered (which is all that one can expect from an
order of magnitude estimate). Assuming N of order unity
(say, N¼ 2) and equating this energy with the black hole
energy mc2 yields

m ’ NE

c2
’

ffiffiffiffiffiffiffiffiffi
hc

16G

r
¼

ffiffiffi
p
8

r
mpl � 0:627 mpl : (27)

V. DISCUSSION

Although black holes are a most striking prediction of
Einstein’s theory of gravity,12,13 they do not constitute the
entire phenomenology of general relativity and there is no
need to limit oneself to the black hole concept in heuristic der-
ivations of the Planck scale. One can consider cosmology as
well, which is appropriate since cosmology can only be dis-
cussed in the context of relativistic gravity. This approach
leads to Barrow’s new heuristic derivation of the Planck
scale16 by considering, in a Friedmann-Lemâıtre-Robertson-
Walker universe, a Hubble sphere with size comparable to the
Compton wavelength of the mass it contains. Alternatively,
one can consider the pair creation of causal bubbles so small
that they can be treated as particles, or one can derive the
Planck scale using the scattering of waves off the background
curvature of spacetime which leads again, in order of magni-
tude, to the Planck scale when applied to matter waves.
Alternatively, one can consider a black hole that evaporates
completely in a single burst at the Planck scale. Of course,
other approaches to the Planck scale are in principle conceiv-
able. Although quantum gravity is certainly not a subject of
undergraduate university courses, the exercise of imagining
new heuristic avenues to the Planck scale can be fun and can
stimulate the imagination of both undergraduate and graduate
students, as well as being an exercise in dimensional analysis.
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Comment on “Magnetic field calculation for arbitrarily shaped planar
wires” [Am. J. Phys. 68(3), 254–258 (2000)]
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In the paper in the title of this comment, J. A. Miranda1

(JAM) derives a simple and compact expression to compute
the magnetic field caused by a current in a plane loop of wire
at a point lying in the plane.

Starting from the Biot–Savart law

dB ¼ l0I

4p
ds� r̂

r2
; (1)

where l0 is the permeability of free space, ds is an element
of length (pointing in the direction of current flow) of a wire
which carries a current I, r̂ is the unit vector pointing from
the element of length to the observation point O, and r is the
distance from the element of length to the observation point,
he obtains the following simple expression for the magnitude
of the total magnetic flux density at point O:

B ¼ l0I

4p

þ
dh
r
: (2)

The expression is conveniently written in terms of the wire’s
shape r ¼ rðhÞ in polar coordinates, where r is the distance
of the point on the wire from the origin at O, and h is the
counterclockwise angle made by the line joining the point
and the origin, and the reference x-line (usually horizontal).
JAM illustrates the usefulness of formula (2), Eq. (4) in his
paper, calculating the magnetic field at specific points in the
wire’s plane due to currents flowing in conic curves, spirals,
and harmonically deformed circular circuits.

While formula (2) is certainly correct and generally valid
(see also Ref. 2), the derivation has a weak point, as we dis-
cuss later. The following procedure is at once simpler and
more general.

The element of length of a wire ds in polar coordinates
can be decomposed into

ds ¼ 6ð�drr̂ þ rdhĥÞ; (3)

where �r̂ is the unit vector pointing in the direction of
increasing r [compare with the definition of r̂ in Eq. (1)], ĥ is
the unit vector tangent to the circle of radius r, pointing in
the direction of increasing h. The sign 6 is connected with
the direction of current flow. From this, we get

jds� r̂j ¼ j6ð�drr̂þ rdhĥÞ� r̂j ¼ j7rdhẑj ¼ rdh; (4)

where ẑ ¼ �r̂ � ĥ is the unit vector normal to both �r̂ and
ĥ. By combining Eqs. (1) and (4), we immediately obtain the
simple and compact expression (2).

JAM states that Eq. (4) can be obtained with the help of
Fig. 1 in his paper. The figure is reproduced here as Fig. 1(a).
JAM writes: “Denoting the angle between the vectors ds and
r̂ by u… we readily see that h¼u� p/2.” (page 255). In
point of fact, this statement is in disagreement with Fig. 1(a).
It is obvious that if the relation is true, the figure should be
modified. The modified version is shown in Fig. 1(b).

The statement given in a caption of Fig. 1 in the JAM
paper
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rdh ¼ ds cos h: (5)

means that the length of the arc rdh is equal to the length of
the segment ds cos h [see Fig. 1(b)]. Let us check when it is
possible. The differential of arc length ds of a curve r ¼ rðhÞ
is given by

ds ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ðdr=dhÞ2

q
dh: (6)

Our task is to find a function r ¼ rðhÞ for an arbitrarily
shaped wire which fulfills rdh ¼ ds cos h. By combining this
with Eq. (5) we obtain the following ordinary differential
equation:

r2 ¼ ðr2 þ r02Þ cos2h; (7)

where r0 ¼ dr=dh. After simple manipulations, we get

r0

r

� �2

¼ tan2h  
r0

r
¼ 6tan h: (8)

Equation (7) has two solutions depending on the sign before
the tan h

r ¼ r0

cos h0

cos h
; (9a)

and

r ¼ r0

cos h
cos h0

; (9b)

which are equations of a straight line, the horizontal line in
Fig. 1(a), and a circle whose diameter lies on the polar axis
h ¼ 0 with one end at the origin O, respectively. The point
ðr0; h0Þ represents the position of the element ds. This can be
easily seen if we express Eqs. (9a) and (9b) in Cartesian
coordinates x–y. Substituting

x ¼ r cos h and r2 ¼ x2 þ y2; (10)

we get

x ¼ r0 cos h0 ¼ const: (11)

for Eq. (9a), and

x� r0

2 cos h0

� �2

þ y2 ¼ r0

2 cos h0

� �2

(12)

for Eq. (9b). The functions in Eq. (9) satisfy rdh ¼ ds cos h,
while, for example, the function rðhÞ ¼ 2f=ð1� cos hÞ, con-
sidered in Ref. 1 for a parabolic wire, does not (f is the distance
from the parabola’s vertex to its focus located at the originO).

The derivation given by JAM is valid only for an infinitely
long straight wire or a circular wire passing through the
observation point O (or for fragments of such wires), not for
arbitrarily shaped wires. The statement cited above that h ¼
u� p=2 is generally not true. The major limitation of JAM’s
derivation is simply the assumption that the angle between
the dotted line and the element of length of a wire ds in Fig.
1(a) is equal to the polar angle h. If JAM had used any other
notation for that angle, his derivation would be general
(Griffiths2 and Zangwill3). Regardless of the fact that the
main formula [Eq. (4) in Ref. 1] and all subsequent results
presented in the JAM paper are correct, and that the author
should be commended for a good paper, the simple use of
Eq. (3) proposed here offers a more general derivation.

Warmest thanks to my friend Marek Ziolkowski and
younger colleague Marcin Ziolkowski for stimulating
discussions.
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A demonstration of decoherence for beginners
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We present a simplified analysis suitable for a beginners’ course in quantum mechanics of a recently

presented model of positional decoherence in a gas of scatterers. As such, no reference is made to

(a) (b)

Fig. 1. (a) The plane diagram from the JAM paper (Ref. 1); (b) Modified version of the diagram.
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the density matrix formalism, many body theory, or even operator algebra. We only make use of

the properties of quantum states and the position and momentum wavefunctions, which students

typically encounter in a first quantum mechanics course. VC 2017 American Association of Physics Teachers.

https://doi.org/10.1119/1.5005526

Quantum mechanics describes nature in terms of state
vectors j/i belonging to a Hilbert space, which in the
Schr€odinger picture evolve in time. This description has the
apparent problem that many quantum mechanical states do
not correspond to classical macroscopic objects. For example,
a particle in state j/Xi localized at position X has a classical
counterpart, while a particle in state jUi ¼ ðj/Xi þ j/YiÞ=

ffiffiffi
2
p

appears to be located at both X and Y simultaneously and
thus has no classical counterpart. Furthermore, macroscopic
objects initially in classical-like states can evolve into states
with no classical analogs. This is demonstrated in the famous
Schr€odinger-cat paradox, where a macroscopic cat, initially in a
live state, evolves into states where it is both dead and alive.1

This problem can be addressed by noting that observable
predictions of the quantum theory are expectation values of
Hermitian operators A so that physically measurable conse-
quences of the non-classical nature of states, such as jUi, are
contained in the interference term h/Y jAj/Xi. The decoher-
ence theory demonstrates that an interaction resulting in an
entanglement with a many-particle system can produce rapid
decay of such interference terms, leading to classical behav-
ior at the macroscopic level. Here, we show how the action
of a gas of scatterers on a macroscopic particle via the
Schr€odinger equation leads to the approximately exponential
decay of h/Y jAj/Xi using a simplified scattering model.2 In
physical terms, scattering effectively “measures” the position
of the particle, forcing it into a position eigenstate.

Consider a particle with the center of mass at X, represented
by state j/Xi with the corresponding position wavefunction
/XðyÞ ¼ hyj/Xi and surrounded by a gas of scatterers, each in
state jui and with the corresponding position wavefunction
uðxÞ ¼ hxjui. For simplicity, we assume that scattering is one
dimensional and the scatterers are much lighter than the parti-
cle.2 Scattering is then an elastic reflection from an infinite
potential located at x¼X, with the momentum of the scatterer
changing the sign (see Fig. 1).

Because p ¼ m dx=dt, the (scattering) transformation
p!S�p is effected by a change in the sign of the position,
accompanied by a possible translation, x!S a� x. This trans-
formation is accomplished by the scattered wavefunction
uða� xÞ, which reverses the momentum distribution associ-
ated with uðxÞ. Because the potential is infinite, the wave-
function must vanish at the wall;1 thus, the constant a is
determined3 by the condition uðXÞ � uða� XÞ ¼ 0 so that
a ¼ 2X. The result is that scattering changes the product of
particle and scatterer wavefunctions as

/XðyÞuðxÞ!S�/XðyÞuð2X � xÞ: (1)

Consider the wavefunction for a superposition of two
orthonormal states corresponding to the particle centered at
X and Y

Uðy; xÞ ¼ 1ffiffiffi
2
p /XðyÞ þ /YðyÞ½ 	uðxÞ: (2)

Combining Eqs. (1) and (2), scattering changes the superpo-
sition of Eq. (2) as

/XðyÞ þ /YðyÞ½ 	uðxÞ!S�/XðyÞuð2X � xÞ
� /YðyÞuð2Y � xÞ: (3)

Here, uðxÞ cannot be factored from the scattered state, which
entangles the scatterer and particle states, and this is a key
feature of decoherence.

Non-classical behavior is represented by interference of
the two states in expressions for expectation values of
Hermitian operators A

hUjAjUi ¼ 1

2
h/XjAj/Xi þ h/Y jAj/Yi þ r þ r�ð Þ; (4)

where we have defined the interference term r ¼ h/Y jAj/Xi
and assumed that the expectation value of A does not depend
on the state of the scatterer jui. We now show that the con-
tribution of interference terms to the expectation value tends
to zero in the presence of scattering when the expectation
value does not depend on jui. The interference amplitude of
the scattered state is evaluated as follows

r!S r

ð1
�1

dx u�ð2Y � xÞuð2X � xÞ (5)

¼ r

ð1
�1

dy u�ðyÞuð2X � 2Y þ yÞ (6)

¼ r

ð1
�1

dp j~uðpÞj2e2ipðX�YÞ=�h; (7)

where we have used the properties of the Fourier transform
of a complex convolution in Eq. (7) and ~uðpÞ is the momen-
tum wavefunction, that is, the Fourier transform of uðxÞ.

As an aside, Eq. (7) is a special case of the standard posi-
tional decoherence expression for environmental scatter-
ing4,5 when the scattering amounts to reflection, that is, the
T-matrix satisfies jTðp; qÞj2 ¼ Rt dðpþ qÞ, where dðpÞ is the
delta function and R is the scattering rate.

The exponential in Eq. (7) can be expanded in a Taylor
series as e2iap ¼ 1þ 2iap� 2a2p2 þ 
 
 
, giving

Fig. 1. One-dimensional scattering of an environmental particle with wave-

function uðxÞ from a very heavy particle in state j/Xi located at x¼X. Due

to the mass of the particle, scattering is equivalent to reflection from an infi-

nite potential.
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r!S r 1þ 2iðX � YÞhpi=�h� 2ðX � YÞ2hp2i=�h2 þ 
 
 

h i

;

(8)

where hpni denotes the expectation value of pn. Since scatter-
ing is assumed to be symmetric with respect to both sides of
the particle, we have hpi ¼ 0. At a scattering rate R, a total
of N¼Rt independent scatterers will collide with the particle
in time t,2 each with initial wavefunction uðxÞ, so that r
varies as

rðtÞ ¼ rð0Þ 1� 2ðX � YÞ2hp2i=�h2
h iRt

(9)

� rð0Þe�2RtðX�YÞ2hp2i=�h2

; (10)

provided that ðX � YÞ2hp2i=�h2 is small. Therefore, if scatter-
ing events are independent, which typically occur when the
environment consists of a large number of scatterers, inter-
ference of particle states decays approximately exponen-
tially, at a rate proportional to the square of the separation
for small separations. The effect in Eq. (4) is that after a time
inversely proportional to ðX � YÞ2, only the first two terms
contribute to the expectation value, and these are the expec-
tation values of A with the particle at X or at Y but not both
at the same time. This is what one would expect for a classi-
cal mixture of particles in states j/Xi and j/Yi, with equal
weight 1/2 for both states.

Anticipating a more advanced treatment, we note that the
expectation value in Eq. (4) can be written as the trace of a
product of matrices

hUjAjUi ¼ tr
h/XjAj/Xi h/XjAj/Yi
h/Y jAj/Xi h/Y jAj/Yi

 !
1=2 1=2

1=2 1=2

 !" #
;

(11)

where the second matrix is the density matrix representing
the particle state in Eq. (2). It follows from the above para-
graph that decoherence diminishes the off-diagonal elements
of the density matrix so that with time it tends to a diagonal
matrix. Such a density matrix cannot be obtained from a
pure quantum state as in Eq. (2) but rather resembles a classi-
cal mixture of two quantum states of the particle.

In summary, we have shown that as a consequence of
decoherence, the interference of a particle with itself can
generally be neglected for macroscopic particles. Ultimately,
this leads to a localization of the particle and the fact that
classical particles have trajectories, that is, they appear to
transition through a set of position eigenstates.5
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