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Statistical mechanics applies to large systems: technically, its results are exact only for infinitely
large systems in ‘‘the thermodynamic limit.’’ The importance of this proviso is often minimized in
undergraduate courses. This paper presents six paradoxes in statistical mechanics that can be
resolved only by acknowledging the thermodynamic limit. For example, it demonstrates that the
widely used microcanonical ‘‘thin phase space limit’’ must be takenafter taking the thermodynamic
limit. © 2004 American Association of Physics Teachers.
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Statistical mechanics is the study of matter in bu
Whereas undergraduate courses in subjects like classic
quantum mechanics are loath to approach the three-b
problem, statistical mechanics courses routinely deal w
the 6.0231023-body problem. How can one subject be
generous with particle number while others are so parsi
nious?

The answer has two facets: First, statistical mechan
asks different questions from, say, classical mechanics.
stead of trying to trace all the particle trajectories for all tim
statistical mechanics is content to ask, for example, how
mean energy varies with temperature and pressure. Sec
statistical mechanics turns the difficulty of bigness into
blessing by insisting on treating only very large systems
which many of the details of system size fade into insign
cance. The formal, mathematical term for this bigness c
dition is ‘‘the thermodynamic limit.’’

For example, in a fluid system specified by the tempe
tureT, volumeV, and particle numberN, statistical mechan-
ics can calculate the Helmholtz free energyF(T,V,N), but
usually finds that function interesting only in the limit th
V→` and N→` in such a way that their ratior5N/V
approaches a finite quantity. In this so-called thermodyna
limit, the free energyF itself grows to infinity, but the free
energy per particlef N(T,r)5F(T,V,N)/N is expected to
approach a finite value.

Alternatively, in the microcanonical ensemble, this flu
system would be specified by energyE, volumeV, and par-
ticle numberN. The function of interest is now the entrop
S(E,V,N), and one expects that a doubling ofE, V, andN
will result in a doubling ofS. However, we shall soon se
that this expectation—the expectation of extensivity—is
exact for any finite system. The expectation holds with
creasing accuracy for larger and larger systems, but is
actly true only in the thermodynamic limit.

Why should anyone care about results in the thermo
namic limit, when every real system is finite? Because r
bulk systems have so many particles that they can be con
ered to exist in the thermodynamic limit. As the system s
increases, the free energy densityf N5F/N approaches the
limiting value f ` , and typically the difference betweenf 1023

and f ` is smaller than experimental error.
Undergraduate statistical mechanics texts usually h

little to say directly about the thermodynamic limit. Inste
of an explicit mention, they vaguely invoke a ‘‘large sy
tem.’’ Of the four well-known texts by Reif,1 Kittel and
25 Am. J. Phys.72 ~1!, January 2004 http://aapt.org/a
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Kroemer,2 Baierlein,3 and Schroeder,4 only the last one men-
tions the thermodynamic limit at all. This is a pity, becau
any student trained to ask questions and to delve into
meanings behind equations will find confusing situatio
in statistical mechanics, and these confusions will van
only when the thermodynamic limit is invoked. This pap
introduces six such cases and shows how the resulting p
doxes are resolved in the thermodynamic limit. Those de
ing a more systematic treatment of the thermodynamic li
should consult Thompson,5 or Fisher,6 or the definitive for-
mal treatment by Ruelle.7

I. THE LIMIT OF THIN PHASE SPACE

Here is a story of statistical mechanics in the microcano
cal ensemble: The system consists ofN identical, classical
particles~perhaps interacting, perhaps independent! confined
to a container of volumeV. The energy is known to have
some value betweenE and E1DE. The volume of phase
space corresponding to this energy range is ca
W(E,DE,V,N), and the entropy is given by

S~E,V,N!5kB ln$W~E,DE,V,N!/h3NN! %, ~1!

whereh is Planck’s constant. The use of an energy rangeDE
is, of course, nothing but a mathematical convenience. At
end of any calculation, we will take the ‘‘thin phase spa
limit,’’ namely DE→0.

Really? Why wait for the end of the calculation? In th
limit DE→0, the phase-space volumeW vanishes, so
S5kB ln(0)52`. This holds true for any system, wheth
gas, liquid, or solid. We have just completed all possib
statistical mechanical calculations, and found that the re
is necessarily trivial!

Obviously something is wrong with the above analys
but what? Rather than resolve the paradox in the most g
eral case, we look to the simplest special case, namely
monatomic ideal gas. For this system, phase space con
of 3N position-space dimensions and 3N momentum-space
dimensions. Because the particles are restricted to posit
within the box, the position-space dimensions contribut
factor of VN to W. The total energy is

1

2m
~p1,x

2 1p1,y
2 1p1,z

2 1¯1pN,x
2 1pN,y

2 1pN,z
2 !, ~2!

wherem is the mass of each particle, so the energy rest
tion implies that the accessible region in momentum spac
25jp © 2004 American Association of Physics Teachers
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a spherical shell with inner radiusA2mE and outer radius
A2m(E1DE). The volume of ad-dimensional sphere is8

Vd~r !5
pd/2

~d/2!!
r d, ~3!

so the volume of this 3N-dimensional shell is

p3N/2

~3N/2!!
@~2m~E1DE!!3N/22~2mE!3N/2#, ~4!

whence

W~E,DE,V,N!5VN
~2pmE!3N/2

~3N/2!! F S 11
DE

E D 3N/2

21G .
~5!

~I have rearranged the expressions to make the dimens
more apparent: The quantity in square brackets is dimens
less.!

The entropy follows immediately. It is

S5kB lnH W

N!h3N J
5kB lnH S 2pmEV2/3

h2 D 3N/2 1

N! ~3N/2!!

3F S 11
DE

E D 3N/2

21G J , ~6!

so

S

kB
5

3

2
N lnS 2pmEV2/3

h2 D2 ln N! 2 lnS 3

2
ND !

1 lnF S 11
DE

E D 3N/2

21G . ~7!

What happens when we take the limitDE→0? As demanded
by the paradox, the entropy approaches ln(0)52`.

The problem with this result for the entropy is that it a
tempts to hold for systems of any size. In justifying the de
nition of the entropy one relies upon the assumption o
‘‘large’’ system, but in deriving the above expression w
never made use of that assumption. In fact, our expecta
that we could letDE→0 and obtain a sensible result hold
only approximately for finite systems: the expectation ho
to higher and higher accuracy for larger and larger syste
but it holds exactly only for infinite systems, that is, f
systems in the thermodynamic limit.

The thermodynamic limit, in the microcanonical cas
consists of allowing the system’s particle number, volum
energy, and energy spread all to grow without bound, bu
do so in such a way that the intensive ratios remain fin
That is, we allow

N→` in such a way thatV/N →v, E/N →e,

and DE/N →de. ~8!

In this limit we expect that the entropy will grow linearl
with system size, that is,

S~E,DE,V,N!→Ns~e,v,de!. ~9!

To prepare for taking the thermodynamic limit of Eq.~7!,
write V asvN, E aseN, andDE asdeN, so that the only
extensive variable isN. This results in
26 Am. J. Phys., Vol. 72, No. 1, January 2004
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S

kB
5

3

2
N lnS 2pmev2/3N5/3

h2 D2 ln N! 2 lnS 3

2
ND !

1 lnF S 11
de

e D 3N/2

21G
5

3

2
N lnS 2pmev2/3

h2 D
1

3

2
N ln N5/32 ln N!2lnS 3

2
ND !1lnF S 11

de

e D 3N/2

21G .
~10!

Now use Stirling’s approximation,

ln n!'n ln n2n for n@1, ~11!

to simplify the expressions like ln(3
2N)! above. The middle

three terms are approximately~in an approximation that be
comes exact asN→`)

3
2N ln N5/32 ln N! 2 ln~ 3

2N!!' 5
2N ln N2N ln N1N

2~ 3
2N!ln~ 3

2N!1 3
2N

5N@ 5
22 3

2 ln~ 3
2!#. ~12!

After this manipulation, we have

S

kB
'

3

2
N lnS 2pmev2/3

h2 D1NF5

2
2

3

2
lnS 3

2D G
1 lnF S 11

de

e D 3N/2

21G . ~13!

All the pieces grow linearly withN except for the right-
most one—the piece related toDE! In this rightmost piece,
asN grows, the term (11de/e)3N/2 completely dominates 1
asN→` ~so long asde/e is positive, no matter how small!.
Thus

lnF S 11
de

e D 3N/2

21G' lnS 11
de

e D 3N/2

5
3

2
N lnS 11

de

e D . ~14!

This term is not only linear withN in the thermodynamic
limit, it also has a well-behaved limit~it vanishes! when
de→0!

This special case, the ideal gas, illustrates the general p
ciple that resolves our paradox: One must first take the th
modynamic limitN→`, and only then take the ‘‘thin phas
space’’ limit de[DE/N→0.

With this understanding in place, we find that the entro
is finite whenDE→0, that it does indeed grow linearly with
N, and that it is given by the well-known Sackur–Tetro
formula

S~E,V,N!5kBNF3

2
lnS 4pmev2/3

3h2 D1
5

2G . ~15!

II. EXTENSIVITY

The expression~7! for the entropy of a finite system is no
extensive: If you doubleE, V, andN, you will not exactly
26Daniel F. Styer
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double S. Only the Sackur–Tetrode formula~15!, which
holds in the thermodynamic limit, produces an exactly ext
sive entropy. The lack of extensivity can be demonstra
through the following concrete illustration. Because we ne
a purely mathematical result, we ignore dimensions and
bitrarily select kB51, E53N, V58N, DE50.3N, and
2pm/h251. Evaluating expression~7! for selected values o
N produces the results in Table I. Clearly, this expression
the entropy isnot extensive.~The Appendix presents a prob
lem that can help underscore this point for students.!

III. EQUIVALENCE OF ENSEMBLES

The microcanonical and canonical ensembles are con
tually quite distinct. The microcanonical ensemble
characterized byE, V, andN—is a collection of microstates
G with energiesH(G) ranging fromE to E1DE, and with
equal probability of encountering any such microstate. T
canonical ensemble—characterized byT, V, and N—is a
collection of microstatesG with any possible energy, an
with probability

e2H(G)/kBT

Z~T,V,N!
~16!

of encountering microstateG. ~HereZ is the partition func-
tion.!

In addition, the microcanonical and canonical ensemb
are operationally quite distinct. For example, described
low are the two procedures for findingE(T,V,N).

Using the microcanonical ensemble, the procedure is
~1! find the number of accessible microstatesV(E,V,N), ~2!
calculate the thermodynamic entropy functionS(E,V,N)
5kB ln(V), ~3! calculate the temperature through the therm
dynamic relation

1

T~E,V,N!
5 S ]S

]ED
V,N

, ~17!

and finally ~4! solve this expression forE to produce the
desired functionE(T,V,N).

In contrast, using the canonical ensemble one must~1!
find the partition functionZ(T,V,N), ~2! calculate the ther-
modynamic free energy functionF(T,V,N)52kBT ln(Z),
and then~3! use the Gibbs–Helmholtz relation

E~T,V,N!5 S ]~F/T!

]~1/T! D
V,N

52 S ] ln Z

]b D
V,N

~18!

to produce the desired functionE(T,V,N).
Despite these vast conceptual and operational differen

the principle of ‘‘equivalence of ensembles’’ guarantees t

Table I. The entropy of a finite system is not extensive.~The ‘‘error’’ col-
umn lists the percentage difference between, for example,S20 and 2S10 . If
the entropy were extensive, all the entries in this column would be zer!

N SN 2SN/2 Error

10 52.99
20 110.14 105.98 23.8%
40 224.75 220.28 22.0%
27 Am. J. Phys., Vol. 72, No. 1, January 2004
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the two functionsE(T,V,N) produced through these tw
very different procedures will be exactly the same! Sure
this remarkable result requires explication.

Rather than provide a detailed proof, undergraduate te
typically give plausibility arguments.9 This is the correct
pedagogical choice, because the detailed proofs~which hold
even for interacting particles! are excruciatingly difficult.6,7

Yet any student trained to expect rigor will find this strate
inadequate.

A reasonable approach is to discuss the equivalence
ensembles, refer to the plausibility arguments in the text,
then prove the result in the ideal gas case by having
student actually execute both procedures.@Suggested word-
ing for this problem is given in the appendix. Alternativel
the student could calculate the entropyS(E,V,N) using the
canonical ensemble, and compare it to the result previou
obtained using the microcanonical ensemble.# The student
will find that the results of the two different procedures a
indeed identical,but only in the thermodynamic limit!

IV. PHASE TRANSITIONS

Iced tea, boiling water, and other aspects of two-ph
coexistence are familiar features of daily life. Yet we w
soon see that phase transitions do not exist at all in fi
systems! They appear only in the thermodynamic limit.

A phase transition is marked by a singularity~usually a
discontinuity! in the entropy functionS(T). How can such a
singularity appear? The Boltzmann factore2H(G)/kBT is an
analytic function ofT except atT50. ForT.0 the partition
function,

Z~T!5 (
microstatesG

e2H(G)/kBT, ~19!

is a sum of positive, analytic functions ofT, so it is a posi-
tive, analytic function ofT. The free energy,

F~T!52kBT ln~Z~T!!, ~20!

will have a singularity wheneverZ50, butZ is never equal
to zero, soF(T) is likewise analytic forT.0. The entropy,

S~T!52
]F

]T
, ~21!

is of course analytic again. Thus there is no mechanism
produce a phase transition except at zero temperature.

The analysis of the above paragraph is absolutely cor
for finite systems. Phase transitions arise when an additio
mathematical step is introduced: the thermodynamic lim
For any finite system, the curve ofS as a function ofT might
be very steep, but it is never discontinuous. The ‘‘growth
a phase transition’’ asN approaches infinity is insightfully
discussed in the lectures by Fisher.10 A specific example,
with graphs, is given in Ref. 11.

V. DENSITY OF LEVELS IN k-SPACE

Sooner or later, every statistical mechanics text introdu
the energy eigenstates of a single independent particle
cube of volumeV5L3, usually with periodic boundary
conditions.12 These so-called levels are characterized
wave vectors13
27Daniel F. Styer
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L
~nx ,ny ,nz!, where ni50,61,62,... . ~22!

And sooner or later, in the process of executing sums o
these levels, every text replaces these sums with volume
tegrals ink-space.

It is clear that a sum is not an integral, so why can we
away with this replacement? Because the distance betw
adjacent ‘‘allowed wavevectors’’ is 2p/L. In the thermody-
namic limit, L→` so the allowed wave vectors becom
densely packed ink space. In all but the rarest situations~see
the next section! this limit permits the sums to be replaced b
integrals.

VI. BOSE CONDENSATION

The argument for Bose condensation can be outlined
follows:14 The chemical potentialm(T,V,N) is determined
by demanding that

N5(
r

1

e(er2m)/kBT21
, ~23!

where the one-particle levelr has energy eigenvaluee r . To
carry out this process, it is convenient to approximate t
sum by an integral which, with full consideration for dege
eracy, turns out to be

N5VF A2m3

2p2\3G E
0

` AE
e(E2m)/kBT21

dE. ~24!

The integral on the right cannot be evaluated in closed fo
but one can establish an upper bound, namely

N,VF2pmkBT

h2 G3/2

~2.612...!. ~25!

For a system with a givenN and V, this condition will be
violated when the temperature is low enough. This violat
marks the Bose condensation.

Anyone approaching this argument critically will find
extremely suspect. ‘‘You approximated a sum by an integ
and when that approximation proved untenable, you sho
have gone back to evaluate the sum more accurately. Ins
you threw your hands into the air and invented a phase t
sition!’’ Indeed, arguments15 similar to those of Sec. IV show
rigorously that the exact summation~22! cannot admit a
phase transition, suggesting that the so-called ‘‘Bose cond
sation’’ is nothing but a failure of the approximation with n
physical significance.

The resolution of this paradox would require more pag
than are in this paper.15,16 Suffice it to say that when the
thermodynamic limit is taken with exquisite care~and it is so
taken in the papers cited!, then the crossover behavior at th
Bose condensation point is no mere breakdown in an
proximation, but a true physical effect.~The thermodynamic
limit also plays an interesting, although less central, role
Fermi–Dirac statistics.17 Also of interest is the Bose conden
sation of particles that are independent but not free.18!
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APPENDIX

Here are two problems that can be assigned to studen
help drive home the ideas presented in this paper.

~1! The extensivity of entropy: For the classical monatomi
ideal gas, plot the entropy as a function of particle num
using both the ‘‘finite size’’ form~7! and the Sackur–Tetrod
form ~15!. All other things being equal, is the thermod
namic limit approached more rapidly for atoms of high ma
or for atoms of low mass?

~2! Equivalence of canonical and microcanonical e
sembles: For the classical monatomic ideal gas, the canon
partition function is

Z~T,V,N!5
VN

N! S 2pmkBT

h2 D 3N/2

. ~A1!

Carry out the procedure described in Sec. III to show that
energy calculated in the canonical ensemble is

E5 3
2NkBT. ~A2!

In addition, start with the ‘‘finite size’’ microcanonical en
tropy equation~7! and carry out the microcanonical proc
dure described in Sec. III to find

E5
3

2
NkBTH12

de

e S 11
de

e D (3N/2)21FS 11
de

e D (3N/2)

21G21J .

~A3!

Under what conditions are these two expressions forE iden-
tical?
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Bottle Bursting Apparatus. This apparatus at Denison University was bought from the Central Scientific Company of Chicago ca. 1905. In
catalogue it is listed at $3.25, including two extra 175 cc bottles. It demonstrates the incompressibility of water. The bottle is filled completely with water, and
the top is clamped down firmly. The piston rod is then pushed down, highly incompressible water pushes against the sides of the glass bottle, anle
breaks. Today, safety precautions would be taken when doing the demonstration!~Photograph and notes by Thomas B. Greenslade, Jr., Kenyon Colleg!
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