What good is the thermodynamic limit?

Daniel F. Styer®
Department of Physics and Astronomy, Oberlin College, Oberlin, Ohio 44074

(Received 9 February 2000; accepted 27 August 2003

Statistical mechanics applies to large systems: technically, its results are exact only for infinitely
large systems in “the thermodynamic limit.” The importance of this proviso is often minimized in
undergraduate courses. This paper presents six paradoxes in statistical mechanics that can be
resolved only by acknowledging the thermodynamic limit. For example, it demonstrates that the
widely used microcanonical “thin phase space limit” must be taftar taking the thermodynamic

limit. © 2004 American Association of Physics Teachers.
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Statistical mechanics is the study of matter in bulk.Kroemer? Baierlein® and Schroedétonly the last one men-
Whereas undergraduate courses in subjects like classical tons the thermodynamic limit at all. This is a pity, because
qguantum mechanics are loath to approach the three-bodyny student trained to ask questions and to delve into the
problem, statistical mechanics courses routinely deal wittmeanings behind equations will find confusing situations
the 6.0 10°*-body problem. How can one subject be soin statistical mechanics, and these confusions will vanish
generous with particle number while others are so parsimoonly when the thermodynamic limit is invoked. This paper
nious? introduces six such cases and shows how the resulting para-

The answer has two facets: First, statistical mechanicgoxes are resolved in the thermodynamic limit. Those desir-
asks different questions from, say, classical mechanics. [ig & more systematic treatment of the thermodynamic limit
stead of trying to trace all the particle trajectories for all time,Should consult Thompschor Fisher? or the definitive for-
statistical mechanics is content to ask, for example, how th8al treatment by Ruelle.
mean energy varies with temperature and pressure. Second,
statistical mechanics turns the difficulty of bigness into a
blessing by insisting on treating only ve);y Iargg systems, ir!' THE LIMIT OF THIN PHASE SPACE
which many of the details of system size fade into insignifi- gre is a story of statistical mechanics in the microcanoni-
cance. The formal, mathematical term for this bigness congy| ensemble: The system consistshbfidentical, classical
dition is “the thermodynamic limit.” particles(perhaps interacting, perhaps indepengleanfined

For example, in a ﬂu'd, system speC|f|eq t?y the temperay, 5 container of volume/. The energy is known to have
tureT, volumeV, and particle numbeN, statistical mechan- some value betweeE and E+AE. The volume of phase

ics can calculate the Helmholtz free eneifg¢T,V,N), but space corresponding to this energy range is called
usually finds that function interesting only in the limit that W(E,AE,V,N), and the entropy is given by

V—o and N—o in such a way that their ratip=N/V an
approaches a finite quantity. In this so-called thermodynamic ~ S(E,V,N)=kg I{W(E,AE,V,N)/h*"N!}, (1)

limit, the free energyF itself grows to infinity, but the free  hereh is Planck’s constant. The use of an energy rahge
energy per particlef(T,p)=F(T,V,N)/N is expected to js, of course, nothing but a mathematical convenience. At the

approach a finite value. end of any calculation, we will take the “thin phase space
Alternatively, in the microcanonical ensemble, this fluid |imit,” namely AE—O0.
system would be specified by energy volumeV, and par- Really? Why wait for the end of the calculation? In the

ticle numberN. The function of interest is now the entropy limit AE—0, the phase-space volum@/ vanishes, so
S(E,V,N), and one expects that a doubling®f V, andN S=KkgIn(0)=—cc. This holds true for any system, whether
will result in a doubling ofS. However, we shall soon see gas, liquid, or solid. We have just completed all possible
that this expectation—the expectation of extensivity—is notstatistical mechanical calculations, and found that the result
exact for any finite system. The expectation holds with in-is necessarily trivial!
creasing accuracy for larger and larger systems, but is ex- Obviously something is wrong with the above analysis,
actly true only in the thermodynamic limit. but what? Rather than resolve the paradox in the most gen-
Why should anyone care about results in the thermodyeral case, we look to the simplest special case, namely the
namic limit, when every real system is finite? Because reamonatomic ideal gas. For this system, phase space consists
bulk systems have so many particles that they can be consi@f 3N position-space dimensions ant\ 3nomentum-space
ered to exist in the thermodynamic limit. As the system sizedimensions. Because the particles are restricted to positions
increases, the free energy dengiW: F/N approaches the within the box, the position-space _dimensions contribute a
limiting value f.., and typically the difference betwedngs  factor of VN to W. The total energy is
andf.. is smaller than experimental error. 1
Undergraduate statistical mechanics texts usually have —m(piﬁ pi,y+pi,z+"'+pﬁ,x+ plz\l,y+ Pa.2) (2
little to say directly about the thermodynamic limit. Instead
of an explicit mention, they vaguely invoke a “large sys- wherem is the mass of each particle, so the energy restric-
tem.” Of the four well-known texts by Reff,Kittel and  tion implies that the accessible region in momentum space is
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a spherical shell with inner radiug2mE and outer radius S 3 (Zq-rmeuz’?’Nm) N (3 N)'
=NIn|———=——|=InN!=In| =
2

JV2m(E+ AE). The volume of ad-dimensional sphereds k_B_ h2 :
()= e & &)
Vy(r)=—=-r", 3 - _
d (d/Z)' +1In (l+ s 1}
so the volume of this R-dimensional shell is 3 2 rmep 23
3N/2 = E|\| In —
3N/2_ 3N/2
Gz L(2M(E+AE)NE- (2mE)*], (@ , o2
e 5/3_ _inl = - _
whence + 2NInN InN! In(ZN I+In|| 1+ o 1}.
(2’7Tm E)3N/2 AE 3N/2 (10)
W(E,AE,V,N)=VN——— —  -1]. o o
(3N/2)! E Now use Stirling’s approximation,
® Innl=~nInn—n for n>1, (11

(I have rearranged the expressions to make the dimensions
more apparent: The quantity in square brackets is dimensiorie simplify the expressions like I8))! above. The middle

less) three terms are approximatelyn an approximation that be-
The entropy follows immediately. It is comes exact all— )
W 3 5/3_ I —1In( 3N ~ 5 _ +
S=ksln{N!h3N) 3N In N®3—In NI —In(3N)! ~ SN InN— N In N+ N

—(3N)In(3N) + 3N

2emEVR\ V2
=ks In{ h2 ) NI(3N/2)! =N[3-3In(3)]. (12)
AE) 3N2 After this manipulation, we have
X[ 14+ —= -1, (6) o3
E S 3 2mmev N 5 3| 3
) kg 2 h? 2 2M2
S 3N ZMEVE) ni—inf S R R 13
k_B_E n T NINI—INn E L n ? . ( )
3N72 All the pieces grow linearly witiN except for the right-
tinf| 1+ —=| -1} (7) " most one—the piece related &E! In this rightmost piece,

o asN grows, the term (& se/e)®N2 completely dominates 1

by the paradox, the entropy approaches l(0)-. Thus
The problem with this result for the entropy is that it at-

tempts to hold for systems of any size. In justifying the defi- In (1+ E 3N/2_1 ~In( 1+ E SN2

nition of the entropy one relies upon the assumption of a e e

“large” system, but in deriving the above expression we

never made use of that assumption. In fact, our expectation =§N Inl 1+ E (14)
that we could leAE— 0 and obtain a sensible result holds 2 e/’

only approximately for finite systems: the expectation hOIdSI'hiS term is not only linear wittN in the thermodynamic

to higher and higher accuracy for larger and larger systems, = - ) o .
but it holds exactly only for infinite systems, that is, for%g:EO'tl also has a well-behaved limiit vanishe3 when

systems in the thermodynamic limit. ) . . . .
y y This special case, the ideal gas, illustrates the general prin-

The thermodynamic limit, in the microcanonical case, . ‘ .
consists of allowing the system's particle number, volume,c'ple that resolves our paradox: One must first take the ther-

energy, and energy spread all to grow without bound, but tgnedynamic limitN—cc, and only then take the “thin phase

do so in such a way that the intensive ratios remain finiteSPace” limit 6e=AE/N—0. .
That is, we allow With this understanding in place, we find that the entropy

is finite whenAE— O, that it does indeed grow linearly with

N—ce in such away tha¥/N —uv, E/N —e, N, and that it is given by the well-known Sackur—Tetrode

and AE/N — de. (g formula
2/3
In this limit we expect that the entropy will grow linearly _ E 4mmey E
with system size, that is, S(E,V,N)=keN 2 In 3 |2 (15

S(E,AE,V,N)—Ns(e,v,de). 9

To prepare for taking the thermodynamic limit of E@),
write V asuvN, E aseN, andAE as deN, so that the only The expressiofi7) for the entropy of a finite system is not
extensive variable i®. This results in extensive: If you doubl&, V, andN, you will not exactly

II. EXTENSIVITY
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Table I. The entropy of a finite system is not extensiiiéne “error” col- the two functionsE(T,V,N) produced through these two

it e prnage s b or e 2. vry ierot procedures il bo Sxacty 1 samel Suly
d ’ . Y " this remarkable result requires explication.

N S 2Sus Error Rather than provide a detailed proof, undergraduate texts
typically give plausibility argument3.This is the correct

10 52.99 pedagogical choice, because the detailed prémsféch hold

20 110.14 105.98 —3.8% even for interacting particlesare excruciatingly difficulf:’

40 224.75 220.28 ~2.0% Yet any student trained to expect rigor will find this strategy
inadequate.

A reasonable approach is to discuss the equivalence of

ensembles, refer to the plausibility arguments in the text, and
double S. Only the Sackur—Tetrode formulél5), which ~ then prove the result in the ideal gas case by having the
holds in the thermodynamic limit, produces an exactly extenStudent actually execute both proceduf&uggested word-
sive entropy. The lack of extensivity can be demonstratednd for this problem is given in the appendix. Alternatively,
through the following concrete illustration. Because we needhe student could calculate the entroB¢E,V,N) using the
a purely mathematical result, we ignore dimensions and aicanonical ensemble, and compare it to the result previously
bitrarily select ky=1, E=3N, V=8N, AE=0.3\, and ot_)tai_ned using the microcanonical _enserribTEhe student
27rm/h?=1. Evaluating expressiof) for selected values of waI flnd_that_the results (_)f the two different proge(_jures are
N produces the results in Table I. Clearly, this expression fofd€€d identicalbut only in the thermodynamic limit!
the entropy imot extensive(The Appendix presents a prob-

lem that can help underscore this point for students. V. PHASE TRANSITIONS

Iced tea, boiling water, and other aspects of two-phase
lll. EQUIVALENCE OF ENSEMBLES coexistence are familiar features of daily life. Yet we will
soon see that phase transitions do not exist at all in finite
The microcanonical and canonical ensembles are concegystems! They appear only in the thermodynamic limit.
tually quite distinct. The microcanonical ensemble— A phase transition is marked by a singularitysually a
characterized b, V, andN—is a collection of microstates discontinuity in the entropy functiors(T). How can such a
I" with energiesH(I") ranging fromE to E+AE, and with  singularity appear? The Boltzmann facter "("/keT is an
equal probability of encountering any such microstate. Thexnalytic function ofT except aff=0. ForT>0 the partition
canonical ensemble—characterized By V, and N—is a  function,
collection of microstated” with any possible energy, and

with probability Z(M= >, e HO/keT (19
e H(T)/kgT microstatesT’ ’
Z(T,V,N) (16 s a sum of positive, analytic functions @f so it is a posi-

) ) _ " tive, analytic function ofT. The free energy,
of encountering microstatE. (HereZ is the partition func-
tion.) F(T)=—kgTIn(Z(T)), (20

In addition, the microcanonical and canonical ensemble§i have a singularity whenevez=0, butZ is never equal
are operationally quite distinct. For example, described bef0 zero, soF (T) is likewise analytic forT>0. The entropy.
low are the two procedures for findirg(T,V,N). ' ' '

Using the microcanonical ensemble, the procedure is to JIF
(1) find the number of accessible microstateeE,V,N), (2) S(M=- a7’ (22)
calculate the thermodynamic entropy functi@E,V,N)
=kg In(Q2), (3) calculate the temperature through the thermo
dynamic relation

is of course analytic again. Thus there is no mechanism to
produce a phase transition except at zero temperature.
The analysis of the above paragraph is absolutely correct
1 IS for finite systems. Phase transitions arise when an additional
TEVN) (£> : (17 mathematical step is introduced: the thermodynamic limit.
Y VN For any finite system, the curve 8fas a function off might
and finally (4) solve this expression foE to produce the be very steep, but it is never discontinuous. The “growth of
desired functiorE(T,V,N). a phase transition” adl approaches infinity is insightfully
In contrast, using the canonical ensemble one n@]u)st discussed in the lectures by FiSFl%IA specific example,
find the partition functiorz(T,V,N), (2) calculate the ther- With graphs, is given in Ref. 11.
modynamic free energy functiof(T,V,N)=—KkgT In(2),

and then(3) use the Gibbs—Helmholtz relation
V. DENSITY OF LEVELS IN k-SPACE

A(FIT) dlinZz
E(T.V.N)= (m) - (W) (18) Sooner or later, every statistical mechanics text introduces
VN VN the energy eigenstates of a single independent particle in a
to produce the desired functid®(T,V,N). cube of volumeV=L3 usually with periodic boundary

Despite these vast conceptual and operational differencespnditionst? These so-called levels are characterized by
the principle of “equivalence of ensembles” guarantees thatvave vectors’
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21 2000. During the 13 years that Professor Romer edited this
k=--(ncny,n;), where nj=0+1%2.... (22) journal, he has often suggested improvements in my
papers—ranging from deep physics issues to spelling
And sooner or later, in the process of executing sums ovetcorrections—but he never allowed me to acknowledge these
these levels, every text replaces these sums with volume irsuggestions. “I'm just doing my job,” he would say, and
tegrals ink-space. then use his power as editor to excise any sentence of ac-
It is clear that a sum is not an integral, so why can we geknowledgment that | had included. Now that Professor
away with this replacement? Because the distance betwedtomer is no longer editor, | am at last able to acknowledge
adjacent “allowed wavevectors” is2/L. In the thermody- his help not only in this paper, but also in all the other papers
namic limit, L—o so the allowed wave vectors become that | have published in AJP. In grateful acknowledgment |
densely packed ik space. In all but the rarest situatiogee ~ dedicate this paper to him.
the next sectionthis limit permits the sums to be replaced by
integrals.
APPENDIX

VI. BOSE CONDENSATION .
Here are two problems that can be assigned to students to

The argument for Bose condensation can be outlined aselp drive home the ideas presented in this paper.
follows:** The chemical potential(T,V,N) is determined (1) The extensivity of entrop¥ror the classical monatomic
by demanding that ideal gas, plot the entropy as a function of particle number

using both the “finite size” form(7) and the Sackur—Tetrode
N= _ 1 (23) form (15). All other things being equal, is the thermody-
~ elermkeT 1 namic limit approached more rapidly for atoms of high mass
or for atoms of low mass?
(2) Equivalence of canonical and microcanonical en-
mblesFor the classical monatomic ideal gas, the canonical
partition function is

Ve Z(TV.N) VN<zwkaT)3N/2
i AL ANTE Y
f e(é'—;L)/kBT_ldg. (24 N! h

where the one-particle levelhas energy eigenvalug . To
carry out this process, it is convenient to approximate thig
sum by an integral which, with full consideration for degen-
eracy, turns out to be

J2m?

2a%hS

N=V (A1)

° Carry out the procedure described in Sec. Il to show that the

The integral on the right cannot be evaluated in closed formenergy calculated in the canonical ensemble is
but one can establish an upper bound, namely

X i E=3NkgT. (A2)

mkgT

<V %} (2.612..). (250 In addition, start with the “finite size” microcanonical en-
h tropy equation(7) and carry out the microcanonical proce-

For a system with a giveN andV, this condition will be  dure described in Sec. Il to find

violated when the temperature is low enough. This violation 3 Se Se) (BN2)—1 Se\ (N2 -1
marks the Bose condensation. E= ENkBT:l—— 1+— 1+— —1} ]
Anyone approaching this argument critically will find it € € €

extremely suspect. “You approximated a sum by an integral, (A3)

and when that approximation proved untenable, you shoultdnder what conditions are these two expression&faten-

have gone back to evaluate the sum more accurately. Insteagtal?

you threw your hands into the air and invented a phase tran-

sition!” Indeed, arguments similar to those of Sec. IV show  ?Electronic mail: Dan.Styer@oberlin.edu

rigorously that the exact summatidi22) cannot admit a IF, Reif, Fundamentals of Statistical and Thermal PhysisteGraw-Hill,

phase transition, suggesting that the so-called “Bose conden;New York, 1965. ,

sation” is nothing but a failure of the approximation with no Charles Kittel and Herbert KroemeFhermal Physics2nd ed.(W. H.
hvsical sianifi Freeman, New York, 1980

physica Slgnlllcance. . . SRalph Baierlein, Thermal Physics(Cambridge University Press, Cam-
The resolution of this g)aradox would require more pages pridge, UK, 1999.

than are in this papér.’° Suffice it to say that when the “Daniel V. SchroederAn Introduction to Thermal PhysicéAddison-

thermodynamic limit is taken with exquisite cgend it is so Wesley, San Francisco, 2000

taken in the papers citécthen the crossover behavior at the 5Colin J. Thompsonglassical Equilibrium Statistical Mechanid¢€laren-

Bose condensation point is no mere breakdown in an ap;2°n; ©xford. UK, 1988 Chap. 3.

. . . . Michael E. Fisher, “The free energy of a macroscopic system,” Arch.
proximation, but a true physical effe¢The thermodynamic Ration. Mech. Anall17, 377—410(1964.

limit also plays an interesting, although less central, role in7payig Ruelle, Statistical Mechanics: Rigorous Resuli. A. Benjamin,

Fermi—Dirac statistics’ Also of interest is the Bose conden-  Reading, MA, 1968

sation of particles that are independent but not :f‘?éae 8Standard Mathematical Tables and Formulaelited by Daniel Zwillinger
(CRC Press, Boca Raton, FL, 199&q. (4.18.2.

See, for example, Ref. 1, pp. 205-206 and 219-232.

0Michael E. Fisher, “The nature of critical pointsl’ectures in Theoretical

A referee made numerous suggestions and posed excelle hysics(University of Colora_do Press, Boulder, Colorado, 196®l. 7,
- . . . art C, pp. 1-159. See particularly Secs. 12 and 13.
questions that |mprove_d the qua“ty Of_thls paper. PrOfessorlArthur E. Ferdinand and Michael E. Fisher, “Bounded and inhomoge-
Robert Romer, then editor of the American Journal of Phys- neous Ising models. I. Specific-heat anomaly of a finite lattice,” Phys. Rev.

ics, suggested that | write a paper on this topic back in May 185 832-846(1969.
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Bottle Bursting Apparatus. This apparatus at Denison University was bought from the Central Scientific Company of Chicago ca. 1905. In the 1927
catalogue it is listed at $3.25, including two extra 175 cc bottles. It demonstrates the incompressibility of water. The bottle is filled contpletatgrand
the top is clamped down firmly. The piston rod is then pushed down, highly incompressible water pushes against the sides of the glass bottle@nd the bott
breaks. Today, safety precautions would be taken when doing the demonst(Btiotdgraph and notes by Thomas B. Greenslade, Jr., Kenyon Qollege
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