
tion required (e.g. moments, estimation, ap- 
plication) can be cross-classified, as they are 
common to all distributions. 
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Graphs in Statistical Analysis* 
F. J. ANSCOMBE** 

Graphs are essential to good statistical analysis. Ordinary scatterplots and "triple" 
scatterplots are discussed in relation to regression analysis. 

1. Usefulness of graphs 

Most textbooks on statistical methods, and most 
statistical computer programs, pay too little attention 
to graphs. Few of us escape being indoctrinated with 
these notions: 

(1) numerical calculations are exact, but graphs are 
rough; 

(2) for any particular kind of statistical data there 
is just one set of calculations constituting a correct 
statistical analysis; 

(3) performing intricate calculations is virtuous, 
whereas actually looking at the data is cheating. 

A computer should make both calculations and graphs. 
Both sorts of output should be studied; each will con- 
tribute to understanding. 

Graphs can have various purposes, such as: (i) to 
help us perceive and appreciate some broad features of 
the data, (ii) to let us look behind those broad features 
and see what else is there. Most kinds of statistical 
calculation rest on assumptions about the behavior of 
the data. Those assumptions may be false, and then the 
calculations may be misleading. We ought always to 
try to check whether the assumptions are reasonably 
correct; and if they are wrong we ought to be able to 
perceive in what ways they are wrong. Graphs are very 
valuable for these purposes. 

Good statistical analysis is not a purely routine 
matter, and generally calls for more than one pass 

through the computer. The analysis should be sensitive 
both to peculiar features in the given numbers and also 
to whatever background information is available about 
the variables. The latter is particularly helpful in sug- 
gesting alternative ways of setting up the analysis. 

Thought and ingenuity devoted to devising good 
graphs are likely to pay off. Many ideas can be gleaned 
from the literature, of which a sampling is listed at the 
end of this paper. In particular, Tukey [7, 8] has much 
to say on the topics presented here. 

A few simple types of statistical analysis are now 
considered. 

2. Regression analysis-the simplest case 

Suppose we have values for one "dependent" vari- 
able y and one "independent" (exogenous, predictor) 
variable x. Before anything else is done, we should 
scatterplot the y values against the x values and see 
what sort of relation there is-if any. Many different 
kinds of things can happen:- 

(1) the (x, y) points lie nearly on a straight line; 
(2) the (x, y) points lie nearly on a smooth curve, 

not a straight line; 
(3) the y-values are scattered, without relation to 

the x-values; 
(4) something intermediate between (1) or (2) and 

(3); 
(5) most of the (x, y) points lie close to a line or 

smooth curve, but a few are scattered a long way away. 

Case (5) is particularly interesting, because there is 
an effect to be noticed, but the ordinary calculations 
for linear regression may miss it. Whenever we see 
"outliers", it is usually wise first to check that the 

* Prepared in connection with research supported by the Army, 
Navy, Air Force and NASA under a contract administered by 
the Office of Naval Research. 

** Dept. of Statistics, Yale Univ., Box 2179, Yale Station, 
New Haven, Conn. 06520. 
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values used really are correct, that is, not copied 
wrongly nor obviously faulty in some way. Then, if we 
are satisfied that these readings are authentic, we may 
perhaps set them aside for special study, and fit a re- 
gression relation to the remainder of the data. Special 
study of the outliers may prove very rewarding. 

Case (1) would usually be considered ideal. Case (2) 
can sometimes be brought back to case (1) by trans- 
forming the x-scale or the y-scale or both. 

The ordinary least-squares regression calculation is 
based on the following theoretical description or 
"model": the given number pairs (xi, yi) are related by 

Yi = 13o + ?31x? + i (i = 1, 2, ..., n), (A) 

where oo and il are constants and the "errors" {es} are 
drawn independently from a "normal" (Gauss-Laplace) 
probability distribution having zero mean and constant 
variance. The regression calculation leads to estimates 
bo and bi for Oo and i1, to the "fitted values" 

Yi = bo + bixi, 
and to the "residuals" 

'ei = yi-_yi-A 

The sum of squares of the latter, generally called the 
"residual sum of squares" or "error sum of squares", 
leads to an estimate of the variance of the distribution 
of errors. If the theoretical description were exactly 
correct (and all calculation were exact, without round- 
off error), these calculations would be entirely satis- 
factory, in the sense that bo, bi and the residual sum of 
squares, together with the number of readings n and 
the first two moments of the x-values, would constitute 
sufficient statistics for the unknowns and could sub- 
stitute for the original data for all purposes with no loss 
of information. In practice, we do not know that the 
theoretical description is correct, we should generally 
suspect that it is not, and we cannot therefore heave a 
sigh of relief when the regression calculation has been 
made, knowing that statistical justice has been done. 

After the regression calculation, the residuals { ei 
should be plotted against the {xi}. One might think 
this would show nothing that could not be seen in the 
original plot of {yi } against { xi} . However, the residual 
plot will probably have a larger scale for the ordinates, 
and with the linear regression removed the residual be- 
havior is easier to see. Usually it is a good idea to specify 
that the residual plot should be of the residuals { ei} 
against the fitted values {Ai}, rather than {xi}, with 
the same scale for ordinates and abscissas. This plot, 
besides showing how the residuals behave in relation 
to the x-values, also from its overall shape shows at a 
glance the relative dispersion of fitted values and resi- 
duals. In the decomposition 

AI= + e_ 

(observation - fitted value ? residual), 

hopefully the fitted values follow the observations 
closely and have a greater variability than the residuals. 
One should be aware of their relative contributions. 

If the theoretical description of the observations 
were exactly true, the residuals would appear to be 
normally distributed with zero mean and common 
variance, the same for all x-values. [That statement is 
not quite correct, but near enough for most practical 
purposes. The residuals would usually not have exactly 
equal variances, and they would be variously corre- 
lated.] Things to look for in a plot of {es} against {yj} 
or {xi} are:- 

(1) a few of the residuals much larger in magnitude 
than all the others-outliers; 

(2) a curved regression of residuals on fitted values; 
(3) progressive change in the variability of the 

residuals as the fitted values increase; 
(4) a skew (or other nonnormal) distribution of the 

residuals. 

Sometimes, if we are lucky, effects (2), (3) and (4) 
can be removed simultaneously by a transformation of 
the scale in which y is expressed, as by taking log- 
arithms. Alternatively, effect (2) may be allowed for by 
transforming the x-scale, or by adding another term on 
the right side of the theoretical description (A), making 
it perhaps 

Yi = d3o + fxi + f2X,2 + Ci. 

Instead of looking at a scatterplot of { ei } against 
Yil,we could detect effects such as those just listed 

by calculating suitable test statistics, and we could 
assess their significance. But the plot shows a variety of 
features quickly and vividly, and formal tests often 
seem unnecessary. 

There is indeed another reason for examining a scat- 
terplot of residuals against fitted values, that may be 
important even when there is no indication of inade- 
quacy in the theoretical description (A). Possibly one 
(or a few) observations have x-values widely separated 
from the others, leading to (one or more) outliers 
among the fitted values. Even though (A) should seem 
to fit all observations satisfactorily, with no outliers 
among the residuals, we may feel less comfortable about 
postulating (A) and basing conclusions on it, than if 
there had been no greatly outlying fitted value. That is 
because an outlying x-value contributes much more to 
the determination of the regression coefficient than 
other x-values. If an observation with an outlying 
x-value were affected by some special circumstance, 
not common to other observations, our fitted regression 
relation might be misleading. Often the y-value cor- 
responding to an outlying x-value could be altered 
considerably without much effect on the goodness of 
fit of the regression relation but with marked effect on 
the estimated relation itself. We are usually happier 
about asserting a regression relation if the relation is 
still apparent after a few observations (any ones) have 
been deleted-that is, we are happier if the regression 
relation seems to permeate all the observations and 
does not derive largely from one or two. 

All these various features that can so greatly change 
the significance we attach to a calculated regression are 
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invisible if we see only the usual quadratic summaries- 
the regression line, the analysis of variance, the mul- 
tiple correlation coefficient R2. 

3. An example 

Some of these points are illustrated by four fictitious 
data sets, each consisting of eleven (x, y) pairs, shown 
in the table. For the first three data sets the x-values 
are the same, and they are listed only once. 

Data set 1-3 1 2 3 4 4 
Variable x y y y x y 

Obs. no. 1 10.0 8.04 9.14 7.46 8.0 6.58 
2 8.0 6.95 8.14 6.77 8.0 5.76 
3 13.0 7.58 8.74 12.74 8.0 7.71 
4 9.0 8.81 8.77 7.11 8.0 8.84 
5 11.0 8.33 9.26 7.81 8.0 8.47 
6 14.0 9.96 8.10 8.84 8.0 7.04 
7 6.0 7.24 6.13 6.08 8.0 5.25 
8 4.0 4.26 3.10 5.39 19.0 12.50 
9 12.0 10.84 9.13 8.15 8.0 5.56 

10 7.0 4.82 7.26 6.42 8.0 7.91 
11 5.0 5.68 4.74 5.73 8.0 6.89 

TABLE. Four data sets, each comprising 11 (x, y) pairs. 

Each of the four data sets yields the same standard 
output from a typical regression program, namely 

Number of observations (n) = 11 
Mean of the x's (x) = 9.0 
Mean of the y's (y) = 7.5 
Regression coefficient (b1) of y on x = 0.5 
Equation of regression line: y = 3 + 0.5 x 
Sum of squares of x - 110.0 
Regression sum of squares = 27.50 (1 d.f.) 
Residual sum of squares of y = 13.75 (9 d.f.) 
Estimated standard error of bi = 0.118 
Multiple R2 = 0.667 

These calculations express in various (redundant) 
ways the sufficient statistics for the theoretical de- 
scription (A), when that is assumed to be correct. Some 
typical computer programs also yield a print-out of the 
residuals, in the order in which the data were entered. 
Since in the present case the data have been listed in a 
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Figure I 

random order, probably little would be seen if the eye 
were run down such a print-out (especially if it were in 
abominable floating-point notation). 

The data sets are graphed in the figures, together 
with the fitted line. Figure 1, corresponding to data 
set 1, is the kind of thing most people would see in 
their mind's eye, if they were presented with the above 
calculated summary. The theoretical description (A) 
seems to be perfectly appropriate here, and the calcu- 
lated summary seems fair and adequate. Figure 2 sug- 
gests forcefully that data set 2 does not conform with 
the theoretical description (A), but rather y has a 
smooth curved relation with x, possibly quadratic, and 
there is little residual variability. Figure 3 similarly 
suggests that (A) is not a good description for data set 
3: all but one of the observations lie close to a straight 
line (not the one yielded by the standard regression 
calculation), namely 

y = 4 + 0.346 x; 

and one observation is far from this line. Those are the 
essential facts that need to be understood and reported. 

Figure 4, like Figure 1, shows data apparently con- 
forming well with the theoretical description (A). If all 
observations are considered genuine and reliable, data 
set 4 is just as informative about the regression relation 
as data set 1; there is no reason to prefer either to the 
other. Yet in most circumstances we should feel that 
there was something unsatisfactory about data set 4. 
All the information about the slope of the regression line 
resides in one observation-if that observation were 
deleted the slope could not be estimated. In most cir- 
cumstances we are not quite sure that every observa- 
tion is reliable. If any one observation were discredited 
and therefore deleted from data set 1, the remainder 
would tell much the same story. That is not so for data 
set 4. Thus the standard regression calculation ought 
to be accompanied by a warning that one observation 
has played a critical role. 

Each of data sets 2, 3, 4 illustrates a peculiar effect 
in an extreme form. In less extreme forms such effects 
are often encountered in statistical analysis. For an ex- 
ample of the last effect: in a study (to be published 
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elsewhere) of per capita expenditures on public school 
education in each of the fifty states of the Union, to- 
gether with the District of Columbia, it was found that 
the expenditures had a satisfactory linear regression on 
three likely predictor variables, with multiple R2 about 
0.7 and well behaved residuals. However, one of the 
states, namely Alaska, was seen to have values for the 
predictor variables rather far removed from those of the 
other states, and therefore Alaska contributed rather 
heavily to determining the regression relation. Of 
course Alaska is an abnormal state, and the thought 
immediately occurs that, perhaps Alaska should be ex- 
cluded from the study. But there are other extraor- 
dinary states, Hawaii, the District of Columbia 
(counted here as a state), California, Florida, New 
York, North Dakota, ... Where does one stop? Rather 
than merely exclude Alaska, a preferable course seems 
to be to report the regression relation when all states 
are included, but add that Alaska has contributed 
heavily and say what happens if Alaska is omitted-the 
regression relation is not greatly changed, but the 
standard errors are increased somewhat and multiple 
R2 is reduced below 0.6. We need to understand both 
the regression relation visible in all the data and also 
Alaska's special contribution to that relation. 

4. More general regression analysis 

Much of what has been said about regression of one 
dependent on one independent variable applies to more 
general regression analyses. Suppose there is one de- 
pendent variable y but two "independent" variables 
x(1) and x(2) so that the theoretical description reads 

Yi = Oo + jixi(1) + j32xi(2) + Ei, (B) 

where the f's are constants and the 's are distributed as 
before. 

We cannot simply make on a two-dimensional sur- 
face a three-dimensional plot of y against x(1) and x(2) 
simultaneously. There are indeed expensive visual de- 
vices for suggesting such a thing. If we confine ourselves 
to what can be done with a line printer or typewriter 
terminal, there are two approaches to visualizing rela- 
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tions between the three variables y, x(1) and x(2), before 
any regression calculation. 

(a) Make ordinary scatterplots of the three pairs of 
variables, y against x(1), y against x(2), x(1) against x(%). 
The third of these shows whether it will be possible to 
distinguish the effects of x(1) and x(2) on y. For if x(1) 
and x(2) are closely related to each other, one of them 
having a regression (not necessarily linear) on the 
other with little residual variation, then any apparent 
relation of y with x(1) and x(2) may perhaps be express- 
ible equally well as a relation of y with either x(l) or 
x(2) alone. 

(b) Make a scatterplot of two of the variables, say 
x(1) and x(2) marking each point by a symbol that 
roughly indicates the value of the third variable y. The 
values of the third variable can be coded numerically, 
say by dividing the range into ten intervals and repre- 
senting values, according to the interval they fall in, 
by single digits, 0, 1, 2, .. . , 9-or possibly by dividing 
the range into not more than twenty-six intervals and 
using letters of the alphabet. Alternatively, values of 
the third variable may be coded by symbols whose 
physical appearance (size and blackness) indicates 
magnitude-for example, with an APL typeball, sym- 
bols of increasing weight such as 

0 9 o 

or these representing steps from large-negative to large- 
positive (M standing for minus and P for plus) 

M M - o + p p 

Such a plot is equivalent to an ordinary scatterplot of 
the first two variables and also indicates, well enough 
for many purposes, how the third variable is related to 
the other two. This kind of plot will be called a triple 
scatterplot (TSCP). 

After the ordinary regression calculations have been 
made, yielding the regression coefficients bo, b1, b2, the 
fitted values and the residuals, the single most useful 
plot is an ordinary scatterplot of residuals against 
fitted values, preferably on the same scale. Interpreta- 
tion is as indicated before. 
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Another possibility is to make a TSCP, taking as the 
first two variables the contributions of x(1) and x(2) to 
the fitted values, that is, plot {b1xj(')} against {b2xi(2)) 
on the same scale, with the residuals {ei} coded as the 
third variable. This plot can show association of residual 
behavior with x(l) and x(2) individually. 

To study the dependence of y on one of the inde- 
pendent variables, say x(l), with the effect of the other 
eliminated, one may scatterplot {yj - b2xi(2) } against 
{xiM}. This would be useful in planning a transforma- 
tion of the x(l)-scale. 

When we pass from a regression problem with only 
two "independent" variables to one with many, we find 
it harder to see all that is going on by looking at graphs. 
But that is as it should be-the possibilities are now so 
much greater. The likelihood that we fool ourselves by 
only carrying out some ordinary regression calculations 
is much greater too. Usually when there are many 
"independent" variables they are mutually related and 
we are interested in performing regression on subsets of 
them, possibly by a "stepwise" procedure; so even the 
standard calculation is not so simple. 

In any case, whenever a regression calculation has 
been carried out, whether on all the "independent" 
variables or on a subset of them, it will be useful to 
see a simple scatterplot of residuals against fitted values 
(on the same scale). 

If the independent variables are separated into two 
sets, we may be interested to see a TSCP, in which the 
two coordinates represent the contributions of each of 
the two sets to the fitted values (on the same scale) 
and the plotting code represents the residuals. 

5. Two-way tables 

The analysis of a two-way table by calculating row 
means, column means, residuals and what R. A. Fisher 
called the analysis of variance, may be regarded as a 
special instance of regression analysis. The structure is 
now sufficiently rich that graphical presentation in 
advance of numerical calculation is probably not too 
useful. But after the calculations the same sorts of 
graphical treatment as for ordinary regression have the 
same effectiveness. Residuals may be scatterplotted 
against fitted values on the same scale. Row effects can 
be plotted against column effects, on the same scale, in 
a TSCP with coded residuals. (It was Tukey's elegant 
use of a kind of TSCP for two-way tables that introduced 
me to the idea; see Chapter 16 in [7].) If the rows or 
columns have a meaningful natural order, the residuals 
should also be presented in that order. 

Rectangular tables (crossclassifications) in two or 
more dimensions, with some modes of classification 
perhaps "nested" rather than "crossed", are of common 
occurrence. Whenever any set of main effects and inter- 
actions has been calculated, the residuals should be 
scatterplotted against the fitted values, and various 
sorts of TSCP may be interesting. 

This article is emphatically not a catalog of useful 

graphical procedures in statistics. Its purpose is merely 
to suggest that graphical procedures are useful. Only 
two types of graph have been mentioned, the ordinary 
scatterplot and the triple scatterplot, and these have 
been considered in only one sort of context (regression). 
There are other types of graphs and display devices 
that can make quantitative relations visible and com- 
prehensible, and other sorts of statistical tasks than 
regression. 

6. Implementation 

Graphical output such as described above is readily 
available to anyone who does his own programming. 
I myself habitually generate such plots at an APL 
terminal, and have come to appreciate their importance. 
A skilled Fortran or PL/1 programmer, with an organ- 
ized library of subroutines, can do the same (on a 
larger scale). 

Unfortunately, most persons who have recourse to a 
computer for statistical analysis of data are not much 
interested either in computer programming or in sta- 
tistical method, being primarily concerned with their 
own proper business. Hence the common use of library 
programs and various statistical packages. Most of 
these originated in the pre-visual era. The user is not 
showered with graphical displays. He can get them 
only with trouble, cunning and a fighting spirit. It's 
time that was changed. 
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