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Tonal relationships are foundational in music, providing the basis upon which musical structures, such as melodies,
are constructed and perceived. A recent dynamic theory of musical tonality predicts that networks of auditory
neurons resonate nonlinearly to musical stimuli. Nonlinear resonance leads to stability and attraction relationships
among neural frequencies, and these neural dynamics give rise to the perception of relationships among tones that
we collectively refer to as tonal cognition. Because this model describes the dynamics of neural populations, it makes
specific predictions about human auditory neurophysiology. Here, we show how predictions about the auditory
brainstem response (ABR) are derived from the model. To illustrate, we derive a prediction about population
responses to musical intervals that has been observed in the human brainstem. Our modeled ABR shows qualitative
agreement with important features of the human ABR. This provides a source of evidence that fundamental principles
of auditory neurodynamics might underlie the perception of tonal relationships, and forces reevaluation of the role
of learning and enculturation in tonal cognition.
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Stability and attraction are central to the theory of
tonal music. In tonal melodies, less stable tones are
perceived as points of tension or dissonance, and
more stable tones are perceived as points of re-
laxation or consonance.1–3 These relationships can
be summarized as a hierarchy of relative stabil-
ity, in which less stable tones are heard in rela-
tion to more stable ones.3 More stable tones are
said to attract the less stable tones; alternatively less
stable tones are said to point toward more stable
ones. Tonal percepts are essential because the in-
ternal pointing of one tone toward other tones is
thought to function analogously to the meaning of
words in language, imbuing nonreferential sound
patterns with musical meaning.4 Tonal relationships
are universal in the sense that the melodies of vir-
tually all musical systems are believed to elicit tonal
percepts. Like the meanings of words in different
languages, however, tonal relationships in different
musical systems are thought to be learned through
enculturation.

What types of processes in the nervous sys-
tem might lead to tonal cognition? Early theo-
ries of tonality suggested that relationships among
tone frequencies governed perceived tonal relation-
ships.5 More modern theories of auditory function
held that the auditory system performs a rough
Fourier analysis of sound.6,7 They argued against
frequency ratio theories because from the linear
frequency analysis point of view, there is nothing
special about frequency ratios.6 However, recent ev-
idence of highly nonlinear processing in the audi-
tory nervous system demands reevaluation of this
argument because, in nonlinear systems, frequency
ratio relationships are important determinants of
system behavior. Nonlinear responses are found in
the active processes of the cochlea,8,9 and in neu-
ral populations of the cochlear nucleus, inferior
colliculus, and higher auditory areas,10–13 in which
neural activity time-locks to stimulus periodicities
up to hundreds of hertz or more. Cochlear outer
hair cells and auditory neurons do not decompose
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Figure 1. Nonlinear responses to harmonic musical intervals in the human auditory brainstem.23 For consonant (A) and dissonant
(B) intervals the brainstem response includes not only stimulus frequencies, but also nonlinear resonances not present in the auditory
stimulus.

signals into orthogonal bands; instead, each re-
sponds to multiple related frequencies in a man-
ner that is fundamentally different from linear tech-
niques, such as Fourier analysis.

Two recent approaches to musical tonality ap-
peal to the theory of nonlinear dynamical systems
to explain the perception of consonance and disso-
nance in musical intervals14 and stability and attrac-
tion in musical melodies.15,16 Our approach predicts
that, as auditory neurons resonate to musical stim-
uli, dynamical stability and attraction relationships
arise among neural frequencies. This model of neu-
ral population dynamics makes accurate perceptual
predictions.15 Moreover, the theory is formulated at
an appropriate level to make predictions about au-
ditory population responses. Here, we explore pre-
dictions about the processing of sound in the human
auditory brainstem.

Background

In the central auditory system, action potentials
time-lock to both the fine time structure and the
temporal envelope modulations of auditory stim-
uli at many different levels, including cochlear
nucleus, superior olive, inferior colliculus (IC),
thalamus, and A1.17,18 Nonlinear spectrotemporal
receptive fields (STRFs) have been identified in the
inferior colliculus (IC) of the cat,10 the gerbil,12

and in cat primary auditory cortex.13 Nonlinear re-
sponses to intervals composed of pure tones have
been identified in the brainstem auditory evoked

potentials of guinea pigs.19 In humans, nonlinear
frequency-following responses (FFRs) have been
observed in the brainstem using electroencephalog-
raphy (EEG),20,21 and in the auditory cortex using
steady-state methods in magnetoencephalography
(MEG).22

In one recent study, highly nonlinear responses
to harmonic musical intervals were measured in
the human auditory brainstem response (ABR; see

Figure 2. Two models of time-locked activity. (A) Phase-locked
spiking in the central auditory system may represent passive
transmission of synchronized basilar membrane motion via a
labeled line code. (B) Alternatively, time-locked nonlinear neu-
ral activity may be carried forward by active oscillatory circuits
in the central auditory system. Adapted from Ref. 31.

E2 Ann. N.Y. Acad. Sci. 1252 (2012) E1–E7 c© 2012 New York Academy of Sciences.
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Figure 3. Time-locking of action potentials in the auditory system. (A) Phase-locking and (B) mode-locking (2:1) of an auditory
medulla neuron in the fish Pollimyrus to two different stimulus frequencies.27

Fig. 1).23 For two common musical intervals, the
brainstem representation was composed of not only
stimulus frequencies, but also numerous resonances
at frequencies that were not present in the auditory
stimulus. Note that these nonlinear responses could
not be explained as cochlear distortion products
because the fundamental frequency ratios of the in-
tervals were 1.6 (166 Hz/99 Hz) and 1.7 (166 Hz/93
Hz). Cochlear distortion products decrease rapidly
for frequency ratios greater than about 1.3, mak-
ing it highly unlikely that the observed resonances
arose in the cochlea.24,25 Thus, for these stimuli,
the observed nonlinearities must have originated
mainly in the neural processes of the central auditory
system.

Findings of nonlinear processing in the au-
ditory system challenge the assumptions of tra-
ditional auditory models. However, significant
theoretical advances in the study of neural signal
processing will be necessary to understand this form
of biological signal processing and pattern analy-
sis. Our approach is to reconsider the fundamental
assumption that phase-locked spiking in the cen-
tral auditory system represents passive transmission
of synchronized basilar membrane motion.26 Figure
2A illustrates this standard assumption, while Figure
2B illustrates the alternative hypothesis that time-
locked neural activity is carried forward by active
oscillatory circuits in the central auditory system,
leading to nonlinear STRFs and ABRs.

If time-locked activity depends on active oscil-
latory circuits, one might observe not only phase-
locking, but also mode-locking in central auditory
neurons. Mode-locking is a generalization of phase-
locking in which the interaction between the dy-
namics of a nonlinear oscillator and a periodic stim-

ulus causes m cycles of the oscillator to lock to k
cycles of the stimulus. Figure 3A and B illustrate
phase-locking and mode-locking, respectively, of an
auditory medulla neuron in the fish Pollimyrus to
different stimulus frequencies.27 In panel A the neu-
ron produces one spike per cycle, and in panel B the
neuron produces two spikes per cycle, at specific
phases of stimulation. Mode-locked spiking pat-
terns have also been observed in vitro under den-
dritic cell (DC) injection,28–30 and mode-locking to
temporal envelope modulations of acoustic signals
has been reported in guinea pig cochlear nucleus
chopper and onset neurons.31

Theory and model

Mode-locked dynamics can be observed in generic
neuron models32,33 and in models of oscillatory neu-
ral populations.34,35 To investigate the implications
of mode-locking for neural population responses,
we consider a generic network of n nonlinear os-
cillators, arranged tonotopically according to the
natural frequency (fi = 1/τi):

τi żi = zi

(
α + i2� + (β1 + iδ1)|zi |2

+
(β2 + iδ2)ε|zi |4

1 – ε|zi |2

)
+ RT.

(1)

The notation ż denotes the derivative of z with
respect to time, dz/dt . Here, � is a bifurcation pa-
rameter, β1 and β2 are amplitude compression pa-
rameters, and ε controls the amount of nonlinearity
in the system. For simplicity, it is assumed that δ1,
δ2 = 0, and β2 = –1.

In this generic model, each k:m locked mode is
captured by a specific term, called a monomial, in
a series of resonant terms (RT). For example, we

Ann. N.Y. Acad. Sci. 1252 (2012) E1–E7 c© 2012 New York Academy of Sciences. E3
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Figure 4. Network architecture. Three-layered auditory processing network architecture representing the cochlea, cochlear nucleus
(CN), and the inferior colliculus (IC). The cochlear layer simulates nonlinear cochlear filtering of the instantaneous pressure
waveform (in Pascals). The CN and IC networks simulate mode-locked responses to cochlear signals.

can capture mode-locking to a sinusoidal stimu-
lus of unknown frequency, x(t), using the following
definition:35

RT =x +
√

εxz̄ + εxz̄2 + ε
√

εxz̄3 + . . .

+
√

εx2 + εx2 z̄ + ε
√

εx2 z̄2 + ε2x2 z̄3 + . . .

+ εx3 + ε
√

εx3 z̄ + ε2x3 z̄2 + ε2√εx3 z̄3 + . . .

+ ε
√

εx4 +ε2x4 z̄ +ε2√εx4 z̄2 +ε3x4 z̄3 + . . .

= (x +
√

εx2 + εx3 + ε
√

εx4 + . . .)

· (1 +
√

εz̄ + εz̄2 + ε
√

� z̄3 + . . .).
(2)

In general, mode-locked responses depend on
the frequency of the stimulus and the intrinsic
frequency of the oscillator. When the relationship
between stimulus frequency, f , and oscillator fre-
quency, f0 , is kf � mfo the monomial governs k:m
mode-locking behavior. Moreover, when the stimu-
lus contains more than one frequency component,
resonant terms also include summation frequencies
(e.g., f1+f2) and difference frequencies (e.g., f2–f1),
in addition to harmonics (k ∗ f1), subharmonics
(f1/m), and integer ratios (e.g., k ∗ f1/m), where f1

and f2 are stimulus frequencies, and k and m are
integers.36 The greater the relative amplitudes, the
stronger the mode-locking. Mode-locked responses
are stable over regions of parameter space called
Arnold tongues.37 Mode-locking regions have im-

plications for the perception of tonal stability and
attraction.15

Predicting the auditory brainstem
response

To understand the implications for brainstem neu-
rophysiology, we constructed a network as shown
in Figure 4, in which one network simulated non-
linear cochlear filtering, and the second and third
networks simulate mode-locked responses in the
cochlear nucleus (CN) and inferior colliculus (IC),
respectively. Outer hair cell dynamics were mod-
eled using critical Hopf oscillators, capturing the
amplification, compression, and frequency selectiv-
ity of cochlear processing.38 Basilar membrane cou-
pling39,40 was captured as local diffusive coupling.
The dynamics of CN and IC networks were mod-
eled using active mode-locking oscillators, which
received afferent input from all frequency channels.
Simple multifrequency coupling was chosen to en-
able mode-locking to combination frequencies in
the IC network, without assuming any more specific
connectivity arrangement, and oscillators within the
CN and IC networks were not coupled internally.
Parameters for the cochlear model were α = 0, β1 =
–100; for the CN network, α= 0.1, β1 = –10; and for
the IC network, α = 0.01, β1 = –1. Characteristic

E4 Ann. N.Y. Acad. Sci. 1252 (2012) E1–E7 c© 2012 New York Academy of Sciences.
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Figure 5. Model ABRs. (A) Time series of a musical interval (Fig. 1A). (B) Time series of the modeled auditory brainstem
response. (C) Comparison of the stimulus (panel A) with the FFT of the summed model cochlear output, showing only weak
nonlinear distortion products. (D) FFT of the model ABR (from panel B), showing strong nonlinear resonances (compare with Fig.
1A).

frequencies at each level were arranged tonotopi-
cally, with characteristic frequencies ranging from
40 Hz to 1,280 Hz, the approximate range for which
time-locked responses have been observed in brain-
stem physiology.17,18

Input to the model was the instantaneous pres-
sure waveform of the acoustic stimulus in units of
pascals. This stimulus was a (simultaneous) musical
interval, G–E, recorded on electric piano23 (see Fig.
1A). The stimulus was prefiltered using a human
middle-ear model.41,42 The resulting waveform was
provided as input into a tonotopic array of outer
hair cell oscillators, which provided afferent input
to the networks. Figure 5 illustrates the responses. To
model the ABR, we sum the time series of all oscilla-
tors in the IC network over time, producing a single
time series. Figure 5A shows the stimulus time series,
and 5B shows the model ABR. As is often observed in
ABR experiments,43 the model IC response appears
well correlated with the input stimulus time series.
Next, Figure 5C compares the FFT of the input with
the output of the cochlear model. As predicted, the
model cochlear response includes only weak non-
linear distortion products;23,24 overall, the cochlear
model encodes the stimulus accurately. Finally, Fig-
ure 5D shows the FFT of the model ABR (from
5B). The model response to this stimulus contains
strong nonlinear resonances, similar to those found

in the human ABR (Fig. 1). Careful comparison of
the model ABR with the human ABR (Fig. 1A) re-
veals that those frequencies predicted by the model
are all present in the human ABR. In the case of the
model, the nonlinear resonances are created by the
mode-locking dynamics of the CN and IC networks.
The relative amplitude of modeled ABR frequencies
differs somewhat from the human ABR. However,
this simple version of the model does not consider
realistic connectivity and changes that might oc-
cur due to learning. The observation that even this
simplified model agrees with human ABR provides
strong qualitative support for this model of auditory
neurodynamics.

Discussion

Traditional models of central auditory process-
ing rely on synaptic delays to enable temporal
computations (e.g., autocorrelation), thought to be
necessary for auditory processes such as pitch per-
ception.44,45 However, the stark lack of evidence for
neural delays over the time scale required for pitch
perception presents a significant puzzle for this the-
oretical approach.46 The current approach provides
an alternative model of nonlinear signal process-
ing that does not require delays and is consistent
with certain facts about nonlinear processing in the
central auditory system.10,18,31,47 Importantly, this

Ann. N.Y. Acad. Sci. 1252 (2012) E1–E7 c© 2012 New York Academy of Sciences. E5
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approach makes predictions about neural popula-
tion responses that qualitatively match human au-
ditory brainstem responses.

Because mode-locking dynamics provide predic-
tions of stability and attraction among neural fre-
quencies that agree well with perceptual measures
of tonal stability,15,48 this approach may point to
general neurodynamic principles that underlie tonal
cognition. If mode-locking auditory dynamics lead
directly to stability and attraction, and the same
dynamics accurately predict human auditory phys-
iology, this would strongly suggest that important
aspects of tonal cognition are intrinsic to auditory
neurodynamics.49 Thus, the role of learning and
enculturation may be to refine tonal relationships
rather than to establish them de novo. The next step
in this research will be to refine models by fitting pa-
rameters to data, and to use realistic connection pat-
terns within and between auditory networks. In ad-
dition, simulation of Hebbian learning in generic os-
cillator networks15,50 will help us to understand the
role of learning in modulating auditory responses.51

Thus, this approach may lead to an understanding of
which aspects of tonality are intrinsic to the dynam-
ics of the auditory system and which are learned on
the basis of enculturation. Future modeling efforts
based on generic dynamical systems could bring us
closer to understanding fundamental mechanisms
of auditory system development, with implications
for understanding the development of music cogni-
tion.
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