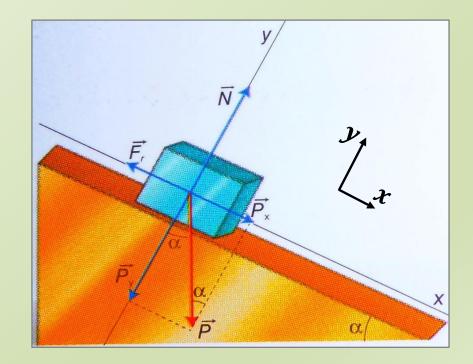
Laboratorio 1

2do Cuatrimestre 2021

FUERZA DE ROZAMIENTO
COEFICIENTE DE ROZAMIENTO ESTÁTICO

Lucía Famá, Mauro Silberberg Sofía Angriman


Universidad de Buenos Aires - Exactas

departamento de física

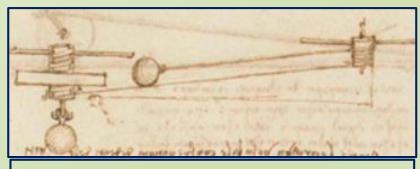
Objetivo de la clase de hoy

Determinar el coeficiente de rozamiento estático entre diferentes superficies en un plano inclinado, a partir de la 2^{da} Ley de Newton

Familiarizarse con un nuevo sistema de adquisición de datos (Phyphox)

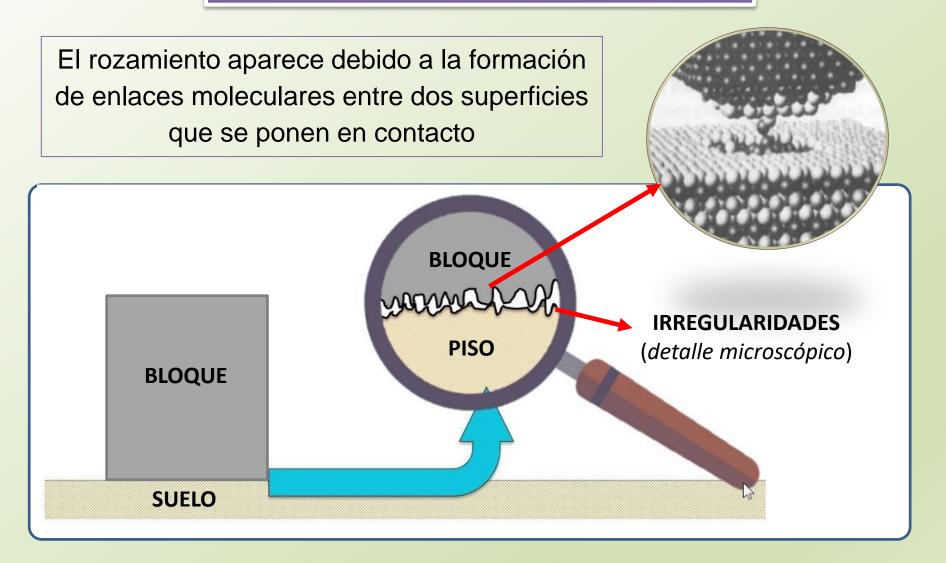
Fuerza de rozamiento

Guillaume Amontons (1663-1705) Charles Agustín de Coulomb (1736-1806)


En el siglo XVII Guillaume Amontons:

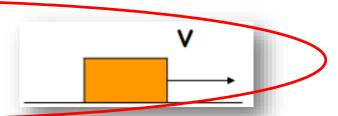
La fuerza de rozamiento entre cuerpos rígidos es independiente del área de las superficies en contacto y su valor es proporcional a la fuerza normal entre las superficies.

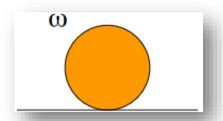
Históricamente


Leonardo da Vinci (1452-1519).

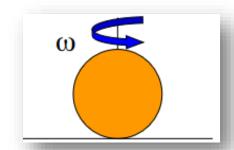
Principios de la fricción o rozamiento, a partir de una fuerza asociada a la resistencia de dos superficies en contacto.

Bosquejo (1493). Biblioteca Nacional de Madrid

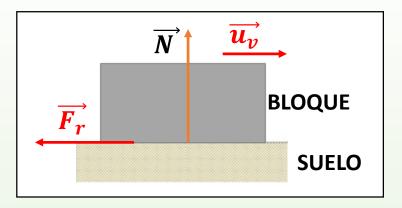

Fuerza de rozamiento


M. Alonso y E. Finn. Física Vol. 1 Mecánica. R. Feynman. Física Vol. 1 Mecánica, radiación y calor.

Clases de Fuerza de rozamiento


Deslizamiento. Cuando en los puntos de contacto existe una velocidad tangencial respeto al otro cuerpo

Rodadura. Cuando el eje de rotación es una recta tangente a la superficie de contacto.


Pivotamiento. Cuando el eje de rotación es normal a la superficie en el punto de contacto.

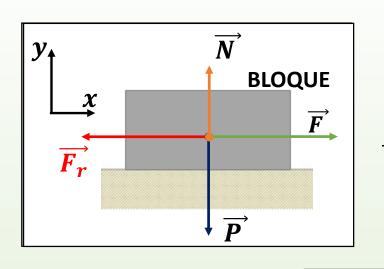
Fuerza de rozamiento

Propiedades de F_r :

- **Solution** Es proporcional a la fuerza normal (\overrightarrow{N}) que ejerce un objeto sobre el otro.
- No depende del área de contacto, sino de la naturaleza de sus materiales.
- No depende de la velocidad relativa entre los objetos.
- Tiene sentido opuesto al movimiento.

$$\overrightarrow{F_r} = -\mu \, \overrightarrow{u_v} \, N$$

 $\mu \rightarrow$ Coeficiente de rozamiento

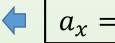

 $u_v o$ Vector unitario en la dirección y sentido del vector velocidad

N → Módulo de la fuerza normal

 $\mathbf{F_r} = \mu N$

Módulo de la Fuerza de rozamiento

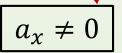
Fuerza de rozamiento - Coeficiente de rozamiento



2^{da} Ley de Newton: $\sum \vec{F} = m\vec{a}$

$$\begin{cases}
\widehat{\mathbf{y}}: N - P = ma_y \rightarrow a_y = 0 \rightarrow N = P \\
\widehat{\mathbf{x}}: F - F_r = ma_x \rightarrow F_r = F - ma_x
\end{cases}$$

$$\widehat{\mathbf{x}}$$
: $F - F_r = ma_x \rightarrow F_r = F - ma_x$



Fuerza para comenzar el movimiento ($F_{re\ (M\acute{a}x)}$)

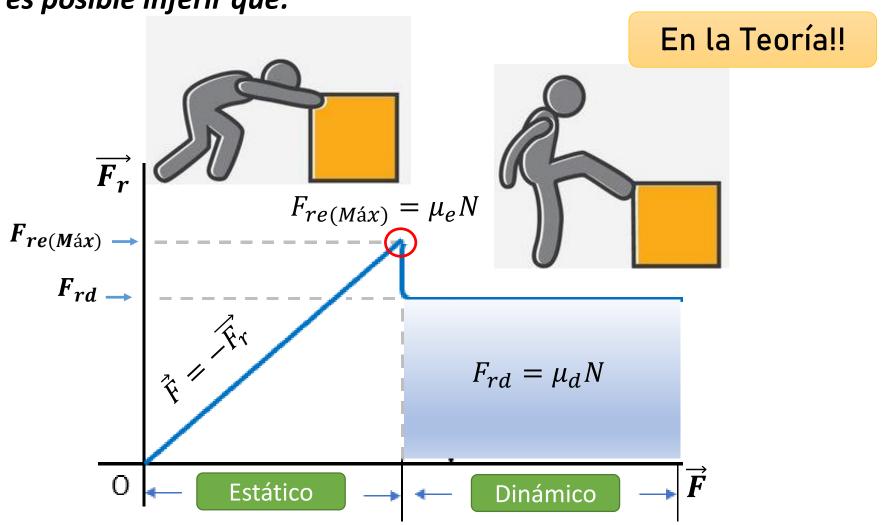
$$F_r = F$$

$$F_{re(M\acute{a}x)} = \mu_e N$$

Coeficiente de rozamiento **ESTÁTICO**

DINÁMICO

$$F_r = F - ma_x$$

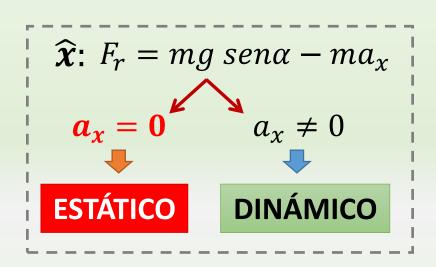

Fuerza para mantener el movimiento (F_{rd})

$$F_{rd} = (\mu_d)N$$

Coeficiente de rozamiento DINÁMICO

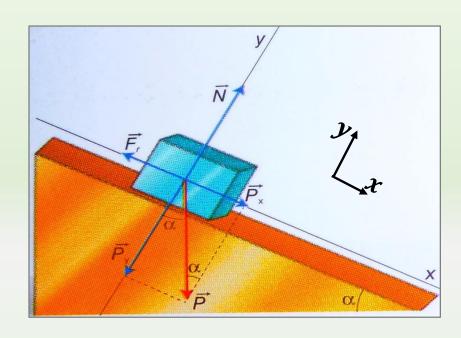
Fuerza de rozamiento Estática vs Dinámica

A partir de las características de F_r en el caso estático y dinámico, es posible inferir que:


Caso: Plano Inclinado

2^{da} Ley de Newton: $\sum \vec{F} = m\vec{a}$

$$F_r = \mu N \quad (1)$$


$$\widehat{\mathbf{x}}: P_{\mathbf{x}} - F_{\mathbf{r}} = ma_{\mathbf{x}}$$

 $P_{v} = mg \cos \alpha$, $P_{x} = mg \sin \alpha$

$$\widehat{\boldsymbol{y}}$$
: $a_y = 0 \rightarrow N = P_y$

$$N = mg \cos \alpha \quad (2)$$

Caso: Plano Inclinado

$$F_r = \mu \, N \quad \text{(1)} \qquad N = mg \, con\alpha \quad \text{(2)} \qquad F_r = mg \, sen\alpha - ma_x \quad \text{(3)}$$

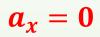
$$a_x = 0 \qquad a_x \neq 0$$

$$F_r = mg \, sen\alpha - ma_x$$

$$Usando Eq. \text{(1) y Eq. (2)}$$

$$\mu \, plg \, con\alpha = plg \, sen\alpha - pla_x$$

$$\mu_e = \frac{sen\alpha}{cos\alpha} \qquad \mu_d = \frac{gsen\alpha - a_x}{gcos\alpha}$$


$$\mu_e = tan\alpha \qquad \mu_d = tan\alpha - \frac{a_x}{gcos\alpha}$$

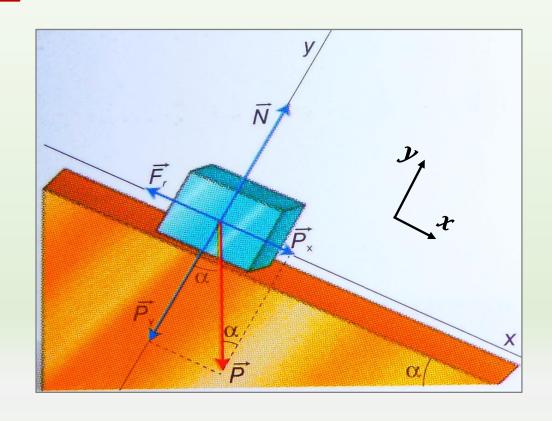
Caso: Plano Inclinado

$$F_r = \mu N \quad (1)$$

$$N = mg \ con\alpha$$
 (2)

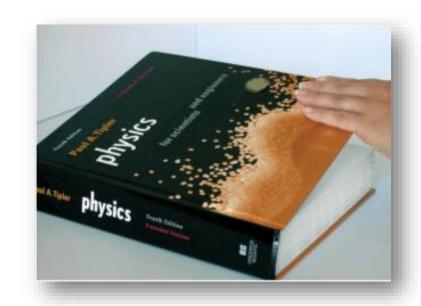
$$F_r = mg \ sen \alpha - ma_x \ (3)$$

ESTÁTICO


 $F_r = mg \ sen \alpha$

 $\mu mg con\alpha = mg sen\alpha$

$$\mu_e = \frac{sen\alpha}{cos\alpha}$$


$$\mu_e = tan\alpha$$

EXPERIMENTO

Obtención del coeficiente de rozamiento estático

Desplazamiento en un plano inclinado

- O Sistema 1: Hoja A4-Plano inclinado
 - Sistema 2: Hoja A4-Hoja A4
- Sistema 3 (Opcional): Hoja A4-Opcional

Obtención del coeficiente de rozamiento estático

$$\mu_e = tan\alpha$$

$$\alpha = (\overline{\alpha} \pm \Delta \alpha) Ud.$$

Desplazamiento en un plano inclinado

EXPERIMENTO

Obtención del coeficiente de rozamiento estático

EXPERIMENTO

$$\mu_e = tan\alpha$$

$$\alpha = (\overline{\alpha} \pm \Delta \alpha) Ud.$$

- Adhiera un trozo de hoja A4 a una moneda (la misma todos los integrantes del grupo) Sistema 1
- Adhiera un trozo de hoja A4 a una moneda y coloque una hoja A4 bien adherida al plano inclinado Sistema 2
- Coloque la moneda sobre el plano y empiece a inclinarlo hasta que la moneda empiece a moverse.
- Determine el ángulo justo en ese instante (α).
- Repita el experimento al menos 20 veces.
- Calcular μ_e a partir de α .

EXPERIMENTO

Coeficiente de rozamiento estático

$$\mu_e = tan\alpha$$

Remplazando
$$\alpha \rightarrow \alpha = \overline{\alpha} \pm \Delta \alpha$$

$$\overline{\mu_e} = \tan \overline{\alpha} \qquad \frac{\partial \tan \alpha}{\partial \alpha} = \frac{1}{\cos^2 \alpha}$$

$$\Delta \mu_e = \sqrt{\left(\frac{\partial \mu_e}{\partial \alpha}\right)^2 \Delta \alpha^2}$$

Usar RADIANES para el cálculo de μ_e y $\Delta \mu_e$!!