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We show that, for an optical microcavity side coupled with a waveguide, sharp, and asymmetric line
shapes can be created in the response function by placing two partially reflecting elements into the
waveguides. In such a system, the transmission coefficient varies from 0% to 100% in a frequency
range narrower than the full width of the resonance itself. We numerically demonstrate this effect by
simulating the propagation of electromagnetic waves in a photonic crystal. © 2002 American
Institute of Physics. #DOI: 10.1063/1.1448174$

Optical microcavity structures are of great current inter-
ests for device applications. These structures can exhibit high
quality factors, and small modal volumes approaching
(%/2n)3. An intriguing potential application for such cavity
structures is their use in optical modulations and switching.1
The on/off switching functionality, for example, can be real-
ized by shifting the resonant frequency either toward or away
from the signal frequency. To achieve a large on/off contrast
ratio, however, the required frequency shift tends to be much
larger than the width of a single resonance.

In this letter, we introduce a geometry that significantly
reduces the frequency shift required for on/off switching in a
microcavity structure. The basic geometry, as shown in Fig.
1!a", consists of a waveguide side coupled with a single-
mode cavity. This geometry typically behaves as a narrow-
band reflector with a symmetric Lorentzian reflectivity line
shape.2 Here, however, we intentionally incorporate two par-
tially reflecting elements into the waveguide #Fig. 1!b"$. We
show that these elements can create sharp and asymmetric
response line shapes. Such line shapes may allow the tuning
of the system between zero and complete transmission, with
a frequency shift that is significantly narrower than the full
width of the resonance itself.

To start, let us first briefly review the properties of the
basic geometry as shown in Fig. 1!a". Quantitatively, the
scattering property of this system for incident waves at a
frequency & can be described using a transfer matrix Tc ,
as2,3
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where &0 and ( are the center frequency and the width of the
resonance. The transfer matrix relates the incoming and out-
going wave amplitudes a1 and b1 on one side of the cavity,
to the outgoing and incoming wave amplitudes b2 and a2 on
the other side. From Eq. !1", the reflection coefficient R(&)
is determined as
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The presence of the partially reflecting elements, as
shown in Fig. 1!b", significantly perturbs the phase of the
wave amplitudes that are directly transmitted through the
waveguide, and therefore leads to complex interference phe-
nomena. Quantitatively, the response function of the system
as shown in Fig. 1!b" can be calculated by combining the
transfer matrix of each individual element in the system. For
the partially reflecting element, the transfer matrix Tp is de-
termined as4
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where r is the amplitude reflectivity of the element. There-
fore, the transfer matrix Ts for the entire system is deter-
mined by
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FIG. 1. Optical systems consisting of a waveguide side coupled to a single-
mode cavity. !a" The basic geometry, as analyzed in Refs. 2 and 3; !b" A
geometry where two partially reflecting elements are placed in the wave-
guide. The arrow indicates the direction of the input light.
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where )'&l/c is the phase shift that the waveguide mode
acquires as it propagates, with a phase velocity c, from the
partially reflecting element to the cavity.

From Eq. !4", the amplitude transmissivity ts is deter-
mined as
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To explore the physical phenomena encapsulated in Eq. !5",
in Fig. 2 we plot the intensity transmission spectra that are
determined from Eq. !5". For concreteness, we assume r
!0.4 and (!0.002•(2*c/l), and vary the resonant fre-
quency &0 . As a comparison, we also plot in Fig. 2 as
dashed lines the transmission spectra for the same system
without the cavity. The dashed line shows the typical Fabry–
Pérot oscillations with a maximum occurring at &!0.25
•(2*c/l).

Examining Fig. 2 we note that the spectra consist of
resonant features superimposed upon a background defined
by the Fabry–Pérot oscillations. The shapes of the resonant
features depend critically on the relative positions of the
resonant frequency in relation to the background. In particu-
lar, when the resonant frequency coincides with a maximum
of the Fabry–Pérot oscillations, the transmission exhibits a
symmetric Lorentzian-like line shape, as can been seen in the
case of Fig. 2!b" where &0!0.25$(2*c/l). The structure
behaves as a narrow-band reflector.

For most choices of resonant frequencies, on the other
hand, the spectra display a distinct asymmetric line shape. In
the immediate vicinity of the resonant frequency &0 , the
transmission coefficient varies sharply from 0% to 100%.
From Eq. !5", one can determine that the transmission van-
ishes at a frequency &r!&0 , while the transmission reaches
100% at a frequency & t calculated as
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In the limit where the width of the resonance is narrow, the
phase shift ) varies slowly across the bandwidth of the reso-
nance. We can therefore directly determine & t using Eq. !6"
by approximating )!&" with )(&!&0).

The difference between & t and &0 , as calculated from
Eq. !6", determines the frequency shift needed to switch the
system from complete reflection to complete transmission.
Assuming, for example, that r!0.4 and 2)!(2n#1/2)* ,
the shift can then be as small as 1.45(. In comparison, in
order to achieve an on/off contrast ratio of 30 dB in a single-
mode microcavity structure with a Lorentzian response func-
tion, the required frequency shift exceeds 31(. Moreover, as
we note from Fig. 2, the asymmetric line shapes persist with
wide ranges of parameters. The occurrence of this phenom-
ena should therefore be robust against fabrication inaccura-
cies.

To realize the results of the analytic theory, we consider
the propagation of an electromagnetic wave in a photonic
crystal structure as shown in Fig. 3. The crystal is made up of
a square lattice of high-index dielectric rods with a radius of
0.20a , where a is the lattice constant. In the crystal, a wave-
guide is formed by removing a row of dielectric rods,5 and a
cavity is created by reducing the radius of a single cylinder
to 0.10a . The cavity is placed at a distance 2a away from the
center of the waveguide. Such a cavity supports a localized
monopole state which is singly degenerate.6 Within the
waveguide, we introduce two small cylinders, each with a
radius 0.05a , to provide the partial reflection for waveguide
modes. All the cylinders in the crystal, including the smaller
ones, have a dielectric constant of 11.56, which corresponds
to the dielectric constant of Si at optical wavelengths.

We simulate the response of the structure shown in Fig.
3 using a finite-difference time-domain scheme7 with the per-
fectly matched layer boundary conditions.8 At the entrances
to the photonic crystal waveguide, structures consisting of a
defect in a distributed Bragg mirror are placed to reduce
reflection.9 A pulse is excited by a monopole source at one
end of the waveguide. The transmission coefficients are then
calculated by Fourier transforming the amplitude of the
fields at the other end, and are shown as a solid line in Fig. 4.
In comparison, we also show in Fig. 4 the transmission spec-
tra for the same structure, except without the two small cyl-
inders in the waveguide.

Without the two smaller cylinders in the waveguide !Fig.
4, the dashed line", the transmission spectrum approximates
a Lorentzian, with the resonant frequency &0!0.3600•(2*c/a), and the full-width at half minimum 2(!0.0024
•(2*c/a). At the resonant frequency, the transmission drops
to 0%, and the structure behaves as a narrowband reflector.
In contrast, the two smaller cylinders in the waveguide gen-

FIG. 2. The solid lines are theoretical transmission spectra through the
optical system as shown in Figure 1!b". The spectra are calculated from Eq.
!5". We plot the frequencies in the unit of (2*c/l), where 2l is the distance
between the two reflecting elements. The reflecting element has a reflection
coefficient r!0.4. The width of the resonance is 0.002(2*c/l). The reso-
nant frequencies of the cavity are taken to be: !a" 0.175(2*c/l), !b"
0.25(2*c/l), !c" 0.325(2*c/l), and !d" 0.375(2*c/l). The dashed lines
represent the transmission spectrum through the two reflecting elements,
without the presence of the cavity.
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erate a sharp and asymmetric line shape !Fig. 4, the solid
line". The structure remains completely reflecting at &0 .
However, as the frequency increases from &0 , the transmis-
sion coefficient increases rapidly and reaches a maximum
that exceeds 99% at a frequency & t!0.3613•(2*c/a). The
difference between & t and &0 of 0.0013•(2*c/a) is far
smaller than the full width at half minimum of the cavity
resonance. All the features completely agree with the ana-
lytic theory.

The steady state field distributions at the two frequencies
& t and &0 are shown in Fig. 5. At &!&0 , the field is com-
pletely reflected #Fig. 5!a"$, while at &!& t , the field re-
mains transmitted in the waveguide #Fig. 5!b"$. A unique
feature here is the existence of significant optical power
within the cavity for both of these two states. This is further
evidence that both frequencies fall within the line shape of
the resonance.

As closing remarks, we note that no detailed tuning of
either the resonant frequency or the coupling between the
cavity and the waveguide is required to achieve the asym-
metric line shapes. Also, since the reflectivity of the partially
reflecting elements need not be large, the underlying physics

here differs from typical coupled-cavity systems, and re-
sembles instead the Fano resonances involving interference
between a continuum and a discrete level.10 Finally, for
structures with inherent radiation losses from the cavity, such
as photonic crystal slabs,11 the criteria for observing this ef-
fect is that the decay of the cavity mode into the waveguide
dominates over the inherent loss of the cavity. Since point
defect modes in photonic crystal slab structures may have
radiation Q exceeding 15 000,12 the effect reported here may
allow the construction of devices that can switch from com-
plete transmission to complete reflection with a fractional
change of the index approaching 10"4. Achieving such an
effect may be important for lowering the power threshold in
optical bistable devices, and for sensing applications.

The author acknowledges useful discussions from A.
Siegman, S. Harris, and D. Miller. The simulations were per-
formed at the NSF San Diego Supercomputing Center
!SDSC".
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FIG. 3. A photonic crystal structure. The crystal consists of a square lattice
of rods with a dielectric constant of 11.56 and a radius of 0.2a . A line defect
is formed by removing a single row of rods. Within the line defect there are
two smaller rods with a radius of 0.05a . A point defect, created by reducing
the radius of a single rod to 0.10a . is placed 2a away from the center of the
line defect. FIG. 5. !Color" Steady-state electric field distribution in the structure as

shown in Fig. 3, for the incident frequencies at: !a" &!0.3600(2*c/a) and
!b" &!0.3613(2*c/a). The colors red and blue represent large positive and
negative fields, respectively.

FIG. 4. The solid line is the transmission spectra through the structure as
shown in Fig. 3. The dashed line is the transmission spectra for the same
structure, without the two smaller rods in the line defect.
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