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Nonlinear responses to acoustic signals arise through active processes in the cochlea, which has an
exquisite sensitivity and wide dynamic range that can be explained by critical nonlinear oscillations of
outer hair cells. Here we ask how the interaction of critical nonlinearities with the basilar membrane and
other organ of Corti components could determine tuning properties of the mammalian cochlea. We
propose a canonical oscillator model that captures the dynamics of the interaction between the basilar
membrane and organ of Corti, using a pair of coupled oscillators for each place along the cochlea. We
analyze two models in which a linear oscillator, representing basilar membrane dynamics, is coupled to a

lég{m(;;ds' nonlinear oscillator poised at a Hopf instability. The coupling in the first model is unidirectional, and that
Auditory of the second is bidirectional. Parameters are determined by fitting 496 auditory-nerve (AN) tuning
Modeling curves of macaque monkeys. We find that the unidirectionally and bidirectionally coupled models ac-
Dynamics count equally well for threshold tuning. In addition, however, the bidirectionally coupled model exhibits
Oscillation low-amplitude, spontaneous oscillation in the absence of stimulation, predicting that phase locking will

occur before a significant increase in firing frequency, in accordance with well known empirical obser-
vations. This leads us to a canonical oscillator cochlear model based on the fundamental principles of
critical nonlinear oscillation and coupling dynamics. The model is more biologically realistic than widely
used linear or nonlinear filter-based models, yet parsimoniously displays key features of nonlinear
mechanistic models. It is efficient enough for computational studies of auditory perception and auditory
physiology.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The mammalian auditory system provides the sensory func-
tionality that allows mammals to perceive and interpret the world
of sound as transmitted by air-pressure waves. The fundamental
organ of this system is the cochlea. The cochlea is a detector and
transducer that is sharply tuned to frequency and exquisitely sen-
sitive, yet functions over a wide range of sound pressure levels.
Along the cochlea, there is a complex interaction among the
incompressible cochlear fluids and the cochlear structures
including the basilar membrane (BM), sensory hair cells, support-
ing cells, and reticular lamina. Sound pressure-evoked BM vibra-
tions are sensed by the outer hair cells (OHCs), which respond by
producing force and oscillations (Zheng et al., 2000). The coupling
between the structures of the organ of Corti (OC) through the
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cochlear fluids and the tectorial membrane drives the inner hair
cells (IHCs), producing signals communicated to higher auditory
areas by the auditory nerve (AN).

Many recent models of the cochlea focus on the nonlinear
oscillatory responses of OHCs (Jiilicher et al., 2001; Kern and Stoop,
2003; Magnasco, 2003; Stoop et al., 2005; Kern et al., 2008). It has
been suggested that OHCs poised at or near oscillatory (Hopf)
instability may be responsible for the cochlea's extreme sensitivity,
excellent frequency selectivity, and amplitude compression
(Camalet et al., 2000; Eguiluz et al., 2000). Models that focus on this
aspect of nonlinearity in the cochlea, including the present model,
are called resonance models (Bell, 2012), as distinct from
transmission-line or traveling-wave models, which focus on the
mechanisms underlying the traveling wave along the basilar
membrane from base to apex (e.g., Neely and Rasetshwane (2017);
Elliott and Ni (2018); Verhulst et al. (2018); Neely and Kim (1983)).

A novel aspect of the present oscillatory cochlear model is that it
is canonical in the mathematical sense of Hoppensteadt and
Izhikevich (1997a, b). Canonical model here means that a family
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of similar physiologically-detailed models, potentially with large
numbers of parameters, can be reduced to it by a near-identity
change of variables (Kim and Large, 2019). A canonical model
then retains the essential properties of the highly parameterized
models, while being simpler and more parsimonious. Models of
OHC nonlinearities consist of dynamical equations in the form of
critical oscillators that capture generic aspects of nonlinear reso-
nance (Fredrickson-Hemsing et al., 2012; Roongthumskul et al.,
2013; Hoppensteadt and Izhikevich, 1997b). Such models use the
normal (truncated) form of a Hopf bifurcation

z':z(a+iz7rf+ﬁ]z|2) + Fel2mot (1)

where zC is the state variable, f is the intrinsic or natural oscil-
lator frequency in Hz, « is a linear damping and bifurcation
parameter, and ( controls amplitude compression. The dot over z
denotes the derivative of z with respect to time, and Fei2™! denotes
linear forcing by a time-varying external signal. Because z is a
complex number, it can be rewritten in polar form,

f=ar + fr’ + F cos(2nfot — ¢)

¢ =2nf + I—;sin(ZTrfOt — ),

revealing system behavior in terms of amplitude r and phase angle
.

As expected for a model of oscillation, this model can exhibit
resonance. Resonance means that the system oscillates at the fre-
quency of stimulation, with amplitude and phase determined by
system parameters. As the stimulus frequency fo approaches the
intrinsic oscillator frequency f, the oscillator amplitude r increases,
exhibiting bandpass filtering behavior. A canonical cochlear model
in which each segment of the cochlea is represented by Eq. (1) can
account for a nontrivial subset of cochlear dynamics, such as sharp
mechanical frequency tuning, exquisite sensitivity, and a large dy-
namic range (Eguiluz et al., 2000; Magnasco, 2003; Mora and
Bialek, 2011; Ospeck et al., 2001). Models of this type also lend
themselves well to mathematical analysis, which is one reason for
utilizing such a model in the present work. Longitudinal coupling of
adjacent cochlear segments would more accurately model the
traveling wave on the BM and would account for phase delays as a
function of center frequency. However, including longitudinal
coupling along the BM would greatly complicate the analysis, thus
it was not considered in the current study.

An important question for any cochlear model is how well it
represents cochlear tuning (Magnasco, 2003). Tuning curves pro-
vide information about the relationship between frequency and
amplitude of the stimulus and threshold auditory responses,
making tuning curves highly relevant for determining cochlear-
model parameters. The cochlea is spiral-shaped and fluid-filled,
making direct measurements difficult, thus most available
tuning-curve data are from either the AN of laboratory animals or
noninvasive measures in humans, such as psychophysical-filter
bandwidth determinations or otoacoustic emissions (Shera et al.,
2002). A close relationship between AN and mechanical tuning
curves has been demonstrated, such that the tuning curves of fibers
innervating more basal cochlear sites resemble BM tuning curves
closely (Narayan et al., 1998; Temchin et al., 2008a, b). However,
directly determining the mechanical-filter bandwidths in vivo in
the cochlea is a difficult task, and there is not enough existing data
to be especially confident in a given relationship between me-
chanical and neural tuning. Recent reports using optical coherence
tomography suggest that mechanical tuning may be broader than

initially thought (Lee et al., 2015; Dong et al., 2018); however, this
technology is still being explored, and the broader tuning may
simply reflect imaging a longer segment of the cochlea than
intended.

Here we fit model parameters to tuning-curve data (Fig. 2) from
the macaque AN (Joris et al., 2011). Starting with normal-form
models of OHC nonlinearities as a theoretical framework, we
introduce an extended canonical model that takes into account
linear basilar-membrane dynamics, critical nonlinear OHC dy-
namics, and the coupling between the two. Here we study two
configurations of the model. In the first model, linear basilar-
membrane oscillators drive critical nonlinear OHC oscillators. In
the second model, bidirectional coupling is introduced, such that
the nonlinear elements reciprocally drive the linear filtering ele-
ments, in a manner similar to the model of Mountain and Hubbard
(1994). Both models can be solved exactly to determine how
threshold-tuning properties depend on parameters, and both
models produce tuning curves that closely match responses
measured in the macaque AN (Joris et al,, 2011). In addition, our
analysis shows that the bidirectionally coupled model produces
intrinsic oscillations, such that near the empirically measured
threshold there exists a bifurcation boundary between non-
synchronized and synchronized physiological responses, consistent
with AN phase-locking near threshold (Johnson, 1980; Koppl, 1997;
Maoileidigh and Hudspeth, 2013).

2. The critical Hopf model of cochlear dynamics

Tuning curves represent a constant (isocontour) response level,
or threshold, to a stimulus of particular frequency fy and driving
force F. This response may be measured in the form of BM
displacement (isodisplacement (Ruggero and Rich, 1991; Ruggero,
1992; Ruggero et al., 1992; Narayan et al., 1998),) or AN discharge
rate (isorate (Narayan et al., 1998; Temchin et al., 2008a; Joris et al.,
2011),). In experimental settings, the driving force F is varied until a
chosen threshold response level is reached. Mathematically, the
tuning curve corresponds to the intersection of a tuning surface and
a plane parallel to the (f, F) plane passing through the threshold
value of the cochlear response. The intersection is an isodisplace-
ment or isorate contour. The tuning surface for the model defined
by Eq. (1) can be determined from its polar representation by
setting its amplitude equation equal to zero, i.e.,

. F [ Q2
r:a+ﬁr2+F 1—F—2r:0, (2)

where Q = 27 (f — fp). This steady-state equation involving system
parameters and variables can then be solved for the desired
parameter or variable. For example, the steady-state solution for r,
notated as r*, is the oscillator's steady-state amplitude. To find the
tuning curve, we solved Eq. (2) for F in terms of f and r*. The
resulting equation is

F=r/(a+pr2)? + Q% (3)

3. Fitting model parameters to tuning-curve data

To determine tuning curves that can be compared with AN data,
we first passed the acoustic stimulus through a linear filter to
approximate the amplitude and phase response of the middle ear
(Bruce et al., 2003; Zilany and Bruce, 2006). The middle-ear filter in
Zilany and Bruce (2006) is a simplified form of that of Bruce et al.
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(2003). Zilany and Bruce developed a fifth-order continuous-time
transfer function and represented it as a fifth-order digital filter
using a bilinear transformation for a sampling frequency of
500 kHz, with the frequency axis pre-warped to give a matching
frequency response at 1 kHz. To ensure stability of the digital filter,
it was implemented in a second-order section form with cascading
filters. The resulting waveform, denoted by Fe2™t, is provided as
input to the cochlear model described in Eq. (1).

Cochlear model parameters were determined based on experi-
mental tuning-curve data (Joris et al., 2011). A search of the
parameter space revealed that even at optimal parameter values,
the tuning curves produced by a model that considers only critical
oscillatory dynamics are too sharp (Jiilicher et al., 2001; Magnasco,
2003). Nevertheless, this model predicts several fundamental as-
pects of cochlear dynamics, exhibiting Hopf bifurcations controlled
by the model parameter «, amplitude compression controlled by (3,
frequency selectivity, high sensitivity, amplification, and a wide
dynamic range (Hudspeth et al, 2010). These properties are
correlated with attributes of active cochlear amplification, which
has been hypothesized to depend upon prestin-based electro-
motility of OHCs, which could increase frequency selectivity and
hearing sensitivity (Dallos, 2008; Yu and Zhao, 2009).

4. Coupled canonical oscillator models

Since a single oscillator model cannot fit auditory nerve tuning-
curve data well, we used pairs of coupled oscillators to model the
dynamics of cochlear segments. In each pair, one oscillator repre-
sents BM displacement dynamics, and the other represents organ
of Corti (OC) dynamics, including the OHCs, the tectorial mem-
brane, and other supporting structures. Input to the complex drives
the BM oscillator, which is intended to account for the dynamical
effects of the pressure wave in the cochlear fluid that drives the BM.
The OC energy source stems from critical oscillations that cause the
organ of Corti to vibrate. Thus such a model exhibits both BM
filtering and critical oscillations that capture the amplification,
compression, and frequency selectivity of cochlear processing
(Choe et al., 1998).

As mentioned above, this model does not include longitudinal
coupling between oscillator systems and so does not capture the
BM traveling wave. This also means that stimulus input is delivered
to each oscillator system simultaneously. A transmission-line
model that focuses on the traveling wave might include only lon-
gitudinal coupling, however both types of stimulus coupling exist
in the cochlea, commonly referred to as the fast wave and slow
wave (Olson, 2013; Andoh and Wada, 2004). Fast-wave coupling to
the stimulus through the pressure wave in the cochlear fluid is
nearly instantaneous and thus lends physiological legitimacy to this
approach. Even some transmission-line models include simulta-
neous fast-wave coupling of the stimulus to all segments (Wit and
van Dijk, 2012).

4.1. Unidirectional coupling

A model with unidirectional coupling between the pair of os-
cillators is more realistic than Eq. (1) in the sense that BM and OC
dynamics are each represented by a model equation and coupled
together to account for their respective influences on each other (cf.
Jiilicher et al., 2001). The natural frequency of each BM-OC complex
was set to correspond to the best frequency of the cochlear segment
that it represents. We equated the state of the OC oscillator with the
signal that is transmitted to the AN (Narayan et al., 1998). These
broad considerations led to a coupled set of canonical oscillator
equations for modeling a BM-OC complex. In this model, an
external stimulus drives the BM oscillator, the OC is driven by the

BM, and coupling of the OC oscillator back to the BM is neglected:

Zbm = Zpm (0 + 127f) + Fel2mot (4)

Zoc = Zoc (aoc + i2nf + (8 + 10)

2
Zoc| ) + C21Zpm-

The state variable z;,, represents the dynamics of the BM, while
Zoc represents the dynamics of the OC, including the nonlinearities
of the OHCs. For simplicity, we assumed a linear BM, thus there was
no nonlinear damping parameter ( for the BM, and only the linear
damping parameter, ap,;, <0, was determined by fitting tuning-
curve data. This model structure leads to bandpass filtering
behavior, making the model conceptually similar to that of Jiilicher
et al. (2001). For the OC we assumed critical nonlinear oscillation,
i.e,, e = 0, resulting in optimal amplification (Eguiluz et al., 2000).
In the general case, the nonlinear damping parameter can be
complex-valued, where the real part, 8, provides amplitude
compression and the imaginary part ¢ leads to dependence of
instantaneous frequency on amplitude, as has been observed in
living, intact cochleae (Ruggero, 1992). However, for simplicity we
assumed here that 6 = 0. The nonlinear damping parameter §<0
provides amplitude compression in the OC and was also deter-
mined by fitting tuning-curve data. Finally, the parameter cy;
governs the relative strength of forcing of the OC by the BM and was
determined by fitting the data as well. The nomenclature of cy;
follows the convention in which c; is a coefficient on the weight
from the jth oscillator to the ith oscillator in a system of connected
oscillators (Hoppensteadt and Izhikevich, 1997b). Thus three pa-
rameters, ap, <0, 6<0, and c; >0, were determined using a
search procedure that adjusted model parameters to obtain a suf-
ficiently close match to the data, as described next.

Given an empirical tuning curve, the natural frequency f of a
corresponding BM-OC oscillatory complex is set to the character-
istic frequency of the AN fiber associated with the tuning curve. In
order to use macaque AN threshold tuning-curve data from Joris
et al. (2011) (see Fig. 2) to fit the model parameters, it is neces-
sary for the model to be written in terms of amplitude dynamics,
because our oscillator amplitude r corresponds to an fiber's firing
rate. Therefore the coupled model in terms of the complex state
variables z;,,,, and z,c, Eq. (4), was rewritten in polar form, giving rise
to amplitude and phase equations:

Fom = CpmTpm + F COS(2mfot — ¢pm) (5)
. F .
pm =27f + rism(ZT"fOt — dbm)

bm

TFoc = OlocToc + 5r¢3)c + €21Tpm €OS(Ppm — Poc)

. Cy1T .
$oc =27f + % Sin(¢pm — doc)-

The goal was to find the stimulus forcing amplitude F for which
the oscillator z,c reaches a given steady-state amplitude for a va-
riety of stimulus frequencies. To perform a steady-state analysis for
each oscillator complex we thus need to define phase-difference
variables ¥y, = ¢pm — 27fot and Yoo = doc — dpm, as well as a
frequency-difference parameter Q = 27 (f — fy). Adopting the no-
tation rj_, T5c, Yhm, and Yg. for the steady-state amplitudes and
phase differences for the oscillators, our system, which is solvable
for F, becomes

0=y}, + F cos ¥, (6)
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Ozﬁ—rf sin Y,

bm
s 3 *
0=ryctoc + Briz + €17y, COS Yo

ot
0=Q+ r;2 — 21 bm

: *
sin ¥
oc
Given the threshold amplitude rj. of z,, which is a small
number that we held constant across tuning curves, the formula for
F in terms of model parameters is

[N

r* 1
F= 2 (0 + )" (o + 2r2atocd + 15867 + 0% 42002 +8%r3d )

(7)

Fis normally in units of pascals, which can then be converted to
the stimulus level L in dB SPL by

L=20 1ogP£O_ G, (8)

where Py = 20 uPa represents the reference pressure, and G the
gain of the middle ear filter in dB at the stimulating frequency f.

The fits assumed a threshold r};. = 0.1. With the three free pa-
rameters ap,;, 0, and cy; to fit for each of the 496 tuning curves in
the Joris et al. (2011) data, three aspects of the model and data
tuning curves were compared to minimize error and derive ideal
parameters: Quality factor or Qggp, tip-to-tail difference, and ab-
solute tip height. Qggp was determined as E%, where CF is the center
frequency of the curve and the equivalent rectangular bandwidth,
ERB, is determined empirically by the area under the normalized
and inverted curve. The tip-to-tail (TTT) difference is a measure in
decibels for how much the left side of the curve rises as the stim-
ulating frequency decreases from CF. Because many curves in this
data set did not extend a complete octave below their CF, we used a
half-octave tip-to-tail measure. And tip height was simply deter-
mined as the lowest point on the curve in dB SPL, the threshold
level at CF.

First, a two-parameter search was conducted for «y,,, and § to
simultaneously minimize the error for Qggp and TTT. For each data
CF, an exhaustive search of «;,;,, and § combinations was used to
calculate model curves. Corresponding matrices of Qggg and TTT
errors were then calculated by comparing the model to the data.
These error matrices were then z-scored and summed, with the
lowest value of the resulting matrix determining the unique
parameter regime for that CF. «,,, and § were therefore determined
with a compromise between the errors of Qggg and TTT. Finally, to
minimize the tip height error, co; was calculated. To properly match
the data tip heights, the model c,; tended to grow linearly with CF,
therefore a coefficient on CF was calculated for a given curve to
determine c,; by minimizing the error between data and model tip
height in dB SPL. It is clear from Eq. (7) that cy1 only has the effect of
moving the model curve up and down, without changing its shape.
Data tuning curves were compared with model tuning curves ob-
tained in this way (Fig. 2), and raw data Qggp s, TTTs, and tip heights
are shown in Fig. 4.

Solving the model for both . and r} ., compression curves can
also be calculated (Fig. 3). As expected, the linear BM model ap-
proximates a Gammatone filter and does not have variable band-
width as a function of stimulus level. Observing r;,. however, it is
clear that the full unidirectional model is highly compressive,
replicating the bandwidths of compression curves obtained from
living, intact cochleae (Eguiluz et al., 2000; Ruggero, 1992; Ruggero

et al,, 1992).

It is worth noting that viewing both the data and model tuning
curves in Figs. 1 and 2 in decibels obscures the fact that their Qggg s
are mostly determined by the shape of the tips of the curves. Thus,
the Qggp error was smaller for the lower-CF curves, and the half-
octave TTT error was smaller for the higher-CF curves. While the
low-frequency tails of some of the data curves often had superfi-
cially different shapes and heights than their model counterparts, it
should be remembered that their filtering behavior will not be
markedly different far away from CF, where both data and model
require high-level stimulation relative to CF to reach threshold.

4.2. Bidirectional coupling

A more realistic configuration of the BM-OC oscillatory com-
plexes is bidirectional coupling between the two oscillators rather
than the unidirectional coupling in the previous model. Thus our
second model considered the effect of OC dynamics on the BM.
With bidirectional coupling, the dynamics of an oscillatory complex
are governed by

i27fot

Zpm = Zpm (0pm + 127f) + Fe + C12Zoc (9)

Zoc =Zoc (aoc +i27f + (8 +10)

2
Zoc| ) + C21Zpm>

with ¢y, being the coupling coefficient of the OC oscillator back to
the BM oscillator. As was done for the unidirectional model, we
derived a closed-form formula for forcing amplitude F expressed as
a function of threshold amplitude r}., frequency difference Q, and
model parameters:

2 N2
F= \/<abmr;m + €127 COS ¢§C> + (Qrzm + 12T Sin x/xoc)
(10)

where

* r?)C \/ *2 2 Q 6 2 2
Thm = o (otoc + Br32)” + (Q+ or52)”,
Foc(Q +0r5?)

21T

siny;. =

and

cos Vi, = \/1 — sin®yj..

Stability analysis of this system revealed that bidirectional
coupling introduced an important change in the dynamics of BM-
OC complexes. With bidirectional coupling, the two oscillators
provide input to each other and as a result they have nonzero
steady-state amplitudes even in the absence of external forcing. A
consequence of intrinsic oscillation is that the BM-OC complex may
not phase-lock to external forcing if its natural frequency is too far
from the forcing frequency or if forcing is not strong enough.
However, the complex may also phase lock to input before an in-
crease in amplitude can be detected. By contrast, with unidirec-
tional coupling and a,¢ < 0, both the BM and OC oscillators decay to
zero when not driven by external forcing. Fig. 1, panels D—F show
the resonance region or ‘Arnold tongue’ for a bidirectional model,
within which the model phase-locks to external forcing. In general,
steady-state solutions, also called fixed points, may exist outside
the resonance region, but they are unstable (i.e., the model is not
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Fig. 1. Top: Fits of the unidirectionally coupled model to low (A), mid (B), and high (C) frequency AN fibers from the Joris et al. (2011) data set. Bottom: Resonance regions of the
bidirectionally coupled model for low (D), mid (E), and high (F) frequency AN fibers, using the same parameters. Coupling from the OC to BM was chosen so that spontaneous
amplitude was slightly below threshold amplitude, rj;. = 0.1. The red contours show threshold amplitude. The BM-OC model phase-locks to external forcing in the parameter
regions where the fixed point is either a stable node (orange) or a stable spiral (yellow). Non-phase-locked regions (saddle points) are shown in blue. (For interpretation of the
references to colour in this figure legend, the reader is referred to the Web version of this article.)
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Fig. 2. Unidirectional parameter fit for ten representative tuning curves.

attracted to them). Typically, steady-state amplitudes r. and r; .
are unstable when they are smaller than the spontaneous ampli-
tudes. In comparison, a BM-OC complex with unidirectional
coupling and «,: < 0 phase-locks to external forcing of any fre-
quency and amplitude, given enough relaxation time.

Due to the possibility of unstable solutions for bidirectional
models, the forcing amplitude F obtained using Eq. (10) should be
examined for its stability when the threshold amplitude r}, is set
below the spontaneous amplitude of z,.. To compare tuning in this
model to the tuning in the unidirectional model, we solved for the
coupling parameter, cip, and chose it such that spontaneous
amplitude was just below threshold amplitude, rj;. = 0.1. Because
the fitted parameters varied as a function of CF, ¢y, also did. Fig. 1 D-

F shows that the tuning curves (red) lie just above the phase-
locking boundary, and are similar to the tuning curves for the
unidirectional model (panels A—C). Fits of the bidirectional model
to the tuning-curve data did not find significant improvement over
the unidirectional model. However, the bidirectional model makes
the important prediction that cochlear and AN phase-locking will
be observed before an increase in firing rate. This prediction
matches empirical observations (Johnson, 1980; Koppl, 1997).
Another important feature of this bidirectional model is sponta-
neous oscillation. It is well-known that many mammalian cochleae
exhibit spontaneous otoacoustic emissions (Martin et al., 1988;
Shera, 2003), and this aspect of auditory nonlinearity cannot be
predicted with a unidirectional coupled-oscillator model.
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referred to the Web version of this article.)

5. Discussion

The model presented here bears some important similarities to
previous work, specifically to that of Jiilicher et al. (2001) and
Magnasco (2003). Both of these modeling studies contained a Hopf
resonance as the relevant cochlear nonlinearity, and both con-
tained a linear filter as an input to the nonlinearity, similar to our
BM model. In addition, Magnasco (2003) gives the analytical form
of a tuning curve, though only for a single Hopf oscillator, similar to
our Eq. (3). The present study is the first to give analytical forms for
tuning curves in both unidirectional and bidirectional coupled
oscillator models, where one oscillator is linear and the other
operates in the critical Hopf regime. Another novel feature of this
model is that stability analysis of the bidirectional parameter
regime predicts spontaneous oscillation, which is known to occur
in the cochlea (Kemp, 1979; Dallos, 2008). Additionally, we
computed a parameter fit to AN tuning-curve data to validate the
model and showed that it is much more accurate than a single

critical oscillator, particularly when attempting to explain
threshold tuning-curve data. Because this is a canonical model, the
essence of the relevant behavior can be captured with only three
parameters: app,, 8, and c;1, with the rest chosen a priori, except c1;
for the bidirectional model, which was calculated for each CF as
described above.

The present model was validated by generating analytic
threshold tuning curves and comparing their properties to ma-
caque AN tuning curves. This method of cochlear model validation
provides some unique insight into what is required of such a model,
particularly of its behavior as a function of center frequency (CF).
For instance, the Qggp s of the macaque tuning curves increase
linearly up to approximately 5 kHz. If the curves were constant-Q,
they would reflect bandwidths that vary as a function of CF, how-
ever the bandwidths below 5 kHz are roughly the same for different
curves but appear narrower as CF rises on a logarithmic frequency
axis (Figs. 1-2). The unidirectional model parameters we arrived at
reflect this linear-Q property, as all are much less variable as a
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function of frequency below 5 kHz with the exception of cy;. This
coupling parameter between the BM and OC models varies linearly
with, and correlates positively with, frequency, which may be of
some physiological insight. For instance, sound first enters the co-
chlea at its base, where CF is highest, and travels through the spiral
towards the apex, where CF is lowest. The fact that cp; decreases as
CF decreases may reflect the dampening of the pressure wave as it
travels through the fluid.

This model could be enhanced and refined in several ways.
Because amplitude compression is a fundamental property of
cochlear signal processing, it would be appropriate to incorporate
compression data (e.g. Ruggero, 1992) to further tune the model
parameters, especially the compressive nonlinearity parameter (.
In addition, a number of modifications and generalizations to the
model are readily possible. For instance, the assumption aoc = 0
may be relaxed, and may also improve compression curve fits.
Moreover, the general nonlinear damping parameter for the Hopf
model ( + id is complex. For simplicity, we have kept it real in the
present model, i.e. 6 = 0. The effect of nonzero ¢ would be to make
instantaneous frequency dependent on amplitude, predicting a
change in the resonant frequency of the cochlear segment as a
function of stimulus amplitude. This phenomenon has been
observed in physiological compression curves such as those in
Ruggero (1992) as well as in some cochlear models such as Liu and
Neely (2010). While 6 would not appreciably affect threshold tuning
curves, this generalization would likely improve future fits to
compression curve data. The assumption of a linear BM could also
be relaxed, allowing nonlinear compression in the BM and
dependence of frequency on amplitude for high stimulus levels. In
fact a nonlinear BM would be necessary to exploit the effects of
nonzero ¢ because both oscillators would need nonlinear damping
to properly model a cochlear segment. Finally, longitudinal
coupling between adjacent cochlear oscillator systems could be
introduced to increase physiological plausibility. Although this
addition would render analytical forms for tuning curves impos-
sible and analysis in general much more difficult, coupling in the
apical direction between cochlear segments would more accurately
simulate the effects of the BM traveling wave. The simplifying as-
sumptions used for the present model enabled a detailed level of
analysis and resulted in excellent fits to the data. Analysis of a
system incorporating both a nonlinear BM and the effect of longi-
tudinal coupling are important goals for future work.

To generate the model tuning curves shown in Fig. 2, parameters
were fit to each of the 496 AN tuning curves from Joris et al. (2011),
including incomplete tuning curves, highly variable tip heights, and
small CF ranges. Thus, the resulting parameter values varied widely,
even for curves that had nearby CFs. Therefore, to create our
computational model we interpolated and extrapolated features of
the empirical tuning curves to produce a single, useful set of
parameter values. We smoothed the empirical Qggg s, TTTS, and tip
heights by binning and interpolating (Fig. 4) and used these values
to find optimal parameters for each CF from the data. The resulting
model parameters were less noisy, and were themselves smoothed
and interpolated to produce parameters for the computational
model. The resulting model is implemented in MATLAB, and is
publicly available on GitHub (Lerud et al., 2018).

In summary, we have shown that a canonical cochlear model
can fit physiological data accurately with few free parameters.
Because this is a nonlinear model, it cannot be computed in the
frequency domain for arbitrary stimuli and must be numerically
integrated, however it is more computationally tractable than
models that attempt to explicitly parameterize every physical
aspect of the system, and computation can be sped up through
parallelization and GPU acceleration. This model is more physio-
logically realistic than linear filterbanks and thus it makes more

accurate approximations of cochlear processing for complex signals
than models such as the Gammatone filterbank. This cochlear
model is well-suited for use in auditory modeling studies whose
goals include modeling the perception of music and speech using
physiologically realistic assumptions.
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