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Trumpet sound simulation is carried out with a two-dimensional lip vibration model, where the lips
execute both swinging and stretching motions. This model allows lips to operate on both the lower
and higher frequency sides of the air-column resonance frequencies. Oscillations generated by the
total sound production system are on both the lower and higher frequency sides in the first through
third resonance modes, while in the fourth and higher modes they are realized only on the lower
side. From each resonance mode, an oscillation having the least frequency deviation against a
change in lip eigenfrequency and also having sufficient amplitude is selected as the optimum
oscillation of the resonance mode. It is found that these oscillations in the lower modes have positive
phase differences between lip vibration and mouthpiece pressure, whereas those in the higher modes
have negative ones. This result closely matches the transition of lip vibration states from the one
modeled by the outward-striking valve at the second mode~i.e., the lowest mode among those used
musically! to that modeled by the laterally striking valve at the higher modes, which is observed in
the simultaneous measurement of mouthpiece pressure and lip vibration. ©1996 Acoustical
Society of America.

PACS numbers: 43.75.Fg

INTRODUCTION

According to Helmholtz,1 reeds of woodwind instru-
ments such as clarinets, oboes, and bassoons are classified as
having a valve that strikes inward@Fig. 1~a!# and tend to
close in increments of blowing pressure, whereas lip reeds of
brass instruments like trumpets, trombones, and French
horns are classified as having a valve that strikes outward
@Fig. 1~b!# and open further in the same condition. This clas-
sification has been widely accepted, and there is no doubt
that woodwind reeds should be classified as striking inward.

There are, however, arguments against the classification
of the lip reeds. Unlike the mechanical cane reeds of wood-
wind instruments that have definite constraints on their di-
rections of motion, biological lips deform quite unrestric-
tively when they are used as a lip-reed generator put to the
mouthpiece. Moreover, a player’s embouchure drastically
varies the constraints on lips for the frequency, sound level
and spectrum of sound. Furthermore, stroboscopic measure-
ments by Martin,2 Leno,3 and Copley and Strong4 of the
brass instrument player’s lips reveal that their two-
dimensional motion is both parallel and perpendicular to the
direction of flow. Therefore, careful consideration of lip vi-
bration is needed, and other possibilities of modeling should
be examined.

Elliott and Bowsher5 raise the possibility that the lips
are, in part, driven laterally—perpendicular to the direction
of flow—by the time-varying Bernoulli pressure at the lip
opening by analogy to vocal-fold vibration, although their
main concern is to investigate the outward-striking lip-reed
model. Saneyoshiet al.6 investigated a ‘‘transverse’’ model7

@Fig. 1~c!# in which the Bernoulli pressure drives a retracting
valve ~representing the upper lip! at a right angle to the di-
rection of flow; their model successfully explains the mecha-
nism of mode selection in a euphonium. Fletcher presented a
unified discussion of the general conditions under which os-
cillation of these three types of valve configurations occurs.8

Models of lip vibration influence phase relations among
the variables that describe the self-oscillation of the brass
instrument: mouthpiece pressurep, air volume velocity flow-
ing into the mouthpiece,U, and the area of the lip opening,
Slip . In the ‘‘outward-striking’’ model,Slip andp are out of
phase in the low-frequency region, where frequencyf is suf-
ficiently smaller than the lip eigenfrequencyf lip . This is be-
cause the valve, representing the lip, is drawn into the instru-
ment and thus opens asp decreases. On the other hand, in
the transverse model,Slip and p are in phase in this fre-
quency region because the Bernoulli pressure generated by
the flow at the lip opening tends to close the valve asp
decreases. In the frequency region nearf lip , where the lips
are actually driven, the phase shift due to the lip resonance
occurs in both models. Therefore, the phase difference
/Slip2/p becomes about 90° in the outward-striking model
and290° in the transverse model.

Suppose that the linear theory5,9 of self-oscillation is
valid, U is proportional toSlip regardless of frequency, and
thus they oscillate in phase. This immediately requires the
phase of the input impedanceZin , which is defined by the
ratio p/U, to be about290° in the outward-striking model
and 90° in the transverse model. Due to the resonance char-
acteristics of the instrument,/Zin varies rapidly from a posi-
tive value around 90° to a negative value around290° as
frequencyf rises and sweeps each resonance frequency~i.e.,
frequency of each input impedance peak!. It is therefore ex-a!E-mail: adachi@hip.atr.co.jp
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pected that the outward-striking model operates on the
higher frequency side of the input impedance peaks, and the
transverse model operates on the lower side.

In actual sound production, where the amplitude of os-
cillation is not always small enough for the linear theory to
be applied, it is necessary to consider the nonlinearity of the
system with a method such as time-domain simulation. Ada-
chi and Sato10 carried out a time-domain simulation of the
brass instrument with two different one-dimensional lip vi-
bration models, the ‘‘swinging-door’’ model and the trans-
verse model. The former model employs a valve operating as
a swinging door opening toward the downstream of the air-
flow and is essentially equivalent to the outward-striking
model. Oscillation can be generated at the various resonance
modes with both models. In their simulation systems, as the
linear theory predicts, oscillation is always obtained on the
higher frequency side with the swinging-door model and on
the lower side with the transverse model.

Recent developments in lip modeling have been con-
cerned with the two-dimensional behavior of lip motion.
Keefe proposed a lip model that allows a single mass to
oscillate in both the parallel and perpendicular directions.11

He carried out a frequency domain analysis to show that
oscillations can be sustained with both positive and negative
phase differences betweenSlip andp. This was controlled by
a parameter representing the angle of lip inclination, which
should depend upon the mouthpiece geometry and the play-
er’s embouchure.

Strong and Dudley12 modeled lip motion in another
way: They employed a swinging–sliding door having one
degree of rotational freedom and one degree of translational
freedom. They carried out a time-domain simulation of os-
cillations in the second resonance mode. Their simulation
presents realistic mouthpiece pressure waveforms and rea-
sonable spectrum variations according to the sound level.

Although they did not show the phase relations, their ob-
tained sounding frequencies imply that oscillations occur on
both the higher and lower sides of the resonance frequency.

Yoshikawa13 succeeded in measuring the phase differ-
ence between lip vibration and mouthpiece pressure while
various acoustic tubes, including the French horn and the
trumpet, are blown. His results with these instruments are
summarized as follows:~1! Both instruments exhibit a posi-
tive phase difference in the second resonance mode~i.e., the
lowest among those used musically!; ~2! in the higher modes
~third and higher for the french horn, fourth for the trumpet!,
the phase difference is negative; and~3! oscillation in the
third mode of the trumpet is possible with both positive and
negative phase differences. These results indicate that lip vi-
bration is better understood by the outward-striking model in
the lower resonance modes and by the transverse model in
the higher modes. At the same time, however, they imply that
it is impossible to explain the change in phase relation with
either one-dimensional model.

This paper presents a two-dimensional lip vibration
model that can replicate the change in phase relation. This
model is a combination of the two one-dimensional models,
the swinging-door model and the transverse model. The
modeled lip executes not only the swinging motion as a
hinged door but also the stretching and contracting motion
along the lip length. No deformation along the lip thickness
is assumed. As in the case of the swinging-door model, the
swinging motion corresponds to the outward-striking motion.
On the other hand, the stretching and contracting motion
corresponds to the laterally striking motion, because it is
excited by the Bernoulli pressure at the lip opening in the
same way as a retracting valve in the transverse model is
driven.

This two-dimensional model has the capability to oper-
ate on either frequency side of the input impedance peaks,
depending on which of the swinging and stretching motions
is dominant. If the swinging motion becomes dominant, the
oscillation has a positive phase difference betweenSlip and
p, and a frequency greater than one of the resonance fre-
quencies. However, if the stretching motion becomes domi-
nant, the oscillation with the negative phase difference,
/Slip2/p,0, is generated on the lower frequency side of
the input impedance peaks. The main concern in this paper is
to determine the actual behavior of the two-dimensional lip
when it is incorporated into a total sound production system;
making this determination with certainty requires the use of a
time-domain simulation.

Section I is devoted to modeling the two-dimensional lip
and incorporating it into a total sound production system. In
Sec. II, the simulation method is first explained, and then the
mode selection and oscillating quantities obtained in the
simulation are examined. Section III discusses the mecha-
nism of change between the lip vibration states in detail.
Finally, the results of the simulation are summarized in Sec.
IV.

FIG. 1. Three different configurations of a pressure-controlled valve in an
acoustic tube. In each configuration,p0 is pressure in the upstream region of
the valve, i.e., blowing pressure, andp is pressure in the downstream region
of the valve, i.e., mouthpiece pressure.~a! Inwardly striking valve, which
tends to close in increments of blowing pressurep0. ~b! Outwardly striking
valve, which opens further asp0 increases.~c! Retracting valve that strikes
laterally to the direction of the flow. The Bernoulli pressure generated by the
airflow tends to close this valve. Panel~a! models reeds of the woodwind
instruments.~b! and ~c! provide brass instrument lip-reed models in the
lower and higher modes, respectively.
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I. MODEL

A. Two-dimensional lip vibration model

For simplicity, the upper and lower lips are assumed to
have symmetric motion about the axis of the airflow. The
dynamics of only the upper lip are thus considered. The lip is
approximated as a simple mechanical oscillator composed of
one mass, stiffness, and damping. Figure 2 depicts the sche-
matic diagram of the two-dimensional lip model. The body
of the lip is represented by a parallelogram ABCD. The up-
per side, AB, functions as a free joint connecting the lip with
its base~hatched area!. The BC and AD sides can vary their
length l , while the AB and DC sides are assumed to be rigid
and have a constant lengthd. Therefore, the lip simulta-
neously executes both swinging and stretching motions. Or
equivalently, the tip of the lip, C, moves in directions both
parallel ~x axis! and perpendicular~y axis! to the airflow.
The position of C is assigned by a two-dimensional vectorj.
Likewise, the position ofB is assigned by a constant vector
jjoint . We call l andd the lip length and thickness, respec-
tively. In the vector notation, the lip length is represented by
l5uj2jjointu.

Lip massm is assumed to be localized at the center of
the lip. This implies that the moment of inertia with respect
to the rotation about the center of the lip is omitted.

Two springs attached to the lip supply the restoring
force: One is for swinging motion and the other is for
stretching motion. When the lip is at rest, C is at a position
indicated byjequil. If the tip displaces from the rest position,
force Frestore having the direction pointing tojequil and the
magnitude proportional touj2jequilu is supplied. This is an-
other description of the lip having two springs with the same
stiffness along thex- andy directions.

There are two different external forces driving the lip.
One is the forceFDp acting on the BC and AD sides, which
is generated by the difference between the blowing pressure
p0 and the mouthpiece pressurep. Another external force is
FBernoulli acting on the DC side, which is generated by the
Bernoulli pressure or the pressure at the lip openingplip .

The equation of lip motion is given by

1

2
m
d2j

dt2
52

1

2

Amk

Q

dj

dt
1Frestore1FDp1FBernoulli , ~1!

with stiffness factork and quality factorQ. The first terms in
the left- and right-hand sides of Eq.~1! represent the inertia
and the damping force, respectively. The factor of1

2 in these
terms implies that the acceleration and velocity of the lip
center are half as much as those of the tipj. The forces
Frestore, FDp , andFBernoulli can be written as follows:

Frestore52 1
2k~j2jequil!, ~2!

FDp5b~p02p!~j2jjoint!
', ~3!

FBernoulli5b d plip ey , ~4!

whereb is lip width andey is the unit vector along they axis.
A factor of 1

2 in Eq. ~2! implies that the displacement of the
lip center is half as much as that of the tip. The symbol' in
Eq. ~3! denotes the operation to derive the orthogonal vector
from a vector of its operand: In thex-y coordinate system,
A' has the component (2Ay , Ax) for any vector
A5(Ax , Ay). Equation~3! implies thatFDp has a magnitude
proportional to the lip lengthl and a direction orthogonal to
the BC side.

The origin of thex-y coordinate system is assumed to
be at the center of the mouthpiece rim. As is shown in Fig. 2,
the base of the lip touches the rim, so that B is on thex50
plane of the mouthpiece entryway. The upper and lower lips
meet on they50 plane. We denote the position of C by
component asj5(jx , jy). Then, the lip opening area is
given by

Slip5max$2bjy, 0%, ~5!

where a factor of 2 comes from the symmetric motion of the
upper and lower lips.

The lip movement regulates airflow into the instrument
throughSlip . Additionally, the lip movement directly gener-
ates flow, which is equivalent to the volume swept by the lips
per unit time. This flow becomes

U lip5H b~j2jjoint!3
dj

dt J –ez
5bH ~jx2j jointx!

djy
dt

2~jy2j jointy!
djx
dt J , ~6!

whereez is the unit vector parallel to the axis of swinging
motion.

During closure of the lips, that is, whenSlip50, lip con-
tact supplies another restoring force along they axis, whose
stiffness is assumed to be three times larger thank. There-
fore, the supplementary restoring force23kjyey acts on the
lip only when jy,0. Similarly, lip contact yields another
viscous loss of the vibrating lips, which seems large due to
the lip deformation upon collision. The quality factorQ is
thus assumed to decrease to less than unity on the closure
condition.

By adjusting the embouchure, the brass instrument
player can select notes in the harmonic series available with-
out valve~piston! manipulation. The process of adjusting the
embouchure corresponds to changing the lip eigenfrequency

FIG. 2. Two-dimensional lip vibration model. The upper and lower lips are
assumed to have symmetric motion. The modeled lip represented by the
parallelogram ABCD simultaneously executes both swinging motion with
the free joint AB and stretching motion along the sides BC and AD. The two
springs supply restoring force for swinging and stretching displacements.
The swinging motion is mainly driven by the pressure difference between
the player’s mouth and the mouthpiece,p02p, whereas the stretching mo-
tion is driven by the Bernoulli pressureplip .
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f lip . Elliott and Bowsher5 deduced the dependence of lip
massm on the lip eigenfrequencyf lip from their measure-
ments of average volume flows while various notes with dif-
ferent pitches were blown. Following their results, we as-
sume thatm is inversely proportional tof lip . Accordingly,
the behavior of stiffnessk becomes proportional tof lip be-
causef lip 5 Ak/m/2p. Lip and other parameters for our simu-
lations are shown in Table I.

B. Total sound production system

The sound production system comprises the lip dynam-
ics, the airflow behavior near the lip opening, and the reso-
nance characteristics of the instrument. These form a closed
loop in the feedback system and thus self-excitation can be
established. The lip dynamics has already been modeled in
the previous subsection. Equations of the airflow are derived
from the fluid dynamical consideration. In time domain, the
acoustic response from the instrument can be calculated by a
feedback equation. The same flow and feedback equations as
used in the simulations with one-dimensional lip models10

are employed in this paper and reviewed here.
Let us first review the flow equations. On the assump-

tion of one-dimensional and incompressible flow, the mass
conservation provides that the acoustical volume flow rate
Uacoust is independent of place and depends only on timet.
The region near the lip opening is divided into two parts: the
upstream contraction region~i.e., the mouth cavity and the
lip opening region! and the downstream expansion region
~i.e., a thin region in the mouthpiece cup adjacent to the lips!.
In the contraction region, laminar flow is assumed to be re-
alized, while in the expansion region, flow is assumed to
come off from the boundary layer and make a jet. Therefore,
we apply the energy conservation law to the flow in the
former region and the momentum conservation law to the
one in the latter.14

They become

p02plip5
1

2
rSUacoust

Slip
D 21 rd

Slip

]Uacoust

]t
, ~7!

plip2p52rUacoust
2 S 1

ScupSlip
2

1

Scup
2 D , ~8!

where r is average air density andScup is the area of the
mouthpiece entryway. The sum of Eqs.~7! and ~8! implies
that acoustical volume flow rateUacoust is a nonlinear func-
tion of p and Slip . Total volume flow rateU is given by
U5Uacoust1U lip , whereU lip is the lip-generated flow de-
fined by Eq.~6!.

The feedback equation15 is given by the following inte-
gral equation:

p~ t !5ZcU~ t !1E
0

`

ds r~s!$ZcU~ t2s!1p~ t2s!%, ~9!

where r (t) is the reflection function, andZc5rc/Scup with
speed of soundc is the characteristic wave impedance of an
infinite cylindrical tube having the areaScup. The reflection
function r (t) is associated with the input impedance of the
instrumentZin( f ) throughr̂ ( f ) denoting the Fourier transfor-
mation of r (t) as follows:

r̂ ~ f !5
Zin~ f !2Zc
Zin~ f !1Zc

. ~10!

In principle, the reflection functionr (t) is causal. This is
guaranteed by the nature of the input impedanceZin( f ) rep-
resenting causal acoustic responses from the instrument.
However, there may be cases in which the numerical calcu-
lation from Zin( f ) by way of Eq.~10! may affect the cau-
sality of r (t): The wake of nonzeror (t) for t.0 penetrates
into the t,0 region. This is due to a finite cutoff frequency
or sampling frequency associated with the numerical calcu-
lation. In this case,r (t) cannot be used in Eq.~9! as it stands.
For the brass instrument, abrupt reflections from the mouth-
piece generally cause this difficulty. To avoid this, we em-
ploy a causal reflection functionr c(t), which was used in the
previous simulation with one-dimensional lip models.10 In
brief, r c(t) is defined by two times the even component~with
respect to the time reversalt↔2t! of the originalr (t) for
t>0 and zero fort,0. To verify this procedure, it has been
confirmed that Eq.~9! with the causal reflection function
r c(t) simulates a ratio of generated pressurep to input flow
U, reproducing almost the same input impedance.

The data ofZin( f ) used in this paper are the same ones
used in the previous simulation which were calculated from
the dimensions of a real B[ trumpet with some assumptions
on the acoustics. The magnitude and phase ofZin( f ) are
shown in Fig. 3. Table II lists the magnitudes~normalized by
Zc!, frequencies of the impedance peaks, and their frequency
intervals. The impedance peaks, which are at nearly equal
intervals with the exception of the first peak, correspond to
the resonance modes of the instrument. The envelope of
these peaks is characteristic of the brass instrument. Note
that the sign of the phase/Zin( f ) changes from positive to
negative as frequencyf rises and sweeps resonance frequen-
cies. These characteristics of thisZin( f ) are very similar to
the input impedances obtained in experiments.16–18 There-
fore, the general acoustical behavior of the real brass instru-
ment is expected to be reproduced by the total simulation
system.

TABLE I. Parameters.

Symbol Parameter name Value

c speed of sound 3.43102 m/s
r average air density 1.2 kg/m3

Scup area of mouthpiece entryway 2.331024 m2

b width of lip opening 7.031023 m
d thickness of lips 2.031023 m
jjoint lip joint position ~0, 4.0!31023 m
jequilx x coord. of lip rest position 1.031023 m
jequily y coord. of lip rest position ~20.1–2.0!31023 cm
Q lip quality factor 3.0 on the open-lip condition

0.5 on the closed-lip condition
f lip lip resonance frequency 60–700 Hz
m lip mass 1.5/„~2p!2f lip… kg
k Stiffness of lips 1.5f lip N/m
p0 blowing pressure 2.0–5.0 kPa
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II. SIMULATION

The oscillation is described by the variables of lip posi-
tion j (t), mouthpiece pressurep(t), lip opening pressure
plip(t), acoustic volume velocityUacoust(t), lip-generated
volume velocityU lip(t), and lip opening areaSlip(t). These
variables satisfy the equations developed in the previous sec-
tion. A time-domain simulation is carried out algorithmically
as follows:

~1! Suppose the variablesj, p, plip , Uacoust, U lip , andSlip
are all known at all times earlier than the present, solve
the equation of the lip motion~1!, and find the newj at
the time one step ahead.

~2! Calculate the newSlip andU lip defined by Eqs.~5! and
~6!, respectively.

~3! With the new Slip , U lip , and past data ofp and
U5Uacoust1U lip , solve the flow equation@i.e., sum of
Eqs.~7! and~8!# and the feedback equation~9! simulta-
neously, and obtain the newp andUacoust.

~4! Solve Eq.~8! to obtain the newplip .
~5! Update time by one step, and then return to~1!.

The parameters of lip geometry,jjoint , j equil, b, andd,
and the blowing pressurep0 are fixed during one attempt of
the simulation. The initial values ofp, plip , Uacoust, andU lip
are all zeros. The lip positionj is initially placed at the rest
position j equil. The forward Euler method to discretize the
differential equations and the trapezoidal approximation for
the integration are used with 8-kHz sampling frequency.

Despite the simple method and the low sampling fre-
quency, we did not encounter apparent numerical instabili-
ties. This partly assures the validity of the simulation
method. For greater validity, some of the oscillations were
additionally calculated with 48-kHz sampling frequency.
They had almost the same waveforms as the ones calculated
with the original 8-kHz sampling frequency. In particular, the
phase relations amongp(t), U(t), andSlip(t), which will be
investigated later, did not change with this oversampling.

A. Mode selection

By changing lip eigenfrequencyf lip from 60 through
700 Hz at intervals of 20 Hz~except 600, 620, and 700 Hz,
at which no stable self-excitation is generated!, we obtained
stable self-excited trumpet sounds for the first through sixth
resonance modes. Blowing pressurep0 for the moderate
(mf ) sound level was set at 2.0, 2.5, 3.0, 3.5, 4.0, and 5.0
kPa for the first through sixth modes, respectively. These
values were chosen so as to match the measurements of
mouth pressures for various notes blown on brass
instruments,19 although the great variety among the trials and
players was reported.

The y component of the lip equilibrium positionjequily,
which determines the average lip opening area, was adjusted
so that the following criteria were satisfied:~1! The lips do
not come into contact with each other or only have contact in
a much shorter time than the oscillation period and~2! the
maximum amplitude of oscillation is obtained. With these
criteria,jequily can be practically determined as a function of
f lip andp0 and therefore ceases to be an independent param-
eter.

The other parameters of lip geometry,b, d, jjoint , and
jequilx, were all fixed at the values listed in Table I. Due to the
simplified model, these parameters are not directly related to
the actual dimensions of the player’s lips. However, they
were selected to be consistent with the dimensions of the lips
put to a trumpet mouthpiece.

Figure 4 plots the frequency of self-excited soundf sound
against the lip eigenfrequencyf lip with the first through sixth
resonance frequencies of the trumpet depicted with dash-dot
lines. The first through sixth resonance modes appear. Be-
tween adjacent resonance modes, frequency gaps that repre-
sent the mode transition are found. In each resonance mode,
sounding frequencyf sound does not take a constant value.
Instead, there is a frequency range off sound, where self-
excitation is possible and wheref soundgradually ascends with
increases inf lip . It is noteworthy that in the first, second and
third modes the possible ranges off soundspan both the higher
and lower sides of the resonance frequencies, whereas in the
fourth, fifth, and sixth modes, they are only on the lower
sides.

Within each resonance mode, especially in the third and
fourth, the slope of the sounding frequency is less steep at
the higher frequency range than at the lower frequency
range. In other words, the sounding frequency is insensitive
for any perturbation off lip at the higher frequency range.
From the player’s point of view, blowing a note at as high a
frequency as possible is preferable, because the insensitivity
brings the ease of maintaining a given playing frequency. As

FIG. 3. The magnitude and phase angle of input impedanceZin scaled by
the characteristic wave impedanceZc , which is calculated from the shape of
an actual B[ trumpet.

TABLE II. Magnitudes and frequencies of input impedance peaks and their
intervals.

Mode uZin /Zcu
f peak
~Hz!

D f
~Hz!

I Pd 43.7 87
II B3

[ 35.2 232 145
III F4 46.4 341 109
IV B4

[ 55.7 457 116
V D5 48.1 572 115
VI F5 51.6 686 114
VII A 5

[ 44.5 800 114
VIII B 5

[ 28.5 913 113
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a result, the actual blowing in the lower modes such as the
second and third would be executed on the higher frequency
side of the impedance peaks. However, in the higher modes,
it would still be executed on the lower side, because the
possible frequency ranges are lower than the resonance fre-
quencies.

B. Oscillating quantities

Apart from selecting resonance modes by adjusting the
embouchure, the brass instrument player finely controls the
embouchure to make a blown note have both stable fre-
quency and sufficient amplitude. Such notes selected from
the different modes should also be relatively in tune. To
mimic the player’s embouchure control in the simulation sys-
tem, we change the lip eigenfrequencyf lip at intervals of 10
Hz, instead of the 20 Hz used in the previous subsection, and
find the optimum oscillation of each mode by the following
procedure: First, search for the maximumf lip that provides
oscillation with the highest frequency; then, lower thef lip 10
Hz to obtain an oscillation with both stable frequency and
sufficient amplitude.

Waveforms and the lip trajectories of these oscillations
in the second through sixth modes are depicted in Fig. 5~a!–
~e!. A ‘‘loose-lipping’’ tone20 @Fig. 5~f!#, which is an oscilla-
tion an octave below the normal oscillation in the third
mode, is also compared with the normal oscillations in Fig.
5. It is found that the characteristic waveform with rich har-
monics turns out to be a sinusoidal one from the lower to the
higher modes, which is very similar to the change in the
observed brass sound.5,21The sinusoidal waveforms ofSlip in
all resonance modes whose amplitude decreases as the mode
rises reproduce the result of Martin’s observation of lip
movement.2

The counterclockwise trajectory of the lip displacement
j, whose amplitude is decreased as the mode rises, is again
in accord with Martin’s observation. There is also a tendency

for the long axis of the oval trajectory to gradually tilt from
the direction parallel to the airflow in the second mode~a!
toward a certain angle in the higher modes~b!–~e!. This
qualitatively corresponds to the change in lip vibration state
from swinging motion dominant to stretching motion domi-
nant.

For a loose-lipping tone, it is found that the amplitude of
the lip motion and volume flow rateU are much larger than
those of the normal oscillations, although the pressure am-
plitude is almost the same. The tilted direction of the trajec-
tory in ~f! implies the stretching motion dominant lip vibra-
tion state.

The trajectory for the loose-lipping tone can be com-
pared with the two-dimensional motion of a trombone play-
er’s upper lip measured by Copley and Strong,4 because the
frequency of 166 Hz is close to that of their measuredF3
tones. The amplitude and flatness of the simulated trajectory
are in broad agreement with those of the measured trajectory.
However, the measured trajectory has the long axis roughly
along they axis, while our simulated trajectory has the one
roughly along thex axis. This is probably because of the
larger dimensions of the trombone mouthpiece cup, which
allows the lips to get into the cup more deeply.

The phase differences/p2/U and/Slip2/p in the
oscillations shown in Fig. 5 are listed along with resonance
frequencies of the instrument~frequencies of the impedance
peak! f peak, lip eigenfrequenciesf lip , and sounding frequen-
cies f sound in Table III. It is found that/p2/U changes
from negative values in the second and third modes to posi-
tive values in the fourth and higher modes. This corresponds
to the change in the sides of the impedance peaks on which
the oscillation occurs in different modes, which is manifest
in comparing f peak with f sound. The phase difference
/Slip2/p is positive in the first through fourth modes and
negative in the fifth and sixth modes. This change proves that
the lip motion changes from the swinging motion dominant
state in the first through fourth modes to the stretching mo-
tion dominant state in the fifth and sixth modes.

The condition derived by the linear theory of oscillation
that these two phase differences/p2/U and/Slip2/p
have the same absolute values and have opposite signs is not
always satisfied. Especially in the fourth mode, the signs of
these phase differences are both positive and the stretching
motion dominant state inferred from positive/p2/U con-
tradicts the swinging motion dominant state that is actually
excited.

III. DISCUSSION

The results of the simulation with the two-dimensional
lip vibration models are significantly different from those
with the one-dimensional models in the following points:

~1! The sounding frequencyf sound is not far from the lip
eigenfrequencyf lip .

~2! A transition in lip vibration states is observed. The
swinging motion dominant oscillation typical in the
lower resonance modes gives way to the stretching mo-
tion dominant oscillation in the higher modes.

FIG. 4. Frequency~depicted withs! of self-excited sound against the lip
eigenfrequency. The dash-dot lines represent the first through sixth reso-
nance frequencies of the instrument. In the first through third modes, self-
excitation occurs with sounding frequencies both higher and lower than the
resonance frequencies, whereas in the fourth and higher modes, it only
occurs with a sounding frequency lower than the resonance frequencies.
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Let us discuss the causes of these characteristics within
the scope of the linear theory of oscillation, where the flow
equations~7! and~8! are linearized and lip collision is omit-
ted. For simplicity, we assumeSlip!Scup and thusplip5p,
which implies no pressure recovery at the mouthpiece cup,
holds. AsU lip!Uacoustis approximately satisfied in the simu-
lation, the effect ofU lip is excluded from this discussion.

To make the discussion precise, we define

G~ f !5
Slip~ f !

p~ f !
, ~11!

whereSlip( f ) andp( f ) denote Fourier components ofSlip
andp, respectively. AsG( f ) represents a response of the lip
motion to the driving pressure, we here callG( f ) the lip
mobility, althoughG( f ) is only one component of the lip
mobility having a tensor form. It is only this component
G( f ) that plays a crucial role in considering the oscillation

conditions of the total sound production system. Generally,
the magnitude ofG( f ) has a peak near the lip eigenfre-
quency f lip , whereas the frequency dependence of phase
/G( f )5/Slip( f )2/p( f ) is specific to the lip vibration
model.

The regeneration theory,5,9 regardless of what lip dy-
namics is assumed, requires oscillation to have sounding fre-
quencyf satisfying the following magnitude and phase con-
ditions:

A2p0
r

uG~ f !uuZin~ f !u>1, ~12!

/G~ f !1/Zin~ f !50. ~13!

The magnitude condition indicates that oscillation is more
likely to be generated with larger blowing pressure and
stronger resonances of the instrument and the lip. We have

FIG. 5. Waveforms of mouthpiece pressurep, volume flow U, and lip
opening areaSlip with the lip trajectories of the optimum oscillations of the
~a! second through~e! sixth modes and~f! the loose-lipping tone. In com-
paring the pressure waveforms in~a!–~e!, it is found that the characteristic
waveform with rich harmonics in the lower modes turns out to be a sinu-
soidal one in the higher modes. On the other hand, the waveforms ofSlip are
always nearly sinusoidal. In the~a! second and~b! third modes, volume flow
U is leading mouthpiece pressurep, while in the~c! fourth through~e! sixth
modes,U is lagging behindp. The trajectories with an oval shape indicate
the rolling motion of the lip. As the mode rises, the amplitude becomes
smaller. Also, the long axis of the trajectory gradually tilts from the direction
parallel to the flow in~a! the second mode toward a certain angle in~b!–~e!
the higher modes. This qualitatively corresponds to the change in lip vibra-
tion state from swinging motion dominant to stretching motion dominant.
The trajectory of the loose-lipping tone shows a larger amplitude and a tilted
direction, implying the stretching motion dominant lip vibration state.
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already investigated the phase condition in the Introduction
and Sec. II B, althoughG( f ) was not defined there.

Before calculating the lip mobilityG( f ) for the two-
dimensional lip vibration model, let us first obtain the time-
averaged or dc component of the lip displacementjdc

5 (jx
dc, jy

dc). The equation of lip motion~1!, or, in this case,
the balance equation of forces acting on the lip becomes

S k

2
bp0

2bp0
k

2

D S jx
dc

jy
dcD 5S k

2
jequilx1bp0j jointy

k

2
jequily

D ,

~14!

because the time-averaged mouthpiece pressurepdc is zero.
Equation~14! can be solved as

S jx
dc

jy
dcD 5

1

S k2D
2

1~bp0!
2

3S S k2D
2

jequilx1
k

2
bp0~j jointy2jequily!

S k2D
2

jequily1
k

2
bp0jequilx1~bp0!

2j jointy
D .

~15!

We express the time-varying or ac component of the lip
displacement withj ac5 (jx

ac, jy
ac). The equation of lip mo-

tion ~1! gives a linear equation forj ac in the frequency do-
main as follows:

S k

2
L21~ f / f lip! bp0

2bp0
k

2
L21~ f / f lip!

D S jx
ac

jy
acD

5S 2bj jointy
2bjx

dc1bdD p, ~16!

where the quadratic termjy
acp is omitted, because the ampli-

tude of lip motion is sufficiently smaller than the lip length.
The functionL~V! in Eq. ~16! is defined by

L~V!5
1

12V21 i ~V/Q!
. ~17!

From the solution of Eq.~16!, the lip mobilityG( f ) is cal-
culated as

G~ f !5
2bjy

ac~ f !

p~ f !

5~2b!2
~d2jx

dc!22bj jointy p0$L~ f / f lip!/k%

11@2bp0$L~ f / f lip!/k%#2
L~ f / f lip!

k
.

~18!

The calculation results of the magnitude and phase of
G( f ) for f lip5250 Hz andf lip5580 Hz are depicted in Fig.
6~a! and ~b!, respectively. For comparison, those of lip mo-
bility in the one-dimensional transverse model are also
drawn with broken lines. Near the lip eigenfrequencyf lip ,
the phase ofG( f ) takes a value around230° in ~a! and one
around245° in ~b!. Because the phase ofZin changes sud-
denly from a value less than 90° to another larger than
290°C near the resonance frequencies, frequencyf satisfy-
ing the phase condition~13! is likely to exist near the lip
eigenfrequencyf lip . For the transverse model~broken lines!,
/G( f ) is around290° nearf lip in both ~a! and ~b!. This
implies that frequencyf should be considerably off to the
lower side of f lip so that the phase becomes closer to zero
and the phase condition is satisfied. Therefore, the character-
istics of /G near the lip eigenfrequency in the two-
dimensional model successfully explain why the sounding

FIG. 6. Calculation results of the magnitude and phase of the lip mobility
G( f ) for lip eigenfrequencyf lip5250 Hz ~a! and 580 Hz~b!. The solid
lines denote results for the two-dimensional lip vibration model, and the
broken lines denote those for the one-dimensional transverse model. The
peak of the magnitude indicates the resonance of lip vibration. A frequency
region having a positive phase ofG( f ) is found in the two-dimensional
model. In this region, the swinging motion of lip vibration is dominant,
whereas in the/G-negative region the stretching motion becomes domi-
nant. Note that the/G-positive region is very close tof lip in ~a!, while it is
far from f lip in ~b!. This difference causes the transition of the lip vibration
state.

TABLE III. Lip eigenfrequencies, sound frequencies, phase differences/p2/U and/Slip2/p of the opti-
mum oscillation of each resonance mode and the loose-lipping tone.

Oscillation Note
f peak
~Hz!

f lip
~Hz!

f sound
~Hz!

/p2/U
~deg!

/Slip2/p
~deg!

II B3
[ 232 250 236 225.6 18.1

III F4 341 370 342 23.2 12.5
IV B4

[ 457 490 453 27.7 5.4
V D5 572 580 563 41.9 27.0
VI F5 686 680 673 38.5 27.6
Loose-lipping ~F3! 232 160 166 81.6 241.5
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frequencyf sound is not far from the lip eigenfrequencyf lip .
Let us now compare~a! with ~b! in Fig. 6. In these phase

plots, we find the frequency region having a positive phase
of G( f ) ~the/G-positive region!, where the swinging mo-
tion is dominant. Note that in~a! the/G-positive region is
very close to the lip eigenfrequencyf lip where the magnitude
of G( f ) takes the maximum. On the other hand, in~b! the
/G-positive region is far fromf lip . Therefore, for the lower
modes like the second shown in~a!, there existsf that gives
sufficiently largeuG( f )u so as to satisfy the magnitude con-
dition ~12! both in the/G-positive and negative regions. In
actual blowing, suchf in the/G-positive region is chosen
for the frequency stability of a played note. However, for the
higher modes such as the fifth in~b!, f satisfying the mag-
nitude condition~12! is not found in the/G-positive region
but only in the/G-negative region, where the stretching
motion is dominant. This explains why the lip vibration state
changes from swinging motion dominant in the lower modes
to stretching motion dominant in the higher modes.

The investigation of the oscillation conditions~12! and
~13! shows the advantage of the two-dimensional lip vibra-
tion model over the one-dimensional models as the generator
of the brass instrument. The magnitude condition~12! allows
the system to oscillate only in the presence of large reso-
nances of both the instrument and the lip. The input imped-
anceZin( f ) has a maximum magnitude at one of the reso-
nance frequencies and the lip mobilityG( f ) is maximized at
the lip eigenfrequency. Therefore, the system will obtain the
optimal effect of these resonances when the oscillation fre-
quencyf is close to the lip eigenfrequency and to one of the
air-column resonance frequencies. On the other hand, the
phase condition~13! constrains the phases ofZin( f ) and
G( f ) to cancel each other. At one of the air-column reso-
nance frequencies, where the maximum resonance of the in-
strument is obtained,/Zin( f ) is approximately zero. To sat-
isfy the phase condition,/G( f ) should also be as close to
zero as possible. In the two-dimensional model, this is com-
patible with the magnitude condition because/G( f ) van-
ishes near the lip eigenfrequency that maximizes the magni-
tude ofG( f ). In the one-dimensional lip vibration models,
however, this conflicts with the magnitude condition because
/G( f ) is around690° near the lip eigenfrequency.

To understand the mechanism of change in lip vibration
states further, let us go back to the lip mobilityG( f ) calcu-
lated in Eq.~18!. The first term in the numerator of the sec-
ond factor in Eq.~18! corresponds to the effect of the stretch-
ing motion of the lip directly driven by the Bernoulli
pressure along they direction. The second term in the same
numerator represents the effect of the lip movement along
they direction, which is caused by that along thex direction
~i.e., the swinging motion ofj ac!. Note that the second term
is inversely proportional to the lip stiffnessk, which controls
the amplitude of the lip motion. This is related to the swing-
ing motion ofj ac being generated by torque that is the prod-
uct of the force acting on the lip and the amplitude of the
motion. In the lower resonance modes, these two terms are
comparable and the second term surpasses the first one when
the sounding frequency is near the lip eigenfrequency due to
a large magnitude ofL representing the lip resonance. As the

mode rises, the amplitude of oscillation becomes smaller due
to the lip stiffnessk that is adjusted to increase proportion-
ally to the lip eigenfrequencyf lip . This causes a decline in
the swinging motion due to the decrease in the second term.
In the higher modes, therefore, the first term is always domi-
nant and only the stretching motion dominant state is real-
ized.

The parameters of lip shape certainly alter the character
of the lip mobilityG( f ). In particular, the ratio of lip thick-
ness to lip length, which is approximately equal tod/j jointy,
affects the frequency region having a positive phase of
G( f ). This indicates that this ratio can control the critical
resonance mode at which the lip vibration state changes from
swinging motion dominant to stretching motion dominant.
Nevertheless, the mechanism that yields the transition be-
tween the lip vibration states would be retained, regardless of
the selection of lip shape parameters, in the two-dimensional
lip vibration model investigated in this paper. In actual blow-
ing, the ratiod/j jointy may be controlled by the embouchure.
If this is the case, an increase in the ratiod/j jointy would
enhance the transition; however, this effect was not investi-
gated in this simulation.

IV. CONCLUSIONS

By adopting the two-dimensional lip vibration model,
where the lips execute both swinging and stretching motions,
the whole system successfully simulates self-excited trumpet
sounds in the first through sixth resonance modes. In the first
through third modes, oscillations occur on both the lower
and higher frequency sides of the resonance frequency of the
instrument, while in the fourth and higher modes they are
realized only on the lower sides. In each resonance mode, the
oscillation having the highest frequency and sufficient ampli-
tude, which appears to be actually blown, is selected as the
optimum oscillation of the mode. The phase differences be-
tween the lip vibration and the mouthpiece pressure of these
oscillations in the first through fourth modes are positive and
those in the fifth and sixth modes are negative.

The phase relations obtained here can be compared with
those of the one-dimensional lip models. In the lower modes
the two-dimensional lip model operates in the same way as
the one-dimensional swinging-door model, while in the
higher modes this model operates in the same way as the
one-dimensional transverse model. Accordingly, it can be
concluded that the two-dimensional lip model closely repli-
cates the transition of the lip vibration states observed in
Yoshikawa’s experiment.

The change from the positive phase difference in the
lower modes to the negative one in the higher modes results
from the dynamics of the lip model itself. In the lower
modes, the large amplitude of lip motion enhances the
swinging motion, whereas in the higher modes the small am-
plitude suppresses the swinging motion and the stretching
motion becomes dominant. The mechanism that yields the
transition of the phase relation is not limited to this two-
dimensional model. Rather, it will be incorporated into future
models with many degrees of freedom, provided that the
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modeled lip is capable of both swinging outward and stretch-
ing along the lip length.

In actual lip vibration, there may be other possible
causes for the transition, such as lip deformation in embou-
chure change. However, the lip dynamics of this two-
dimensional lip vibration model provide one of the most
plausible explanations for the transition of the lip vibration
states.
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