
C8

Laboratorio 1

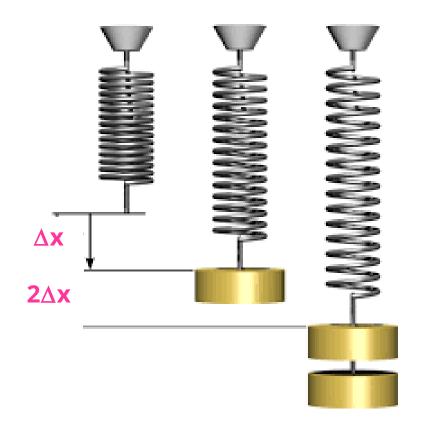
We need to teach how doubt is not to be feared but welcomed and discussed. It's OK to say, "I don't know."

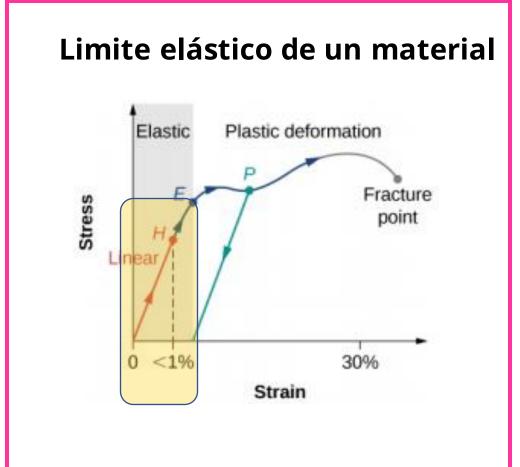
Universidad de Buenos Aires – Exactas **departamento de física**

Octubre 2021

Resortes y la ley de Hooke

En **1678** el físico británico Robert Hooke propone la ley que vincula a la extensión de un resorte con la fuerza de restitución del mismo


Aplicable al régimen elástico de un material o resorte, Hooke plantea que


Ley de Hooke Fres = - $K \Delta x$

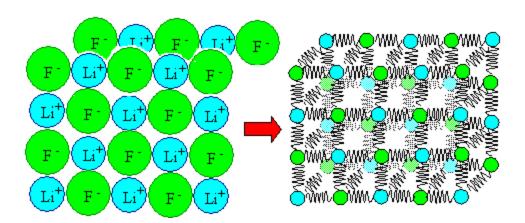
con Fres la fuerza de restitución del resorte, Δx el estiramiento del mismo y K la constante del resorte que se vincula a su rigidez. Una constante mas grande implica un resorte mas rígido y una fuerza mayor ante una deformación pequeña

La constante K de un resorte tiene unidades de N/m, depende de:

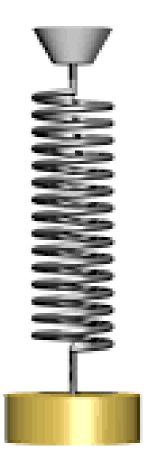
- diámetro del alambre,
- diámetro de la espira
- numero de espiras,
- su longitud en reposo y sobre todo del material con el que esta hecho

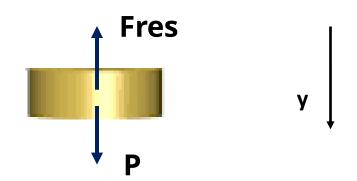
Llamamos L₀ a la longitud natural del resorte (sin carga: x₀ su posición de equilibrio respecto al punto de suspensión!)

La aplicación de una carga a un resorte de extensión genera un estiramiento


$$\Delta \mathbf{x} = \mathbf{x} - \mathbf{x}_0$$

<u>Distintas aplicaciones: desde lo macro a lo micro</u>


Suspensión de un auto en



Acoplamiento inter- iónico un solido

Caso estático

Era Fres = - $K \Delta x$

entonces resultan las fuerzas actuantes sobre el cuerpo: $-K \Delta x + P = 0$

Y la constante del resorte la pendiente de la recta:

$$P = K \Delta x$$

Podemos analizar el caso dinámico

$$-K \Delta x + P = m x''$$

Ahora
$$\Delta x = \Delta xest + x$$
; con $\Delta xest$ tal que -K $\Delta xest + P=0$

Queda entonces:

$$-K x = m x'' => mx'' + K x = 0$$
 (ec. 1)

Cual es la solución de esta ecuación?

 $x(t) = A \cos (wt + \delta)$ donde A: amplitud movimiento w: frecuencia δ : fase

$$x(t) = A \cos(wt + \delta)$$

Podemos derivar la frecuencia w en función de los parámetros del problema

Calculamos:
$$x' = -A w sen (wt + \delta)$$

 $x'' = -A w^2 cos (wt + \delta)$

Y reemplazamos en ec. 1 (slide anterior)

- m A w² cos (wt +
$$\delta$$
) + K A cos (wt + δ) = 0

$$(-m w^2 + K) \cos (wt + \delta) = 0$$

$$=> (-m w^2 + K) = 0$$
 y $w^2 = K/m$

Practica 6

Objetivos: Determinar la constante de un resorte vía experimentos estático y dinámico respectivamente

En caso estático realizar ensayos con cinco masas diferentes. Caso dinámico analizar la oscilación de un solo cuerpo de masa M