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Trumpet sound simulation is carried out with a two-dimensional lip vibration model, where the lips
execute both swinging and stretching motions. This model allows lips to operate on both the lower
and higher frequency sides of the air-column resonance frequencies. Oscillations generated by the
total sound production system are on both the lower and higher frequency sides in the first through
third resonance modes, while in the fourth and higher modes they are realized only on the lower
side. From each resonance mode, an oscillation having the least frequency deviation against a
change in lip eigenfrequency and also having sufficient amplitude is selected as the optimum
oscillation of the resonance mode. It is found that these oscillations in the lower modes have positive
phase differences between lip vibration and mouthpiece pressure, whereas those in the higher modes
have negative ones. This result closely matches the transition of lip vibration states from the one
modeled by the outward-striking valve at the second made the lowest mode among those used
musically to that modeled by the laterally striking valve at the higher modes, which is observed in
the simultaneous measurement of mouthpiece pressure and lip vibratid®9® Acoustical
Society of America.

PACS numbers: 43.75.Fg

INTRODUCTION [Fig. 1(c)] in which the Bernoulli pressure drives a retracting
valve (representing the upper i@t a right angle to the di-
According to HelmholtZ, reeds of woodwind instru- rection of flow; their model successfully explains the mecha-
ments such as clarinets, oboes, and bassoons are classifiech&sm of mode selection in a euphonium. Fletcher presented a
having a valve that strikes inwardFig. 1(a)] and tend to unified discussion of the general conditions under which os-
close in increments of blowing pressure, whereas lip reeds dfillation of these three types of valve configurations océurs.
brass instruments like trumpets, trombones, and French Models of lip vibration influence phase relations among
horns are classified as having a valve that strikes outwarghe variables that describe the self-oscillation of the brass
[Fig. 1(b)] and open further in the same condition. This clas-instrument: mouthpiece pressyrgair volume velocity flow-
sification has been widely accepted, and there is no doubfg into the mouthpiece)), and the area of the lip opening,
that woodwind reeds should be classified as striking inwardgnp_ In the “outward-striking” model,S;, and p are out of
There are, however, arguments against the classificatiophase in the low-frequency region, where frequehiy suf-
of the |Ip reeds. Unlike the mechanical cane reeds of WOOdﬁcient]y smaller than the ||p eigenfrequent% . This is be-
wind instruments that have definite constraints on their di'Cause the valve, representing the ||p' is drawn into the instru-
rections of motion, biological lips deform quite unrestric- ment and thus opens gsdecreases. On the other hand, in
tively when they are used as a lip-reed generator put to thghe transverse mode§;, and p are in phase in this fre-
mouthpiece. Moreover, a player’'s embouchure drasticallyjyency region because the Bernoulli pressure generated by
varies the constraints on lips for the frequency, sound levelhe flow at the lip opening tends to close the valvepas
and spectrum of sound. Furthermore, stroboscopic measurgacreases. In the frequency region négr, where the lips
ments by Martirf, Leno? and Copley and Strofigof the e actually driven, the phase shift due to the lip resonance
brass instrument player's lips reveal that their two-gccurs in both models. Therefore, the phase difference
dimensional motion is both parallel and perpendicular to theLS”p_Ap becomes about 90° in the outward-striking model
direction of flow. Therefore, careful consideration of lip Vi- 3nd—90° in the transverse model.
bration is needed, and other possibilities of modeling should Suppose that the linear thedfyof self-oscillation is
be examined. _ o ~valid, U is proportional toS;, regardless of frequency, and
Elliott and Bowshet raise the possibility that the lips s they oscillate in phasg. This immediately requires the
are, in part, driven laterally—perpendicular to the directionphase of the input impedand,, which is defined by the
of flow—by the time-varying Bernoulli pressure at the lip (4tio p/U, to be about—90° in the outward-striking model

opening by analogy to vocal-fold vibration, although their 5n4 gge in the transverse model. Due to the resonance char-
main concern is to investigate the outward-striking lip-reed,qteristics of the instrument, Z,,, varies rapidly from a posi-
model. Saneyostet al® investigated a “transverse” model tive value around 90° to a negative value arourglo°® as

frequencyf rises and sweeps each resonance frequérey
3E-mail: adachi@hip.atr.co.jp frequency of each input impedance pedkis therefore ex-
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| Although they did not show the phase relations, their ob-
I SR tained sounding frequencies imply that oscillations occur on
% IJW PR P both the higher and lower sides of the resonance frequency.
| Yoshikawa® succeeded in measuring the phase differ-
ence between lip vibration and mouthpiece pressure while
(a) (b) various acoustic tubes, including the French horn and the
trumpet, are blown. His results with these instruments are
summarized as followg1) Both instruments exhibit a posi-
tive phase difference in the second resonance nficele the
lowest among those used musicall§2) in the higher modes
(third and higher for the french horn, fourth for the trumpet
the phase difference is negative; af8 oscillation in the
(c) third mode of the trumpet is possible with both positive and
_ _ , _nhegative phase differences. These results indicate that lip vi-
FIG. L Three different conflgura_tlons of a pres_sure—controlled valv_e in arbration is better understood by the outward-striking model in
acoustic tube. In each configuratign, is pressure in the upstream region of

the valve, i.e., blowing pressure, apds pressure in the downstream region the lower resonance modes and by the transverse model in

of the valve, i.e., mouthpiece pressufa). Inwardly striking valve, which the higher modes. At the same time, however, they imply that
tends to close in increments of blowing presspge (b) Outwardly striking ’ ’

valve, which opens further g%, increases(c) Retracting valve that strikes it is impossible to explain the change in phase relation with
laterally to the direction of the flow. The Bernoulli pressure generated by theejither one-dimensional model.

airflow tends to close this valve. Pan@ models reeds of the woodwind . i . . . .
instruments.(b) and (c) provide brass instrument lip-reed models in the This paper presents a two-dimensional lip vibration

lower and higher modes, respectively. model that can replicate the change in phase relation. This
model is a combination of the two one-dimensional models,
the swinging-door model and the transverse model. The

pected that the outward-striking model operates on the . o .
modeled lip executes not only the swinging motion as a

higher frequency side of the input impedance peaks, and thﬁinged door but also the stretching and contracting motion

transverse model operates on the lower side. X ) Y
In actual sound production, where the amplitude of os-2long the lip length. No deformation along the lip thickness

cillation is not always small enough for the linear theory toiS @ssumed. As in the case of the swinging-door model, the
be applied, it is necessary to consider the nonlinearity of théwinging motion corresponds to the outward-striking motion.

system with a method such as time-domain simulation. AdaOn the other hand, the stretching and contracting motion
chi and Sat¥ carried out a time-domain simulation of the corresponds to the laterally striking motion, because it is

brass instrument with two different one-dimensional lip vi- excited by the Bernoulli pressure at the lip opening in the

bration models, the “swinging-door” model and the trans- same way as a retracting valve in the transverse model is
verse model. The former model employs a valve operating agyiven.

a swinging door opening toward the downstream of the air-  This two-dimensional model has the capability to oper-

flow and is essentially equivalent to the outward-strikingate on either frequency side of the input impedance peaks,

model. Oscillation can be generated at the various resonanee . - ina on which of the swinaing and stretching motions
modes with both models. In their simulation systems, as the P 9 ging 9

linear theory predicts, oscillation is always obtained on the® dominant. If the swinging motion becomes dominant, the

higher frequency side with the swinging-door model and orPScillation has a positive phase difference betw&gnand
the lower side with the transverse model. p, and a frequency greater than one of the resonance fre-
Recent developments in lip modeling have been conduencies. However, if the stretching motion becomes domi-
cerned with the two-dimensional behavior of lip motion. nant, the oscillation with the negative phase difference,
Keefe proposed a lip model that allows a single mass ta’S;,—£p<0, is generated on the lower frequency side of
oscillate in both the parallel and perpendicular directitins. the input impedance peaks. The main concern in this paper is
He carried out a frequency domain analysis to show thafo determine the actual behavior of the two-dimensional lip
oscillations can be sustained with both positive and negativhen it is incorporated into a total sound production system;

phase differences betwe&y, andp. This was controlled by - making this determination with certainty requires the use of a
a parameter representing the angle of lip inclination, Wh'Ch[ime-domain simulation

should depend upon the mouthpiece geometry and the play-
er's embouchure.

Section | is devoted to modeling the two-dimensional lip

Strong and Dudlef¥ modeled lip motion in another and |nco;]por§1t|n|§; |.t into artlotal' s?und prc|>QUct|on systhem. :1”
way: They employed a swinging—sliding door having OneSec. I, t eS|_mu ation me’F oc_i is first exp_ ained, qndt _ent e
degree of rotational freedom and one degree of translation&0de selection and oscillating quantities obtained in the
freedom. They carried out a time-domain simulation of os-Simulation are examined. Section Ill discusses the mecha-
cillations in the second resonance mode. Their simulatiomism of change between the lip vibration states in detail.
presents realistic mouthpiece pressure waveforms and rekinally, the results of the simulation are summarized in Sec.
sonable spectrum variations according to the sound levelV.
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1 d?¢6 1 ymkdé¢
2 m a2 = 2 T dat + Frestore™ FAp+ Fgemouti» (1)

with stiffness factok and quality factoQ. The first terms in
the left- and right-hand sides of E@l) represent the inertia
and the damping force, respectively. The factoi @f these
terms implies that the acceleration and velocity of the lip

\ 'z center are half as much as those of the §ipThe forces
- " .
Mouth oIS B l\éﬁsthpiece Frestore Fap» @NdFgemouii CaN be written as follows:
P, __1
" I:restore_ - Ek( g_ gequil)a (2)
FIG. 2. Two-dimensional lip vibration model. The upper and lower lips are FAp: b(po_ p)(§— fjoint)l! 3

assumed to have symmetric motion. The modeled lip represented by the
parallelogram ABCD simultaneously executes both swinging motion with F =b d D (4)
the free joint AB and stretching motion along the sides BC and AD. The two Bernoull ip &

springs supply restoring force for swinging and stretching displacementswhereb is |ip width andey is the unit vector a|0ng thﬁ axis.
The swinging motion is mainly driven by the pressure difference between

the player’s mouth and the mouthpiegg,— p, whereas the stretching mo- A factor of % in Eqg. (2) implies that the displacement of the
tion is driven by the Bernoulli pressurg, . lip center is half as much as that of the tip. The symbah
Eq. (3) denotes the operation to derive the orthogonal vector
from a vector of its operand: In they coordinate system,
|. MODEL A* has the component Ay, Ay for any vector
A=(Ay, A)). Equation(3) implies thatF,, has a magnitude
proportional to the lip length and a direction orthogonal to
For simplicity, the upper and lower lips are assumed tathe BC side.
have symmetric motion about the axis of the airflow. The  The origin of thex-y coordinate system is assumed to
dynamics of only the upper lip are thus considered. The lip ide at the center of the mouthpiece rim. As is shown in Fig. 2,
approximated as a simple mechanical oscillator composed dhe base of the lip touches the rim, so that B is onxke®
one mass, stiffness, and damping. Figure 2 depicts the schpkane of the mouthpiece entryway. The upper and lower lips
matic diagram of the two-dimensional lip model. The bodymeet on they=0 plane. We denote the position of C by
of the lip is represented by a parallelogram ABCD. The up-component asf=(§, §,). Then, the lip opening area is
per side, AB, functions as a free joint connecting the lip withgiven by
its base(hatched argaThe BC and AD sides can vary their _
lengthl, while the AB and DC sides are assumed to be rigid Sip=max2béy, 0}, ®
and have a constant length Therefore, the lip simulta- where a factor of 2 comes from the symmetric motion of the
neously executes both swinging and stretching motions. Qupper and lower lips.
equivalently, the tip of the lip, C, moves in directions both The lip movement regulates airflow into the instrument
parallel (x axis) and perpendiculaty axis) to the airflow. throughS;,. Additionally, the lip movement directly gener-
The position of C is assigned by a two-dimensional veétor ates flow, which is equivalent to the volume swept by the lips
Likewise, the position oB is assigned by a constant vector per unit time. This flow becomes

A. Two-dimensional lip vibration model

&oint- We calll andd the lip length and thickness, respec- dé
tively. In the vector notation, the lip length is represented by Ujp= [ b(£— &int) Xa e,
l :|§_§joint|-
Lip massm is assumed to be localized at the center of dé dé,
the lip. This implies that the moment of inertia with respect =b{ (€x— &joint,) d_ty —(§y—§jointy) rTak (6)

to the rotation about the center of the lip is omitted.
Two springs attached to the lip supply the restoringwheree, is the unit vector parallel to the axis of swinging
force: One is for swinging motion and the other is for motion.
stretching motion. When the lip is at rest, C is at a position  During closure of the lips, that is, whe®},=0, lip con-
indicated by, If the tip displaces from the rest position, tact supplies another restoring force along yhaxis, whose
force Fesiore having the direction pointing td,,; and the  stiffness is assumed to be three times larger thafhere-
magnitude proportional t¢§—§equi,| is supplied. This is an- fore, the supplementary restoring foreegké, g, acts on the
other description of the lip having two springs with the samelip only when § <0. Similarly, lip contact yields another
stiffness along the- andy directions. viscous loss of the vibrating lips, which seems large due to
There are two different external forces driving the lip. the lip deformation upon collision. The quality fact@r is
One is the forcé, , acting on the BC and AD sides, which thus assumed to decrease to less than unity on the closure
is generated by the difference between the blowing pressumondition.
po and the mouthpiece pressyseAnother external force is By adjusting the embouchure, the brass instrument
Feemouni @Cting on the DC side, which is generated by theplayer can select notes in the harmonic series available with-
Bernoulli pressure or the pressure at the lip opergRg out valve(piston manipulation. The process of adjusting the
The equation of lip motion is given by embouchure corresponds to changing the lip eigenfrequency
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TABLE |. Parameters. where p is average air density an§, is the area of the
mouthpiece entryway. The sum of Edq3) and (8) implies
that acoustical volume flow ratd .., iS @ nonlinear func-

Symbol Parameter name Value

c speed of sound 3410 m/s tion of p and S;,. Total volume flow rateU is given by

p average air density 12 k@’:m , U=Ucoustt Ujip, Where Uy, is the lip-generated flow de-

Seup area of mouthpiece entryway %30 " m fined by E (6)

b width of lip opening 7.10 % m Yy EQ.{0). 5. . L

p thickness of lips 28103 m The feedback equatidnis given by the following inte-

Eoint lip joint position (0, 4.0%x10°%m gral equation:

Eequil x coord. of lip rest position 1810 3m

§equik, y coord. of lip rest position  (—0.1-2.0x10 3 cm -

lip quality factor 3.0 on the open-lip condition H=Z.U(t)+ ds r(s){Z.U(t—s)+Dp(t—s 9

0.5 on the closed-lip condition P(H)=2U(1) 0 (S{ZU(t=s)+p(t=s)}, (9

fiip lip resonance frequency 60-700 Hz

m lip mass 1.502m)% ) kg ) ) ] )

K Stiffness of lips L5, N/m wherer (t) is the reflection function, and = pc/S;,, with

Po blowing pressure 2.0-5.0 kPa speed of sound is the characteristic wave impedance of an

infinite cylindrical tube having the areg,,. The reflection
functionr (t) is associated with the input impedance of the
fjp. Elliott and Bowshet deduced the dependence of lip instrumentZ,,(f) throughr (f) denoting the Fourier transfor-
massm on the lip eigenfrequency;, from their measure- mation ofr(t) as follows:

ments of average volume flows while various notes with dif-

ferent pitches were blown. Following their results, we as- Zn(f)—Z¢

sume thatm is inversely proportional td,,. Accordingly, r(f)= m (10
the behavior of stiffnesk becomes proportional té;, be- n ¢

causef;;, = vk/m/2m. Lip and other parameters for our simu-

lations are shown in Table . In principle, the reflection function(t) is causal. This is

guaranteed by the nature of the input impedangéf ) rep-
_ resenting causal acoustic responses from the instrument.
B. Total sound production system However, there may be cases in which the numerical calcu-

The sound production system comprises the lip dynamlation from Zi,(f ) by way of Eq.(10) may affect the cau-
ics, the airflow behavior near the lip opening, and the resoSality of r(t): The wake of nonzero(t) for t>0 penetrates
nance characteristics of the instrument. These form a closdt0 thet<0 region. This is due to a finite cutoff frequency
loop in the feedback system and thus self-excitation can b8 sampling frequency associated with the numerical calcu-
established. The lip dynamics has already been modeled #gtion. In this caser,(t) cannot be used in E¢9) as it stands.
the previous subsection. Equations of the airflow are derive&©r the brass instrument, abrupt reflections from the mouth-
from the fluid dynamical consideration. In time domain, thePiece generally cause this difficulty. To avoid this, we em-
acoustic response from the instrument can be calculated byRioy a causal reflection functiarf(t), which was used in the
feedback equation. The same flow and feedback equations REVious simulation with one-dimensional lip mod&isin
used in the simulations with one-dimensional lip motfkls Prief,ré(t) is defined by two times the even componemith
are employed in this paper and reviewed here. respect to the time revers&b —t).of the ongma_lr(t) for

Let us first review the flow equations. On the assump{=0 and zero fort<0. To verify this procedure, it has been
tion of one-dimensional and incompressible flow, the mas§onfirmed that Eq(9) with the causal reflection function
conservation provides that the acoustical volume flow raté “(t) simulates a ratio of generated presspre input flow
U acousiS independent of place and depends only on time Y, reproducing almost the same input impedance.

The region near the lip opening is divided into two parts: the ~ The data oZj,(f ) used in this paper are the same ones
upstream contraction regiafie., the mouth cavity and the used in the previous simulation which were calculated from
lip opening regioh and the downstream expansion regionthe dimension; of a real l’Btruljnpet with some assumptions
(i.e., a thin region in the mouthpiece cup adjacent to the.lips On the acoustics. The magnitude and phas&ff ) are

In the contraction region, laminar flow is assumed to be reShown in Fig. 3. Table Il lists the magnitudgmrmalized by
alized, while in the expansion region, flow is assumed to_Zc)v frequenue; of the impedance pegks, and their frequency
come off from the boundary layer and make a jet. Thereforeintervals. The impedance peaks, which are at nearly equal
we apply the energy conservation law to the flow in theintervals with the exception of t_he first peak, correspond to
former region and the momentum conservation law to théhe resonance modes of the instrument. The envelope of

one in the latte}* these peaks is characteristic of the brass instrument. Note
They become that the sign of the phaseZ; (f ) changes from positive to
) negative as frequendyrises and sweeps resonance frequen-
o E Uacousj ﬂ I acoust (7) cies. These characteristics of tiig(f ) are very similar to
Po™ Pip=75 P Sip Sip Jt the input impedances obtained in experiméfts® There-
1 1 fore, the general acoustical behavior of the real bra;s ins.tru—
plip_p:_pugcous<— — T) (8) ment is expected to be reproduced by the total simulation
Scupdip  Seup system.
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60 . . . Despite the simple method and the low sampling fre-
quency, we did not encounter apparent numerical instabili-

S ties. This partly assures the validity of the simulation
= 3of L I
N method. For greater validity, some of the oscillations were
additionally calculated with 48-kHz sampling frequency.
98 They had almost the same waveforms as the ones calculated

'ﬂ ' ' ' ] with the original 8-kHz sampling frequency. In particular, the
phase relations among(t), U(t), andS;,(t), which will be
investigated later, did not change with this oversampling.

arg[Zin] (deg.)
[=]

A. Mode selection

]

©

o
o

05 ,(k}_,z) 15 2 By changing lip eigenfrequencfy, from 60 through
700 Hz at intervals of 20 Hzexcept 600, 620, and 700 Hz,
FIG. 3. The magnitude and phase angle of input impedahcecaled by  at which no stable self-excitation is generafesle obtained
the characteristic wave impedari¢g, which is calculated from the shape of stgple self-excited trumpet sounds for the first through sixth
an actual B trumpet. resonance modes. Blowing pressusg for the moderate
(mf) sound level was set at 2.0, 2.5, 3.0, 3.5, 4.0, and 5.0
II. SIMULATION kPa for the first through sixth modes, respectively. These
o _ . . _values were chosen so as to match the measurements of
The OSC"IaUOn IS descnbed by the Va.nables Of ||p pOS|'m0uth pressures for various notes blown on brass
tion £(t), mouthpiece pressurp(t), lip opening pressure jnstruments? although the great variety among the trials and
Pip(t), acous_tlc volume ve!ocnyUa?ous(t), lip-generated players was reported.
volume velocityUy,,(t), and lip opening are&,(t). These They component of the lip equilibrium positiogqu,
variables satisfy the equations developed in the previous Segio getermines the average lip opening area, was adjusted
tion. A time-domain simulation is carried out algorithmically so that the following criteria were satisfiet) The lips do

as follows: not come into contact with each other or only have contact in
(1) Suppose the variableg p, pjy, Uacouse Usip, andS;, & much shorter time than the oscillation period d@pthe
are all known at all times earlier than the present, solvenaximum amplitude of oscillation is obtained. With these
the equation of the lip motiofil), and find the newt at  criteria, gequi& can be practically determined as a function of

the time one step ahead. fip andpy and therefore ceases to be an independent param-
(2) Calculate the nevi;, and U, defined by Eqgs(5) and  eter.
(6), respectively. The other parameters of lip geomethy, d, &g, and

(3) With the new S;,, Uj,, and past data ofp and &equi, Were all fixed at the values listed in Table I. Due to the

U=Ugcousit Ujip» SOIVE the flow equatiofii.e., sum of  simplified model, these parameters are not directly related to
Egs.(7) and(8)] and the feedback equatid®) simulta-  the actual dimensions of the player’s lips. However, they

neously, and obtain the newandU ,coust were selected to be consistent with the dimensions of the lips
(4) Solve Eq.(8) to obtain the newp, . put to a trumpet mouthpiece.
(5) Update time by one step, and then returr(p Figure 4 plots the frequency of self-excited soufg,q

against the lip eigenfrequendy, with the first through sixth
resonance frequencies of the trumpet depicted with dash-dot
lines. The first through sixth resonance modes appear. Be-
are all zeros. The lip positiog is initially placed at the rest Ween adjacent resonance modes, frequency gaps that repre-
POSItion & oq.- The forward Euler method to discretize the sent the mode transition are found. In each resonance mode,
differential equations and the trapezoidal approximation forSPUNding frequencysoung does not take a constant value.

the integration are used with 8-kHz sampling frequency.  nstéad, there is a frequency range fafuns where self-
excitation is possible and whefg, ,,4gradually ascends with

_ ' o increases irf, . It is noteworthy that in the first, second and
TABLE Il. Magnitudes and frequencies of input impedance peaks and the"third modes the possible rangesfg;undspan both the higher
intervals. and lower sides of the resonance frequencies, whereas in the

The parameters of lip geometyiy;, & equi, b, andd,
and the blowing pressung, are fixed during one attempt of
the simulation. The initial values @, pjip , Uacouse @NdUj;p

f pea Af fourth, fifth, and sixth modes, they are only on the lower
Mode 1Zin 1Z] (Hz) (Hz) sides.

| d 137 a7 Within each resonance mode, especially in the third and
I B: 35.2 232 145 fourth, the slope of the sounding frequency is less steep at
1] Fu 46.4 341 109 the higher frequency range than at the lower frequency
v B 55.7 457 116 range. In other words, the sounding frequency is insensitive
& "25 ‘5‘2-; Z;g Ei for any perturbation off, at the higher frequency range.
T Asé 445 800 114 From the player’s point of view, blowing a note at as high a
Vil B 285 913 113 frequency as possible is preferable, because the insensitivity

brings the ease of maintaining a given playing frequency. As
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700f - : Vi A for the long axis of the oval trajectory to gradually tilt from
_'_‘_‘_'_'””'_'_'_'_'_'_”_'_'_503_ the direction parallel to the airflow in the second mdde
600/ v~ ! toward a certain angle in the higher mod@s—(e). This
T T T T T T T T T qualitatively corresponds to the change in lip vibration state
500} " e ] from swinging motion dominant to stretching motion domi-
‘(;;‘ R § 6_6K00 ___________ nant
g 400 ,09 For a loose-lipping tone, it is found that the amplitude of
8 |-mmimmmm- L the lip motion and volume flow ratd are much larger than
5 300f & 1 those of the normal oscillations, although the pressure am-
U§) __________ gl oo plitude is almost the same. The tilted direction of the trajec-
200¢ of 1 tory in (f) implies the stretching motion dominant lip vibra-
60 tion state.
100 '—l—)ﬁo ——————————————————————————————— 3 The trajectory for the loose-lipping tone can be com-
g . . pared with the two-dimensional motion of a trombone play-
% 200 400 600 er’s upper lip measured by Copley and Strérzecause the
Lip Eigenfrequency (Hz) frequency of 166 Hz is close to that of their measuFed

, , _ _ _ tones. The amplitude and flatness of the simulated trajectory
FIG. 4. Frequencydepicted withc) of self-excited sound against the lip inb d t with th fth d traiect
eigenfrequency. The dash-dot lines represent the first through sixth res@€ IN Droad agreement wi ] 0se ol the measure ; rajectory.
nance frequencies of the instrument. In the first through third modes, selffowever, the measured trajectory has the long axis roughly
excitation occurs with sounding frequencies both higher and lower than thalong they axis, while our simulated trajectory has the one
resonance frequencies, whereas in the fourth and higher modes, it on%ugmy along thex axis. This is probably because of the
occurs with a sounding frequency lower than the resonance frequencies. Iarger dimensions of the trombone mouthpiece cup which

L allows the lips to get into the cup more deeply.
a result, the actual blowing in the lower modes such as the ¢ phase differences p— /U and 2 Sy, —Zp in the

second and third would be executed on the higher frequencygijjations shown in Fig. 5 are listed along with resonance
side of the impedance peaks. However, in the higher mOdeﬁ’equencies of the instrumeffrequencies of the impedance

it un|d still be executed on the lower side, because thepea@ f peate lip eigenfrequencies;, , and sounding frequen-
possible frequency ranges are lower than the resonance frgpg feoungin Table 111, It is found thatZp— U changes

quencies. from negative values in the second and third modes to posi-
tive values in the fourth and higher modes. This corresponds

B. Oscillating quantities to the change in the sides of the impedance peaks on which

éhe oscillation occurs in different modes, which is manifest

embouchure, the brass instrument player finely controls th#! _comparing fp_e?k W'th fS?““d' The phase difference
embouchure to make a blown note have both stable fre—LS"P_Ap is positive in the first through fourth modes and

quency and sufficient amplitude. Such notes selected frorﬁjegative in the fifth and sixth modes. This change proves that

the different modes should also be relatively in tune. Toe lip motion changes from the swinging motion dominant

mimic the player’s embouchure control in the simulation sys—s_tate in the first through fourth modes to the stretching mo-
tem, we change the lip eigenfrequerfgy at intervals of 10 tion domlnant_ state in the fifth an(_j sixth modes. I

Hz, instead of the 20 Hz used in the previous subsection, an The condition derlve_d by the linear theory of oscillation
find the optimum oscillation of each mode by the foIIowingt at these two phase differencesp—2U and L.S”P_.Ap .
procedure: First, search for the maximuip that provides have the same absolutg valqes and have opposite SIgns 1S not
oscillation with the highest frequency; then, lower fhg 10 always Sat'Sf'e.d' Especially in the foutth mode, the signs (.)f
Hz to obtain an oscillation with both stable frequency angthese phase differences are both positive and the stretching
sufficient amplitude motion dominant state inferred from positivep— 2 U con-

Waveforms and the lip trajectories of these osciIIationstrad'CtS the swinging motion dominant state that is actually

in the second through sixth modes are depicted in R@-5 excited.

(e). A “loose-lipping” tone®® [Fig. 5(f)], which is an oscilla-

tion an octave below the normal oscillation in the third ||| piscussioN

mode, is also compared with the normal oscillations in Fig.

5. It is found that the characteristic waveform with rich har- ~ The results of the simulation with the two-dimensional
monics turns out to be a sinusoidal one from the lower to thdip Vvibration models are significantly different from those
higher modes, which is very similar to the change in thewith the one-dimensional models in the following points:

l . . .
observed brass sound! The smusqdal waveforms &, in (1) The sounding frequency,,nqis not far from the lip
all resonance modes whose amplitude decreases as the mode eigenfrequency;
ip -

rises reproduce the result of Martin’s observation of Iip(z) A transition in lip vibration states is observed. The

movement. , _ o swinging motion dominant oscillation typical in the
The counterclockwise trajectory of the lip displacement |51 resonance modes gives way to the stretching mo-
£ whose amplitude is decreased as the mode rises, is again 4 dominant oscillation in the higher modes.

in accord with Martin’s observation. There is also a tendency

Apart from selecting resonance modes by adjusting th
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FIG. 5. Waveforms of mouthpiece pressyse volume flow U, and lip
__ 20 __ 20 opening are&;;, with the lip trajectories of the optimum oscillations of the
L x10"-4 o x10"-4 (a) second througtte) sixth modes andf) the loose-lipping tone. In com-
T 10 T 1.0 /\/\/\/\/\/\/ paring the pressure waveforms (@—(e), it is found that the characteristic
e \/\/\/\/\/\/ S waveform with rich harmonics in the lower modes turns out to be a sinu-
0 0 soidal one in the higher modes. On the other hand, the wavefor@g afe
§r 6.0 §? 6.0 always nearly sinusoidal. In th@) second andb) third modes, volume flow
£ £ U is leading mouthpiece pressysgwhile in the(c) fourth through(e) sixth
E 30 E 30 modes,U is lagging behind. The trajectories with an oval shape indicate
s 0\/\/\/\/\/\/ s o/\/\/\/\/\/\f the rolling motion of the lip. As the mode rises, the amplitude becomes
0 5 10 0 5 10 smaller. Also, the long axis of the trajectory gradually tilts from the direction
t (ms) t (ms) parallel to the flow in(a) the second mode toward a certain anglé¢hn-(e)
] _ the higher modes. This qualitatively corresponds to the change in lip vibra-
20 ugper lip 20 ‘\QPP‘"’ lip tion state from swinging motion dominant to stretching motion dominant.
E v E VY The trajectory of the loose-lipping tone shows a larger amplitude and a tilted
;1'0 \ \\ ;1'0 \ ‘\ direction, implying the stretching motion dominant lip vibration state.
\ i
t\\ Q\
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Let us discuss the causes of these characteristics withiconditions of the total sound production system. Generally,
the scope of the linear theory of oscillation, where the flowthe magnitude ofG(f ) has a peak near the lip eigenfre-
equationg7) and(8) are linearized and lip collision is omit- quency f;,, whereas the frequency dependence of phase
ted. For simplicity, we assumg;,<S,, and thusp;,=p, £ G(f )=21S5(f )= £p(f) is specific to the lip vibration
which implies no pressure recovery at the mouthpiece cupnodel.

holds. AsU i, <U 40usdS approximately satisfied in the simu- The regeneration theofy, regardless of what lip dy-
lation, the effect ofU,;, is excluded from this discussion.  namics is assumed, requires oscillation to have sounding fre-
To make the discussion precise, we define quencyf satisfying the following magnitude and phase con-
ditions:
Sip(f)
V= 1G()l[Zin(f)|=1, (12
where S;,(f ) andp(f ) denote Fourier components 8f, p
andp, respectively. ASG(f ) represents a response of the lip L G(f )+ 2Z,(f)=0. (13)

motion to the driving pressure, we here c@l(f ) the lip

mobility, althoughG(f ) is only one component of the lip The magnitude condition indicates that oscillation is more
mobility having a tensor form. It is only this component likely to be generated with larger blowing pressure and
G(f ) that plays a crucial role in considering the oscillation stronger resonances of the instrument and the lip. We have
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TABLE III. Lip eigenfrequencies, sound frequencies, phase differeriges ~ U and £ S;,— £ p of the opti-

mum oscillation of each resonance mode and the loose-lipping tone.

. . fpeak fIip fsound Lp—L u leip_ p

Oscillation Note (Hz) (Hz) (Hz) (deg (deg

I B} 232 250 236 —25.6 18.1

Il Fa 341 370 342 -3.2 12,5

vV B 457 490 453 27.7 5.4

\Y Ds 572 580 563 41.9 -7.0

VI Fs 686 680 673 38.5 -7.6

Loose-lipping (Fy) 232 160 166 81.6 —-41.5
already investigated the phase condition in the Introduction 2b§;‘°(f )
and Sec. Il B, althougli(f ) was not defined there. = W

Before calculating the lip mobilityG(f ) for the two-

dimensional lip vibration model, let us first obtain the time- (d—§§‘3—2b§joimy Pt A/ Fip) Ik} A (F/£y,)
averaged or dc component of the lip displaceméfit =(2b)? 11T 2b0 T AT/ kT2 "
= (&°, &9. The equation of lip motioii1), or, in this case, +[2bpo{ A (F/fp)/K}]

the balance equation of forces acting on the lip becomes

k k
E b Po ( SC ~ E gequilx+ b pogjointy
gdC k ’
—-b Po E y E fequib

(14

because the time-averaged mouthpiece pressifris zero.
Equation(14) can be solved as

( dc 1
gdC = 2
g 5 +(bpo)?
k\? k
E fequilx"' 5 pr( gjointy_ fequik,)
X

k\?2 k
E) gequig,"' E prfequilx'*' (bpo)zgjointy

(15

We express the time-varying or ac component of the lip

displacement witlg *° = (&°, &. The equation of lip mo-
tion (1) gives a linear equation faf 2°in the frequency do-
main as follows:

k
EAfl(f/fnp) bpo

ac

X

k (f)

“bpy S AN |

-b join
=( fhomy |, (16)

—b&C+bd

where the quadratic tergfp is omitted, because the ampli-
tude of lip motion is sufficiently smaller than the lip length.

The functionA(Q) in Eq. (16) is defined by

1
A= a0y (17

From the solution of Eq(16), the lip mobility G(f ) is cal-
culated as
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(18

The calculation results of the magnitude and phase of
G(f ) for f,;,=250 Hz andf;,=580 Hz are depicted in Fig.
6(a) and (b), respectively. For comparison, those of lip mo-
bility in the one-dimensional transverse model are also
drawn with broken lines. Near the lip eigenfrequerfgy,
the phase o6 (f ) takes a value around30° in (a) and one
around—45° in (b). Because the phase @f, changes sud-
denly from a value less than 90° to another larger than
—90°C near the resonance frequencies, frequdnsatisfy-
ing the phase conditiol3) is likely to exist near the lip
eigenfrequency,, . For the transverse modgroken line,
£G(f ) is around—90° nearfy, in both (@) and (b). This
implies that frequency should be considerably off to the
lower side off;, so that the phase becomes closer to zero
and the phase condition is satisfied. Therefore, the character-
istics of G near the lip eigenfrequency in the two-
dimensional model successfully explain why the sounding

z

J

E

5] -

o)

(1]

T

)

o

E . N

0 250 1000 0 580 1000

f(Hz) f (Hz)

(a) (b)

FIG. 6. Calculation results of the magnitude and phase of the lip mobility
G(f ) for lip eigenfrequencyf;,=250 Hz (a) and 580 Hz(b). The solid
lines denote results for the two-dimensional lip vibration model, and the
broken lines denote those for the one-dimensional transverse model. The
peak of the magnitude indicates the resonance of lip vibration. A frequency
region having a positive phase &f(f ) is found in the two-dimensional
model. In this region, the swinging motion of lip vibration is dominant,
whereas in the2 G-negative region the stretching motion becomes domi-
nant. Note that the’ G-positive region is very close thy, in (a), while it is

far from fy, in (b). This difference causes the transition of the lip vibration
state.
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frequencyf gy ngis not far from the lip eigenfrequendy;, . mode rises, the amplitude of oscillation becomes smaller due
Let us now comparég) with (b) in Fig. 6. In these phase to the lip stiffnessk that is adjusted to increase proportion-
plots, we find the frequency region having a positive phaselly to the lip eigenfrequency;, . This causes a decline in
of G(f ) (the 2G-positive region, where the swinging mo- the swinging motion due to the decrease in the second term.
tion is dominant. Note that ifa) the 2 G-positive region is  In the higher modes, therefore, the first term is always domi-
very close to the lip eigenfrequenéy, where the magnitude nant and only the stretching motion dominant state is real-
of G(f ) takes the maximum. On the other hand(lm the ized.
£ G-positive region is far fronf,;, . Therefore, for the lower The parameters of lip shape certainly alter the character
modes like the second shown (@), there existd that gives  of the lip mobility G(f ). In particular, the ratio of lip thick-
sufficiently large|G(f )| so as to satisfy the magnitude con- ness to lip length, which is approximately equaldkfjoimy,
dition (12) both in the/ G-positive and negative regions. In affects the frequency region having a positive phase of
actual blowing, suctf in the ~G-positive region is chosen G(f ). This indicates that this ratio can control the critical
for the frequency stability of a played note. However, for theresonance mode at which the lip vibration state changes from
higher modes such as the fifth {b), f satisfying the mag- swinging motion dominant to stretching motion dominant.
nitude condition(12) is not found in the2 G-positive region  Nevertheless, the mechanism that yields the transition be-
but only in the ~G-negative region, where the stretching tween the lip vibration states would be retained, regardless of
motion is dominant. This explains why the lip vibration statethe selection of lip shape parameters, in the two-dimensional
changes from swinging motion dominant in the lower modedip vibration model investigated in this paper. In actual blow-
to stretching motion dominant in the higher modes. ing, the ratiod/gjointy may be controlled by the embouchure.
The investigation of the oscillation conditioi$2) and  |f this is the case, an increase in the fadbfjoimy would

(13) shows the advantage of the two-dimensional lip vibra-gnhance the transition; however, this effect was not investi-
tion model over the one-dimensional models as the generatQfated in this simulation.

of the brass instrument. The magnitude conditib® allows

the system to oscillate only in the presence of large reso-
nances of both the ms’qument and.the lip. The input |mpediV- CONCLUSIONS
anceZ;,(f ) has a maximum magnitude at one of the reso-

nance frequencies and the lip mobilB(f ) is maximized at By adopting the two-dimensional lip vibration model,
the lip eigenfrequency. Therefore, the system will obtain theyhere the lips execute both swinging and stretching motions,
optimal effect of these resonances when the oscillation frethe whole system successfully simulates self-excited trumpet
quencyf is close to the lip eigenfrequency and to one of thesounds in the first through sixth resonance modes. In the first
air-column resonance frequencies. On the other hand, th@rough third modes, oscillations occur on both the lower
phase condition(13) constrains the phases @,(f ) and  and higher frequency sides of the resonance frequency of the
G(f ) to cancel each other. At one of the air-column reso-instrument, while in the fourth and higher modes they are
nance frequencies, where the maximum resonance of the ifealized only on the lower sides. In each resonance mode, the
strument is obtained; Z;,(f ) is approximately zero. To sat- oscillation having the highest frequency and sufficient ampli-
isfy the phase condition, G(f ) should also be as close to tude, which appears to be actually blown, is selected as the
zero as possible. In the two-dimensional model, this is comeptimum oscillation of the mode. The phase differences be-
patible with the magnitude condition becaus&(f ) van-  tween the lip vibration and the mouthpiece pressure of these
ishes near the lip eigenfrequency that maximizes the magnbscillations in the first through fourth modes are positive and
tude of G(f ). In the one-dimensional lip vibration models, those in the fifth and sixth modes are negative.
however, this conflicts with the magnitude condition because  The phase relations obtained here can be compared with
£G(f ) is around+90° near the lip eigenfrequency. those of the one-dimensional lip models. In the lower modes
To understand the mechanism of change in lip vibratiorthe two-dimensional lip model operates in the same way as
states further, let us go back to the lip mobil®(f ) calcu- the one-dimensional swinging-door model, while in the
lated in Eqg.(18). The first term in the numerator of the sec- higher modes this model operates in the same way as the
ond factor in Eq(18) corresponds to the effect of the stretch- one-dimensional transverse model. Accordingly, it can be
ing motion of the lip directly driven by the Bernoulli concluded that the two-dimensional lip model closely repli-
pressure along thg direction. The second term in the same cates the transition of the lip vibration states observed in
numerator represents the effect of the lip movement alonyoshikawa’s experiment.
they direction, which is caused by that along théirection The change from the positive phase difference in the
(i.e., the swinging motion o 2. Note that the second term lower modes to the negative one in the higher modes results
is inversely proportional to the lip stiffnegs which controls  from the dynamics of the lip model itself. In the lower
the amplitude of the lip motion. This is related to the swing-modes, the large amplitude of lip motion enhances the
ing motion of £ 2 being generated by torque that is the prod-swinging motion, whereas in the higher modes the small am-
uct of the force acting on the lip and the amplitude of theplitude suppresses the swinging motion and the stretching
motion. In the lower resonance modes, these two terms amotion becomes dominant. The mechanism that yields the
comparable and the second term surpasses the first one whigansition of the phase relation is not limited to this two-
the sounding frequency is near the lip eigenfrequency due tdimensional model. Rather, it will be incorporated into future
a large magnitude ok representing the lip resonance. As the models with many degrees of freedom, provided that the
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