ELABORACIÓN DE INFORMES

Formato

Plantilla Informe de Laboratorio

Como se escribe un informe de Laboratorio, Ernesto Martinez

- Título
- Autores, mails, nombre de la comisión
- Resumen
- 1. Introducción
- 2. Desarrollo experimental
- 3. Resultados y discusión
- 4. Conclusiones
- Apéndice ¿Qué esperamos ver en este informe?
- Referencias

Fecha de ENTREGA

Lunes 24-5 a las 14 hs

• 1. Introducción:

 \rightarrow Coeficiente de rozamiento estático entre dos superficies en un plano inclinado. Puede colocar una Figura teórica del plano inclinado marcando el ángulo. Coloque la ecuación de μ_e ya que la utilizará.

Último párrafo con: El objetivo de este trabajo consistió en

• 2. Desarrollo experimental

- → Descripción del sistema experimental y de la metodología utilizada para llevar a cabo el experimento.
 - No especifique la forma de medición del Phyphox aquí, mande a un apéndice.
- → Incluir una figura que muestre la foto de los sistemas de cada integrante del grupo.

• 3. Resultados y discusión

 \rightarrow Utilizando una tabla, reporte los resultados de α y de μ_e obtenidos por los diferentes integrantes de su grupo.

NO colocar la tabla de los datos originales o los que condujeron a los resultados finales!

REPASAR: Cifras significativas y cómo reportar un resultado

Tabla 1. NO olvidar la leyenda y que va en la parte SUPERIOR de la Tabla

Sistemas		Estudiante 1	Estudiante 2	Estudiante 3	Estudiante 4
S1	α (Ud.)	$\overline{\alpha} \pm \Delta \alpha$			
	μ_e (Ud.)	$\overline{\mu_e} \pm \Delta \mu_e$			
S2	α (Ud.)	$\overline{\alpha} \pm \Delta \alpha$			
	μ_e (Ud.)	$\overline{\mu_e} \pm \Delta \mu_e$			

 \rightarrow Compare los resultados de μ_e entre estudiantes y entre sistemas (criterios de precisión y diferencias significativas). Discuta las posibles fuentes de incerteza. ¿Puede saber qué resultado fue más exacto?

4. Conclusiones

Apéndice

- → Realice una muy breve explicación de cómo mide el Phyphox. Incluya la frecuencia de adquisición de datos.
- → Coloque de una Figura con 1 Ej. de cada integrante del grupo de la adquisición de datos del programa hecha en Origin o Python.

Exprese el resultado del ángulo de ese ej. de medición como $(\overline{\alpha} \pm \Delta \alpha)$ Ud.

→ Tome una medida del ángulo en el tiempo mientras hace girar el celular 360º lentamente. Coloque la Figura del resultado obtenido de cada integrante del grupo.

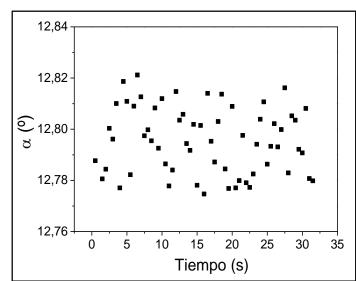


Figura 1. ... leyenda

Referencias