Física Teórica 3 — segundo cuatrimestre de 2024

Guía 6: estadística de Fermi—Dirac

- 1. En tres dimensiones, para partículas idénticas, no interactuantes, no relativistas, de masa m en una caja cúbica de volumen V, mostrar que $\log \mathbb{Z}(\beta, V, z)$ sólo depende de β y V a través del producto $\beta V^{-2/3}$, independientemente de que las partículas sean bosones o fermiones y de que se pueda o no aproximar la suma sobre estados por una integral. Determinar la relación entre la densidad de energía y la presión.
- 2. Para fermiones no interactuantes, considerar un estado de una partícula de energía ϵ . Calcular el número medio de ocupación $n(\epsilon, z)$. En términos de n, escribir la probabilidad de que el estado esté ocupado y la varianza del número de ocupación.
- 3. Mostrar que la función de partición gran canónica para fermiones no interactuantes puede escribirse como

$$\log \mathcal{Z} = \sum_{j=1}^{\infty} (-1)^{j+1} \frac{z^{j}}{j} Z_{1}(j\beta), \tag{1}$$

donde Z_1 es la función de partición canónica de una partícula. A partir de aquí, encontrar las funciones de partición canónicas de 1, 2, 3, 4 y 5 fermiones en términos de Z_1 .

- 4. Asumiendo que la suma sobre los estados puede reemplazarse por una integral,* escribir, en términos de las funciones de Fermi–Dirac, la función de partición en el ensamble gran canónico para un gas ideal de fermiones de espín s contenido en una caja de volumen V. A partir de este resultado, encontrar la función de partición en el ensamble canónico para 1, 2, 3, 4 y 5 fermiones. Comparar con el problema anterior.
- 5. Para un gas ideal de N fermiones de espín s en una caja de volumen V, calcular ϵ_F , la energía por partícula y la presión, ambas cantidades a T = 0.
- 6. Considerar un gas ideal de N fermiones de espín s en una trampa armónica tridimensional de frecuencia ω en el límite termodinámico bajo la aproximación semiclásica.
 - a) Calcular la energía de Fermi, $\epsilon_{\rm F}$.
 - b) Calcular la energía por partícula cuando T=0, expresada sólo en términos de $\varepsilon_{\rm F}$.
- 7. **Masa de Chandrasekhar**. Las enanas blancas son estrellas compuestas principalmente de helio a una temperatura del orden de 10⁷ K y a una densidad de unos 10¹⁰ kg/m³. A esta temperatura, los átomos de helio están completamente ionizados. Cada núcleo de helio tiene una masa de aproximadamente 4m_p, donde m_p es la masa del protón.

^{*}En general, asumir que esto es válido en el resto de los problemas.

- a) Mostrar que puede considerarse que el gas de electrones está a temperatura cero, pero que, sin embargo, no puede tratarse como un gas no relativista.
- b) Asumiendo que la estrella es homogénea, su energía potencial es $E_{\rm g}=-3 {\rm G} M^2/5 R$, donde M y R son, respectivamente, la masa y el radio de la estrella. Calcular su energía cinética $E_{\rm e}$ en función de M y de R, despreciando la contribución de los núcleos y aproximando la relación de dispersión de los electrones a primer orden en m^2 ,

$$\varepsilon = \sqrt{m^2c^4 + (pc)^2} \simeq pc + \frac{m^2c^3}{2p}. \tag{2}$$

- c) En equilibrio, el radio toma el valor que minimiza la energía (¿por qué?). Mostrar que existe una masa límite $M_{\rm C}$ tal que, para $M > M_{\rm C}$, no hay ningún radio de equilibrio. Esa masa se conoce como el límite de Chandrasekhar. Calcular $M_{\rm C}$ en unidades de la masa solar, $M_{\odot} \approx 2 \times 10^{30}$ kg.
- d) Mostrar que no existiría una masa límite si el gas de electrones fuera no relativista.
- 8. Un modelo simplificado de una estrella de neutrones asume que la estrella consiste en un gas ideal relativista de fermiones de masa m y espín $\frac{1}{2}$. El gas está a temperatura cero. Considerar una región de volumen V en equilibrio local que, en promedio, contiene N partículas. Si $\epsilon_0 = mc^2$, la energía de una partícula con momento \mathbf{p} es

$$\epsilon(\mathbf{p}) = \sqrt{\epsilon_0^2 + (\mathbf{pc})^2}.$$
(3)

- a) Mostrar que Vp_F^3 es constante, donde p_F es el impulso de Fermi.
- b) Mostrar que la energía puede expresarse como

$$U = 3N\varepsilon_0 \int_0^1 dx \, x^2 \sqrt{1 + x^2 \left(\frac{p_F}{mc}\right)^2}. \tag{4}$$

c) Mostrar que la presión está dada por

$$P = \frac{N}{V} \frac{p_{\rm F}^2}{m} \int_0^1 dx \, \frac{x^4}{\sqrt{1 + x^2 \left(\frac{p_{\rm F}}{mc}\right)^2}}.$$
 (5)

- d) Determinar la primera corrección de masa finita para el caso ultrarrelativista y la primera corrección en potencias inversas de c para el caso no relativista.
- e) Verificar estos resultados calculando explícitamente la integral del ítem c).
- 9. **Paramagnetismo de Pauli I**. Un gas ideal de N electrones está contenido en una caja de volumen V. Los electrones interactúan con un campo magnético externo $\mathbf{H}=\mathbf{H}\hat{z}$. La energía de interacción es $\varepsilon_s=s\mu_e\mathbf{H}$, donde s es el signo de la proyección del espín en la dirección \hat{z} y μ_e es el valor absoluto del momento magnético de los electrones. El sistema está a temperatura cero.

Guía 6 3

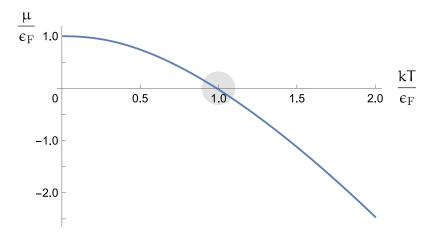
a) Escribir la ecuación que determina la energía de Fermi en función de N, V y H. Representar gráficamente.

- b) Calcular la magnetización por partícula M en función de la densidad de partículas, de la energía de Fermi y H.
- c) Calcular la susceptibilidad, es decir, la derivada de M respecto de H cuando H tiende a cero. El resultado debe quedar escrito únicamente en términos de $\epsilon_{\rm F}$.
- 10. Paramagnetismo de Pauli II. Considere un gas ideal de N electrones en una trampa armónica tridimensional de frecuencia ω en el límite termodinámico. La temperatura es cero. Los electrones interactúan con un campo magnético externo H = Hẑ. Es válido aplicar la aproximación semiclásica.
 - a) Escribir la ecuación que determina la energía de Fermi como función de N, ω y H.
 - b) Escribir la magnetización por partícula en función de la energía de Fermi, N, ω y H.
 - c) Calcular la susceptibilidad. El resultado debe quedar escrito sólo en términos de $\epsilon_{\rm F}$.
- 11. Para un gas ideal de N fermiones de espín s confinado en una superficie de área A:
 - a) Escribir las ecuaciones paramétricas que determinan P y U como funciones de T, A y N.
 - b) Encontrar la energía de Fermi en términos de la densidad de partículas.
 - c) Mostrar que el potencial químico, como función de la temperatura, es:

$$\mu(\mathsf{T}) = \epsilon_{\mathsf{F}} \left[1 + \frac{1}{\beta \epsilon_{\mathsf{F}}} \log \left(1 - e^{-\beta \epsilon_{\mathsf{F}}} \right) \right]. \tag{6}$$

- d) Escribir las primeras correcciones de temperatura finita para $\mu(T)$ y mostrar que el lema de Sommerfeld no es aplicable en esta situación.
- e) Calcular el calor específico cuando el gas está altamente degenerado.
- 12. a) Para un gas ideal de fermiones de espín s, escribir las ecuaciones paramétricas que determinan μ , S, P, U y c_V como funciones de T, V y N.
 - b) Calcular estas cantidades para T=0 y obtener sus primeras correcciones a temperatura finita.
 - c) Mostrar que, para $z\ll 1$, se recupera el límite clásico. Encontrar las primeras correcciones cuánticas para la energía, el calor específico y la ecuación de estado.
 - d) Graficar PV/N y c_V en función de T y verificar que se obtienen los comportamientos esperados para temperaturas muy bajas y temperaturas muy altas.
- 13. Ídem al problema anterior, pero ahora considerar que el gas es ultrarrelativista.

- 14. Considere un gas ideal de N fermiones de espín s en una trampa armónica tridimensional de frecuencia ω en el límite termodinámico y bajo la aproximación semiclásica.
 - a) Escribir las ecuaciones paramétricas que determinan μ , S, U y c_{ω} en función de T, ω y N.
 - b) Calcular estas cantidades para T = 0 y obtener sus primeras correcciones a temperatura finita.
 - c) Mostrar que, para $z \ll 1$, se recupera el límite clásico. Encontrar las primeras correcciones cuánticas para la energía y al calor específico.
- 15. (Dalvit *et al.*, Problema 4.20a). Un recipiente de volumen V está dividido en dos compartimientos mediante un tabique impermeable, móvil y conductor del calor. En un compartimiento hay N fermiones de espín $\frac{1}{2}$, y en el otro N fermiones de espín $\frac{3}{2}$. Las dos clases de partículas tienen la misma masa. El sistema está a temperatura T. Encontrar la relación V_1/V_2 entre los volúmenes que ocupa cada gas. Hacer el cálculo primero para T=0 y luego encontrar la primera corrección para T>0.
- 16. Para terminar, un problema fácil. Un gas de N fermiones de espín s y masa m está contenido en un recipiente de volumen V en tres dimensiones. La figura muestra el potencial químico en función de la temperatura.



- a) Mire la figura. Tiene cinco segundos para responder: en términos de la energía de Fermi, ¿para qué valor de kT es μ igual a cero?
- b) Ahora tómese el tiempo que necesite: en términos de la energía de Fermi, ¿para qué valor de kT es μ igual a cero?
- c) A partir de la primera corrección de temperatura finita para el potencial químico, estime el valor de kT para el cual μ es igual a cero y compare con el resultado exacto.
- d) En general, para un gas en d dimensiones, encontrar y graficar la temperatura a la que se anula el potencial químico. ¿Para qué valor de d el potencial químico se anula cuando $kT = \varepsilon_F$?