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A vertically oscillating spring of mass m and spring constant k suspended from its upper end and
with a mass M attached to its lower end is a system often used for demonstrations and experiments
in introductory physics courses. We discuss the motion of this system for arbitrary values of
€ =m/M, 0<€ < » and show explicitly why theory predicts that the amplitude of the lowest
normal-mode frequency makes the major contribution to the motion of M (or of the lower end of
the spring) for all values of €. Although a complete understanding of this fact involves detailed
mathematical analysis, the results themselves are simply stated and readily verified even by
students in an introductory calculus-based physics course. The various predictions of the theory
are easily demonstrated with simple equipment and lend themselves nicely to an introductory
physics laboratory. These applications are discussed in some detail, and an analog electric circuit

is given which exhibits similar behavior.

L INTRODUCTION

This journal has a long history of papers'~'? dealing with
the problem of a spring of mass m fixed at one end with a
mass M attached to its other end. Although two of these
papers deal with the torsional’ and pendular’ modes of os-
cillation of such a spring-mass system, a common thread of
the rest is the correction to be made to the usual simple-
harmonic oscillator result for the period

172
T=2—1T=21r(%) . (L.1)
@

This expression is valid when the spring is assumed mass-
less (m = 0) and is taken to obey Hooke’s law with a spring
constant k. Much of the discussion has focused on the
range of validity of the commonly stated correction!>-4

re 2,(%)‘”, (1.2)

which is supposed to make allowance for the mass m of the
spring. While these papers have recognized the fact that the
motion of this coupled system is #ot simple harmonic, most
were content to consider the lowest root &, of the transcen-
dental equation

tan a = ¢/a, (1.3)
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where € = m/M. Here a(€) depends on the ratio m/M and
the corresponding normal mode frequency has the limiting

values
T k 172
a1z 36
k €E—roo
ole) = () " afe
m

o)
— — .
e—0

Since, for a given spring, k and m are fixed, the limit
€— 0 means M—0, which corresponds to a freely oscillat-
ing spring. It is typically argued that Eq. (1.2) arises from a
first-order correction to the € = 0 limit of Eq. (1.4) and that
Eq. (1.2)is valid for e<1. Heard and Newby?® even observed
that Eq. (1.4) [with a,(€) being the lowest root to Eq. (1.3)]
holds over a wide range of values of €. That is, even though
the motion of the coupled system is not simple harmonic
and does not consist of just one harmonic, the angular fre-
quency of the end of the spring (or of M) is in fact (i.e.,
experimentally) given quite reliably to Eq. (1.4). However,
no explanation was offered of why the amplitudes of the
other modes associated with Eqs. (1.3) should not become
really significant as 0—€— oo.

A quantitative explanation of the smallness of the indi-
vidual higher-frequency amplitudes was given in a beauti-

(1.4)

© 1984 American Association of Physics Teachers 925



ful paper by Weinstock.® He was able to obtain a bound on
the individual amplitudes of the higher normal modes com-
pared to the lowest normal-mode amplitude. Subsequently
Bowen'? employed a novel technique to construct a simple
(*“algebraic”) solution to the free spring case (M = 0) for a
special set of initial conditions on the spring.

The purpose of this paper is to employ both Weinstock’s
technique and Bowen’s idea to show explicitly that the e<1
case [Eq. (1.2)] passes over to the e« limit in such a way
that the lowest normal-mode amplitude is a/ways the domi-
nant one so that Eq. (1.4) does lead to a reliable prediction
of the observed period of motion of the end of the spring.

II. THE PROBLEM DEFINED

Since the equations of motion and the appropriate
boundary conditions have been given in the literature pre-
viously (see especially Refs. 5, 8, 9, and 12), we simply state
the necessary equations in a unified notation.'> The uni-
form helical spring of natural length /, is characterized by a
constant linear modulus y, which is related to the Hooke’s
law constant & as

Yo = klo. (2.1)

We take as our independent variable the coordinate &
{0<£€</,) measured from the fixed end of the spring to a
point P on the unstretched spring. If the free end of the
spring is stretched beyond its normal length /,, the point P
will then be located at a position { as measured from the
fixed end of the spring. Since § gives the position of a parti-
cular point on the spring, £ will be a function of £. If the
spring moves in time, £ must also depend upon time so that
& =& (&,t). Let us denote by y(&,t) the displacement of P
away from its original position & as

) =8 +y6e) (2.2)
The variable of dynamical interest is y(£,? ). The spring (with
mass M attached to its lower end) is then suspended (from
its upper end) in a uniform gravitational field. Let y,(£)
denote the static equilibrium displacement of P away from
its original position (£ ). Since we wish to discuss the motion
of the spring about this new equilibrium configuration, we
introduce a variable w(&,z ) which represents the displace-
ment of P away from y,(£ ) as

YEst) = pol€) + wig,t)- (2.3)

Newton’s second law of motion for an element of the spring
becomes the homogeneous wave equation

2. 2
“3% - ‘; = 2.4)
and for M (at the lower end of the spring)
ow Tl g, 2.5)
le=1, O le-s,
where
co = (kKI3/m)''?, (2.6)
K =ly/€. {2.7)

Here c, is the speed of wave propagation relative to the
intrinsic coordinate £. The boundary condition at the fixed
(£ =0)endis

w(g = O,t) = O‘ (2-8)

The mathematical problem is now to solve Eq. (2.4) sub-
ject to the boundary conditions (2.5) and (2.8) and to some
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initial data at t = 0 on 0<&</y:

wig,t =0)=f(£), (2.9)
ow _
_at_l,=o—g‘§)‘ (2.10)

In particular, we shall be concerned with those initial con-
ditions characteristic of a typical demonstration,

wol,t = 0) = lig, (2.11)
dw _
= ’=0_0, (2.12)

in which the spring is initially at rest but its lower end
(€ = Iy} is pulled down an amount a below its static equilib-
rium position. [Equation (2.11) is obviously a static solu-
tion to Eq. (2.4) meeting the conditions (2.8) and (2.12) and
having w{§ = ;) = a. It does not satisfy (2.5) since an addi-
tional force is required for ¢ <0 to maintain the displac-
ment a.]

Although use of the variable w(£,t ) transforms away the
effect of the uniform gravitational field on the equations for
w,'¢ there is an interesting and easily demonstrated effect
gravity has on wave propagation in a soft, freely hanging
spring, such as a slinky. While the velocity of propagation
¢, 0f Eq. (2.6) is constant with regard to the intrinsic coordi-
nate &, ¢ measured with respect to a fixed reference frame
(such as a meter stick) does vary since the slinky is not
uniformly stretched over its length.!” One can show'® that
for a soft spring the wave speed at the top is much greater
than at the bottom

Cun {1+ 2 o> 5= o .13

kly
This is a very dramatic effect which can be demonstrated
by compressing a portion of the stretched slinky near the
bottom and watching the compression wave travel up and
back down the slinky. The speed increases on the way up
and decreases on the way back down.

II1. MOTION OF THE SPRING

One standard way to construct a solution w(&,7) to the
problem defined by Egs. (2.4} to (2.10} is via an eigenfunc-
tion expansion

wig,t)= i A, sin(a,, %—)cos(wnt +é,) (3.1)
n=1 0

If we require that Eq. (3.1) be a solution to Eq. (2.4) and

satisfy the boundary conditions (2.5) and (2.8) as well as the

initial conditions (2.11) and (2.12), the series reduces to'®

wet) =223

€ <1 €+sin’a,

2 .
lane, sina, sin(a"7§->cos(w,, H (32)
0

where the a,, are the roots of

tanfa,) =€/, (3.3)
with
@, = cola, /). (3.4)

The graph of the smallest root @, (€) vs Ve is plotted in Fig. 1
and 7{€)/1, vs 1/ye in Fig. 2, where

27 T (3.5)
wy(w) 2a,(w)

with 7, = 4(m/k)"/* being the period of the free spring. No-

7{€e) =
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Fig. 1. The variation of &,(€) vs €.

tice that Eq. (1.2) follows as the small-angle approximation
(tan a,~a, + la3}) to Eq. (3.3). Figure 2 makes it apparent
that Eq. (1.2) is an extremely reliable approximation to the
exact expression of Eq. (3.5). In fact, any appreciable depar-
ture from Eq. (1.2) can be detected only for smali values of

1//€ (less than about 0.50 or 0 < M<m/4, the case of a
nearly free spring).

In a typical laboratory experiment, a student usually ob-
serves the motion of the end of the spring and measures the
time taken for it to execute a large number of up and down
oscillations in order to compute an average period. We can

get a good indication that the fundamental term in Eq. (3.2)
provides the dominant contribution to the exact motion of
the lower end of the spring [w(£ = /,,¢ )] by observing that
the amplitude of that term is bounded from below as*°

2a tan’aq;sin’e; _ _ 2a(sin @)/a))?
€ (e+sin*a;) 1+ (sina,/a;)cosa,
8
>— a =0.8106q, 3.6
) (3.6)

for 6<a1 <w/2. However, for arbitrary values of €, the mo-

T(EYT
1907 Yo
12.0¢
10.0 1
8.0
Eq.(3.5) .”" Fig. 2. The dependence of 7/7, predicted by
6.0 . e Eq. (3.5).
I ,
4.0 Eq.(1.2) /A\Eq (AN B!
0.5 e
2.0 //
,—:"/ 4 +
) 0.5 1.0
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
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tion is not strictly periodic (let alone simple harmonic) so
that we must expend some effort to obtain a bound on the
quantity

A4 6)———’w(§ lpt) —— 2a -tin—a‘—s—lw—‘cos(w,t)’
€ (e+sin’a))
= tan’a, sin’a
28 ————"cos(w,t)
€ <> (e+sin*a,)

tan’ ¢, sin’ a, © €sin’a,

=2 al(e +sin’ a,)

2 1 23 1
"ﬂﬂn;, 1)

w(5,) = ?W (0.43) = 0.2019. (3.7)

Here the @, = [(n — 1) + §,]7, n > 2, are the roots of

tana, =a,.

These values of @, maximize (sin @, /a,, ). A comparison of
the graphs of the functions tan & and a makes it clear that
the 8, increase with increasing n. For n =2 we find
8, = 0.4303. The final series can be related to the second
derivative of the logarithm of the gamma function and
evaluated numerically?’ to obtain the value given in (3.7).
This is essentially the same result we would have gotten if
we had simply assumed that the bound will get larger as €
increases? arid taken the limit €—o on the first bound
given in (3.7) for 4 (z;€)

1
A (6)<2€?
(te) ,,Zza 2lak +ele+1)]
L5 1y
:wﬂl,,; 2n+ 17 7°\8
Here we have used the fact that, for n>2,
(n — llm<a, <(n — Y, {3.8)

and summed the resulting series.?® Similarly, we can obtain
the useful bound as e—0,
Ate) 25 1_e
1T n=1 n 45

Direct numencal calculation produces bounds on 4 (t;€) of
0.14 for € = 10, 0.077 for € = 4, 0.072 for € = 3, 0.062 for
€ = 2,and 0.018 for € = 1. All this together shows why the
actual motion of the end of the spring is very well approxi-
mated at all times by the first term in Eq. (3.2).

— 1) = 0.1894.

Bowen'? has pointed out that, in at least one case, some
general results from the theory of partial differential equa-
tions can be used to express w(£,?) in elementary form for
the free spring. This technique can be developed?* to treat
the general problem defined by Egs. (2.4), (2.5), (2.8)~(2.10).
However, we now give a simple argument which allows us
to write down in elementary form the solution w(£,t ) for the
Jfree spring (M = 0) subject to the initial conditions of Eqs.
(2.11) and (2.12).

First, we can see that the period of the free spring will be
just

7o = dy/co = 4m/k )2, (3.9)

no matter what the initial conditions. Since one end (£ = 0)
of the spring is fixed and the other free (£ = /), any pulse
will be simply reflected at the ends, with a phase change of
7 at the fixed end and with no phase change at the free end.
The motion of the spring can be considered as produced by
a superposition of pulses each moving with a speed ¢,,. Fig-
ure 3 illustrates the state of motion and phase of one such
pulse at times t = 0, /¢y, 213/c,, 31y/c, and 4l,/c,. Aftera
time 7, = 4/,/c, every pulse in the spring will be back at its
initial position, traveling with its initial velocity (not just
speed) and with its initial phase. Therefore the free spring
(no matter what its initial configuration and state of mo-
tion) will oscillate with period 7. One can also argue from
the fact that the standing waves must have wavelengths 4
such that an odd multiple of (4 /4) equals /, or 7, = A,/
co=4l/c,.

For the initial conditions of Egs. (2.11) and {2.12) we see
that the exact solution w(§,?) remains just a £ /], until
t=(l, — £)/c, since the relaxation wave travels with a
speed ¢, and begins from the lower end (£ =) of the
spring. Similarly, after a time 2£ /c, later, a wave reflected
from the fixed end, with a phase change of 7, will arrive
back at & so that w(é,? ) becomes — a & /I,,. This is valid for
lo + € )/co<t<(31y — &)/ co, at which latter time a wave re-
flected from the free end engulfs the point £. Finally, at
(31, + £ )/c, the wave is back in its initial phase (i.e., two
fixed-end and one free-end reflections) so that the solution
w(&,t) is again a £/, and remains so until ([, — &)/
co+ 7o=1{(5l,—£)/c,, That is, prior to the time
(41, + I, — £ )/c, the spring must be in the same state as it
was until (/ — & )/c,.

Let us take for granted the uniqueness of the solution
w(&,t) and its continuity in £ and 7.>> We then have a solu-
tion which satisfies Egs. (2.4), (2.8), (2.11), and (2.12), essen-
tially because it is linear in §&. We must also satisfy Eq. (2.5)
for M = 0, namely, (dw/J¢ )|, = Oforall?>0(i.e.,afterthe
lower end of the spring has been released). This requires us
to find a solution valid for & = /, when ¢ > 0, including the
intervals (lo — & )/co<t<lly +&)/c, 'and (3, —&)/
co<t<(3ly + £)/co. If w(é,t ) were linear in ¢ here, then both
Eqs. (2.4) and (2.5) would be satisfied. We can now take
w(&,t) = A + Bt and match it to the pieces of the solution

l —

/\ Fig. 3. Elementary argument for the pe-
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Fig. 4. Comparison of the exact and ap-

we have found in the previous paragraph. In this way we
obtain a valid solution which can be expressed as

[ g o<rcle _ & I
I W ¢
a—2ey, b £ 4t

0 & G ¢ ©Co

wer)={ % fo i 43 &
Iy ¢ Co ¢ €
048y £ 3 S gy
Iy o Co ¢ €
15, 31°+§<t<510——§— v
\ l Co Co Co (4]
(3.10)
14 ( €= -% !O ] t )
9c¢ |
L,
S WS —_— e e e -
-!8. To 1 T
-9c 4
Lo
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proximate solutions for M = 0.

with

WE,t + 7o) = wiE,t). (3.1,

The simplicity of the expression of Eq. (3.10) for w(&,¢ ) is
all the more remarkable when one appreciates that the
Fourier series solution for the free spring case is

_ 1 n+1
wg,t) - "Zl ( ) %)2
Xsin((n - ;)wlio)cos((n - 5)”1_2%). (3.12)

Itis not immediately evident that the series in Eq. (3.12) can
be summed to Eq. (3.10), although the task can be accom-
plished with some effort (especially when one knows the
answer in advance). In fact, even a student in an introduc-

Fig. 5. Velocity of midpoint of freely oscil-

lating spring.
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tory course can rather easily verify directly that Eq. (3.10)
does provide a solution to the problem which meets all the
initial and boundary conditions. This is not as easy to do for
the solution as represented by Eq. (3.12).

Figure 4 shows a comparison between the exact solution
for the motion of the end of the free spring, w(& = /,,t) of
Eq. (3.10), and the fundamental term (with M = 0} of Eq.
(3.2). If we compute the velocity of the spring as
v(é,t) = w(&,t )/at, we find that the velocity of the end of
the spring is discontinuous, being a step function. Because
of this discontinuity, the acceleration of the end of the
springis infinite at £ = 0,47,7,,... . This must be so since the
end of the spring (which has zero mass) was pulled down
{below its equilibrium position) and released. The spring,
when released exerts a finite force. This impulsive accelera-
tion does not occur when a mass M is attached to the end of
the spring since then the finite force exerted by the spring
produces a finite acceleration on the finite mass M.

The velocity profile of the end of the spring is not what a
student would expect. It is certainly not simple harmonic.
Even more surprising is the motion of the middle (that is at
& = 1) of the spring.?® Equation (3.10) allows us to con-
struct the velocity curve of Fig. 5. [ Realize from Egs. (2.2},
(2.3), (2.11), and Ref. 16 that & =}/, is the point

Iy, 3 mg  a
g 2 + 8 k + 2
on the stretched spring before it is released. That is, for a
very soft spring, given a small displacement a, it is the point
approximately 3 down from the top of the spring.] This
behavior, like that of the motion of the end of the spring, is
directly understandable in terms of the initial impulse from
the bottom end of the spring as it propagates up the spring
at a constant speed ¢, (measured in the coordinate £ ).

IV. LABORATORY AND DEMONSTRATION
APPLICATIONS

We have seen that a vertically oscillating massive spring
with a mass M attached to its free end provides an interest-
ing complex of phenomena for study. This system lends
itself nicely to a laboratory demonstration for an introduc-
tory physics course. The uneven /inear uncoiling of the
spring and the variation in speed of the propagation of a
pulse are easily illustrated with a long slinky spring. Simi-
larly, since students can readily verify that the solution
(3.10) satisfies the equations of motion, initial, and bound-
ary conditions, they can understand the predicted behavior
of the velocity-time curves (e.g., Fig. 5). Those curves have
simple explanations in terms of an impulse which propa-
gates along the spring and changes the state of motion as it
engulfs successive elements of the spring.

Students can also verify directly the variation of the peri-
od (€} vs 1/y/e predicted in Fig. 2.>” The experimental data
can be plotted directly on a piece of graph paper on which
the curve of Fig. 2 has already been drawn. Not only can
the students verify empirically that the effective period of
oscillation is reliably given by Egs. (3.3) and {3.5), but they
will also appreciate that this result can be expected theore-
tically because the lowest-fundamental mode amplitude
gives by far the largest contribution to the motion of the
mass M for all values of €.

The value of the spring constant k£ can be determined
directly as follows. Suppose a spring of mass m is suspend-
ed and comes to static equilibrium under its own weight.”®

930 Am. J. Phys., Vol. 52, No. 10, October 1984

A mass M can then be attached to its free end and the new
equilibrium position of the spring is at a position z, its initial
equilibrium position (before M had been attached) being z,,.
From Ref. 16 we have

Mg

k
(4.1)

z — zg=yMm;§ = L)) — polM = 0,m;§ = [} =

Equation (4.1) is just what we would expect for the spring
stretched horizontally by a force Mg (since the weight mg
of the spring would not contribute to the stretching then).
The result (4.1) is what most students would guess without
reflection. A little more thought, taking account of the fact
that m #0, raises some question about the validity of (4.1).
However, a careful analysis indeed justifies (4.1). Succes-
sively larger masses should be attached to the spring to find
the range over which k remains essentially constant.

Each mass M can then be set in oscillation about its equi-
librium position by pulling it down a small®® distance a
below its equilibrium position and releasing it from rest.
Data from a typical experiment with different springs are
shown as the open circles in Fig. 2. Since a student usually
judges the period as the time between successive instants of
rest of M at its lowest point of motion and since the motion
is not strictly periodic for 0 <€ < o0, the time should be
measured for a large number (say 50-100) of successive
oscillations to obtain an average value for the *“period” 7.

It must be appreciated that all of the discussion and anal-
ysis above has been predicated upon a uniform spring
which, in a horizontal (that is, g = 0) configuration, would
respond linearly to an applied force. However, a spring is
often wound in such a way that in its unstretched state
there is a compressive force tending to draw the coils to-
gether. The actual physical thickness of the coils prevents
this. When these coils are first separated, a larger force
must be applied than would be required were the coil
“loose” when it had its natural length /,. This compressive
force could, in principle, be measured by finding how large
a force F, has to be applied before the spring begins to
uncoil. This would have to be done with the spring in a
horizontal position, of course, and such a direct determina-
tion is not easy to make accurately. It is easier to attempt to
“prestretch” the spring to eliminate this unwanted com-
pressive force, but again, this can be difficult to do uniform-
ly for a long soft spring. Therefore we discuss how one
eliminates these unwanted effects produced by a tightly
wound spring.

Suppose that the natural length of a spring of Hooke’s
constant k would be /, if it were not for the thickness of the
coil wire and that its actual physical length is / { > /). Once
the spring begins to separate (in a horizontal position), the
external force required to bring its free end to a position z is

F=k(z—1I,), (4.2)

Here z is measured from the fixed end of the spring. Until a
certain minimum force Fj, is applied, however, z remains at
the value / as indicated in Fig. 6, where

Fo=k(l—1). (4.3)

Just as Eq. (4.2) holds only when F > F, so Eq. (4.1) (or Ref.
16) is valid only for those M > M, where

Fo=Mg. (4.4)

That is, we could think of first applying the force F, = Mg
to the horizontal spring (so that it would be “loosely”

z>1
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L, )

Fig. 6. The applied force versus horizontal elongation for a tightly wound
spring.

r4

coiled) and then suspending it vertically and attaching
more weights. For M < M,, the spring will uncoil nonuni-
formly, but the bottom portion will remain compressed
since the weight of that portion will remain less than F,,.
Once M exceeds M|, then (4.1) applies. A typical plot of M
vs z for a tightly wound spring is shown in Fig. 7. The
extrapolation of the linear part of the curve back to M =0
yields the equilibrium length for a loosely coiled spring of
mass m (see Ref. 16):

zo =1y + Myg/k + mg/2k. (4.5)

As a practical matter, students suspend a series of weights
from the spring, measure z, and construct a graph like that
of Fig. 7. The value of k is gotten from the slope of the
straight-line segment of the graph. Of course, it is only for
masses M corresponding to this straight part of the graph
that Eq. (3.5) and the curve of Fig. 2 apply. Values of M,
and z, can also be taken from Fig. 7 for a given spring and
Eq. (4.5) used as a check on the value of k obtained from the
slope. However, the values of M, and z, gotten from the
graph are often too small to be useful. With m and &
known, 7, is found from Eq. (3.9). Then, the experimental
values measured for 7 can be normalized to 7, for compari-
son with Fig. 2. Since the curve of Fig. 2 is a universal curve
valid for any spring, data for 7/7, from several springs (in
their linear regions) can be plotted on the same graph and
should fall on a common curve.

There is one other factor which can affect the period for
large elongations of the spring. As a spring stretches, the

slope =

Ql=

z

Fig. 7. The mass M versus vertical elongation for a tightly wound spring.
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radius r, of the helix remains nearly constant but the spring
unwinds around its axis. Even though the restoring force
may remain linear in the axial elongation, this unwinding
effect can become large enough that the torsional motion of
M becomes significant. Consider a spring whose uncoiled
length would be L and whose lower end is a distance z
beyond its upper, fixed end. The total angle ¢ turned
through as this helix is wound is

21172
¢=2,,£&S9=£[1 _(i)] , (4.6)
27r, ro L
where @ is the pitch angle of the helix. As the spring is
stretched an amount Az the change A4 in this angle is
Ap dp Az _ (z/L)\Az/2mry) 4.7)
2r dz 2 [1—(z/LP]"* '
Even for modest displacements Az the ratio (4z/2#r,) will
be of order unity. However, as long as (z/L )«€1, the cou-
pling between the torsional and axial motions remains neg-
ligible. Once z becomes an appreciable fraction of L, cou-
pling to the torsional mode varies the period 7 so that the
prediction of Eq. (3.5) (or of Fig. 2) no longer remains valid.
Finally, there are two more instructive points related to
the mechanical system we have studied. For the easily rea-
lizable initial condition of Egs. (2.11) and (2.12), we have
seen that the system (2.4)—(2.8) has a solution in which es-
sentially only the lowest normal-mode frequency is excited.
However, it is possible to use resonance to excite other nor-
mal modes. Suppose that the upper end of the spring is
driven at a frequency @

w(é = 0,¢) = a sin(w? ). (4.8)

Although a dissipation mechanism must be taken into ac-
count to provide a completely consistent treatment of the
motion at resonance, we can simply assume on physical
grounds that a steady-state motion of frequency » will set
in and write a solution of the form

w(&,t) = v(€ Jsin(wt ). (4.9)

When Eq. (4.9) is substituted into the wave equation (2.4)
and the resulting equation for v(£) solved subject to the
boundary condition (4.8), the solution becomes

wié ) = A cos(ﬂg 44 )sin(wt ) (4.10)
€
with
A cos¢ =a. (4.11)
Equation (2.5) at £ = /, reduces to (since w #0)
(4.12)

tan(ﬂlo + ¢) = — ﬂ-l——
o Co € '

For a given spring (¢,, /,) and a given M (¢ = m/M ), Eq.
(4.12) defines ¢ as a function of w. Therefore the displace-
ment of the lower end of the spring (£ = /) is given as

Wl = I,t) = a cos[(w/co)ly + ¢ ()]
cos[¢ (@)]
The amplitude resonates when w is chosen to be one of the
values @, such that
¢, }>n—Ym, n=123,... (4.14)

(The amplitude becomes infinite here only because we have
neglected dissipation.) Equations (4.14) and (4.12) com-

sinwt).  (4.13)
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Fig. 8. The electric circuit analog of a massive spring.
bined give as the condition for the w,
wn
tan(—lo) =—£ (4.15)
Co (@, o/co)

which is the same as Eq. (3.3). That is, the resonant frequen-
cies are just the normal modes we have found earlier. This
resonance phenomenon is easily demonstrated by suspend-
ing the mass-spring system from a variable-frequency vi-
brator (or from a rod attached to an eccentric cam on a
small variable-speed electric motor). The observed reso-
nant frequencies can be compared with the predicted val-
ues for w,, .

Second, the electric-circuit analog of the spring-mass
system also provides a simple illustration of the difference
between lumped and distributed circuit elements. A uni-
form coaxial cable or line with a capacitance ¢ per unit
length and an inductance / per unit length is the analog of
the massive spring. The total capacitance C and inductance
L of this line are given as C = c/,and L = /I, where [, is the
length of the line. A length A¢ of this line can be represent-
ed by the circuit of Fig. 8. Here ¢(&,¢ ) is the charge per unit
length and i(£,¢) is the current flowing in the segment.
Kirchhoff’s laws applied to the loop of Fig. 8 yield

L lﬁ =0.

c d 9€*
This is of the same form as Eq. (2.4). If one end of the cable
is driven with a sinusoidal input

V(t)= V,sin(wt)

from a variable-frequency generator and the other end of
the cable is loaded with an inductance L ', then we have an
analog of the mass-spring system with

e=L/L".

(4.16)

(4.17)

(4.18)

The analog of Eq. (2.5) comes from requiring that the emf at
the end of the cable be the same as that appearing across the
inductance L ’. The resonance condition (3.3) is then an im-
pedance-matching one. If the voltage ¥ . across the induc-
tance L' is displayed on an oscilloscope, the resonant fre-
quencies w,, of Egs. (3.3) and (3.4) can again be found. The
cable, which is a distributed circuit element, does not be-
have as a simple lumped LC circuit, which would have just
one resonant frequency.

For example, in one demonstration a 100-ft (30.48 m)
length of coaxial cable with a specific capacitance
c=95%x10""" F/m and a specific inductance
1 =2.70X10~7 H/m was used. The load inductance L’
was 4.0X 10~¢H (known to only + 10%). From Egq. (4.18)
we have

e=L/L'=205 (4.19)

so that according to Eq. (3.4) the normal-mode frequencies
should be
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vy=n Gl 123,
20 I, 27
Here ¢, = (c/)~"/? s0 that
o1 6471055
L= =647X10°s
lo (LC)I/Z
and the @, are given as

=n—1lr+48,, n=123...,
[(n—1)}7+ 6, ]tan 6, = € = 2.05.

The first few predicted normal-mode frequencies are
vi=112 MHz, v,=3.76 MHz, v,=678 MHz,
V4 = 9.92 MHz, and v = 13.1 MHz. Resonance was ob-
served when the frequency of the sine-wave signal gener-
ator was set at v, = 1.1 MHz, v, =3.6 MHz, v, = 6.6
MHz, v, = 9.6 MHz, and v = 12.6 MHz.

An exact mechanical analog was constructed using the
soft spring employed to obtain the data of Fig. 2. Since
m = 11.6 gand k& = 1.20 N/m, for that spring, the value of
efrom Eq. (4.19) required M = 5.66 g for the mass suspend-
ed on the lower end of the spring. With

172
S (i) ? 10075,
I, m

the lowest predicted normal-mode frequencies are
v, = 1.76 Hz, v, = 5.91 Hz, v; = 10.66 Hz, v, = 15.6 Hz,
and vs = 20.6 Hz. These resonant frequencies were also
observed, although one must increase the frequency of the
vibrator slowly since it takes a while for the mechanical
oscillations to settle down.
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on the right-hand side of Eq. (2.4), while Eqgs. (2.5) and (2.8) remain
unchanged for y{£,¢). From this the static solution yy(£ ) is readily ob-
tained as

—(Mtmeg 1 mg
}’0(5)—( K, 2 K2 )f

Since this elongation is not linear in & (for m#0), the spacing between
neighboring coils will not be uniform for a spring suspended at rest in a
uniform gravitational field. Students can easily test this for the M =0
case in the laboratory. However, the additional elongation of the spring
as M isincreased is proportional to M so that & can still be found in terms
of the proportionality constant between AM and Ay,
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Ref. 8).

"®With respect to the reference or background variable
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o

dt

=|%e
= |5

AN

o) = at dé

o
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istightly wound, then in its natural unstretched state, there is a compres-
sive force tending to press one coil against another. This is discussed
further below.

2The amplitude of oscillation should not be too large in order to keep the
torsional mode of oscillation small. This mode is driven by the unwind-
ing of the spring as it is stretched. (See Refs. 1 and 2 for comments on
this.) There is also an instability in the coupling of the pendular and
vertical oscillatory modes when the equilibrium length is about § /; (Ref.
7).
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The method of characteristic curves applied to the wave equation is employed to obtain explicit
solutions to the problem of a spring of mass m oscillating with a mass M attached to one end. For
the case of the free spring (M = 0), the method produces simple solutions expressible in terms of
functions which are linear in the displacement and in the time.

I. INTRODUCTION

In the previous article in this journal,' the problem of a
vertically oscillating spring of mass m and spring constant
k suspended from its upper end and with a mass M attached
to its lower end was discussed in some detail for arbitrary
values of the parameter € = m/M. In this paper we extend
a suggestion made by Bowen? to apply some general results
from the theory of partial differential equations to that
problem. The mathematical problem to be solved is the
following.> We seek a solution w(£,t) to the homogeneous
wave equation for 0<£</,,

g dw_ Fw_, Y
dE* ot

subject to the boundary conditions

w(€=0,)=0, (1.2)

dw Fw

_— + K ———— = 0’ 1.3

ag =1 a§2 5‘—‘10 ( )
and to the initial conditions

w(g,t =0)=f(§), (1.4)
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dw _
s =g(&). (1.5)

Here f(£) and g(£) are given functions on 0<£</,, ¢, is a
constant, and « is the parameter

K =ly/e. (1.6)

II. SOLUTION BY CHARACTERISTICS

Asis easily seen,* the most general solution of Eq. (1.1) is
of the form

wt)=F(E +cot)+ G(€ —cot) (2.1)
where F(n) and G () are arbitrary functions of 5. This
shows that any disturbance present at # = O propagates as
an undistorted pulse (or pulses depending upon the value of
Jdw/dt at t = 0) with a speed ¢, (until some boundary is
encountered). In fact, the pulse or wave form F(5) propa-

gates (undistorted) along the characteristic curve
€ = — ¢yt while G (77) propagates along the characteristic
5 = Cot .

If Eq. (2.1) is substituted into Egs. (1.4) and (1.5), the
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