Laboratorio 2 Interferencia de ondas sonoras

Ondas sonoras

La perturbación de la presión en un gas producida por una onda sonora puede escribirse como la suma de ondas de la forma

$$p = p_0 \cos(\mathbf{k} \cdot \mathbf{r} - \omega t + \varphi_0)$$

donde p_0 es la amplitud de la perturbación, \mathbf{k} el vector número de onda, ω la frecuencia angular y φ_0 la fase inicial. No confundir p_0 con la presión del gas sin perturbar. Por ejemplo, la presión atmosférica en condiciones normales es 101325~Pa, mientras que el umbral de detección del oido humano es de $20~\mu Pa$ y el umbral de dolor es de 20~Pa.

Se llama fase, φ , al término que está dentro del coseno

$$\varphi(\mathbf{r},t) = \mathbf{k} \cdot \mathbf{r} - \omega t + \varphi_0$$

Si en la posición \mathbf{r}_A en el instante t_A la perturbación tiene la fase

$$\varphi(\mathbf{r}_A, t_A) = \mathbf{k} \cdot \mathbf{r}_A - \omega t_A + \varphi_0$$

entonces en otro punto, cuya posición es r (ver Fig. 1), se tendrá esta misma fase, cuando

$$\varphi(\mathbf{r},t)=\varphi(\mathbf{r}_A,t_A)$$

o sea, en el instante t tal que

$$t = t_A + \frac{\mathbf{k} \cdot (\mathbf{r} - \mathbf{r}_A)}{\omega}$$

Si se usa, por un lado que

$$\mathbf{k} = k\hat{\mathbf{k}}$$

siendo k el módulo del vector \mathbf{k} , y $\hat{\mathbf{k}}$ el versor unitario en la dirección de \mathbf{k} , y, por otro lado, que

$$c_s = \frac{\omega}{k}$$

se llega a

$$t = t_A + \frac{\widehat{\mathbf{k}} \cdot (\mathbf{r} - \mathbf{r}_A)}{c_s}$$

En el caso particular que $\hat{\mathbf{k}} \| (\mathbf{r} - \mathbf{r}_A)$ (o sea, que la onda pasa por \mathbf{r}_A y va hacia \mathbf{r}) queda

$$t = t_A + \frac{|\mathbf{r} - \mathbf{r}_A|}{c_s}$$

es decir, que el retraso es el tiempo que tarda la onda en recorrer la distancia entre \mathbf{r}_A y \mathbf{r} . Recordar que estas relaciones son válidas sólo en el medio material que transporta la onda.

Suma de ondas

Se tiene ahora dos emisores, A y B, que emiten ondas de acuerdo a

$$\varphi_A(\mathbf{r}_A,t)=-\omega_At+\varphi_{A0}$$

$$\varphi_B(\mathbf{r}_B,t)=-\omega_Bt+\varphi_{B0}$$

(la posición de los detectores no aparece explícitamente en la fase porque la posición es fija), de manera que las fases que llegan en el instante t a un detector ubicado en la posición \mathbf{r} , son

$$\varphi_{A}(\mathbf{r},t) = \varphi_{A}\left(\mathbf{r}_{A}, t - \frac{|\mathbf{r} - \mathbf{r}_{A}|}{c_{s}}\right)$$

$$= -\omega_{A}\left(t - \frac{|\mathbf{r} - \mathbf{r}_{A}|}{c_{s}}\right) + \varphi_{A0}$$

$$\varphi_{B}(\mathbf{r},t) = \varphi_{B}\left(\mathbf{r}_{B}, t - \frac{|\mathbf{r} - \mathbf{r}_{B}|}{c_{s}}\right)$$

$$= -\omega_{B}\left(t - \frac{|\mathbf{r} - \mathbf{r}_{B}|}{c_{s}}\right) + \varphi_{B0}$$

Con lo cual las perturbaciones en la presión se escriben

$$p_{A} = A\cos(\varphi_{A}(\mathbf{r},t)) = A\cos\left(-\omega_{A}\left(t - \frac{|\mathbf{r} - \mathbf{r}_{A}|}{c_{s}}\right) + \varphi_{A0}\right)$$
$$p_{B} = B\cos(\varphi_{B}(\mathbf{r},t)) = B\cos\left(-\omega_{B}\left(t - \frac{|\mathbf{r} - \mathbf{r}_{B}|}{c_{s}}\right) + \varphi_{B0}\right)$$

Como la presión es una magnitud escalar, la perturbación total de la presión se obtiene como la suma de las dos presiones

$$p = p_A + p_B$$

por lo que la variación de presión que registra el detector es

$$p = A\cos\left(-\omega_A\left(t - \frac{|\mathbf{r} - \mathbf{r}_A|}{c_s}\right) + \varphi_{A0}\right) + B\cos\left(-\omega_B\left(t - \frac{|\mathbf{r} - \mathbf{r}_B|}{c_s}\right) + \varphi_{B0}\right)$$

Experiencia de Young

Supongamos que se tienen dos emisores separados por una distancia h y un detector que puede desplazarse en línea recta (eje y) sobre un plano situado a una distancia L perpendicular a la recta de separación de los emisores, ver Fig. 2.

Llamando d_A y d_B las distancias de las respectivas fuentes al detector, es decir

$$d_A = |\mathbf{r} - \mathbf{r}_A| = \sqrt{L^2 + \left(y + \frac{h}{2}\right)^2}$$

$$d_B = |\mathbf{r} - \mathbf{r}_B| = \sqrt{L^2 + \left(y - \frac{h}{2}\right)^2}$$

y la perturbación de la presión queda

$$p = A\cos\left(-\omega_A t + \omega_A \frac{d_A}{c_S} + \varphi_{A0}\right) + B\cos\left(-\omega_B t - \omega_B \frac{d_B}{c_S} + \varphi_{B0}\right)$$

Consideremos el caso que las amplitudes, las frecuencias y la fases iniciales de las dos ondas sean iguales (y sin pérdida de generalidad se puede poner $\varphi_{A0} = \varphi_{B0} = 0$, ya que puedo elegir t = 0 cuando esto se cumpla), entonces

$$p = A\left(\cos\left(-\omega t + \omega \frac{d_A}{c_s}\right) + \cos\left(-\omega t - \omega \frac{d_B}{c_s}\right)\right)$$

Escribiendo

$$d_A = d + \Delta$$

$$d_B = d - \Delta$$

donde el significado de d y Δ se muestra en la Fig. 2, la presión

queda

$$p = A\left(\cos\left(-\omega t + \omega \frac{d}{c_s} + \omega \frac{\Delta}{c_s}\right) + \cos\left(-\omega t + \omega \frac{d}{c_s} - \omega \frac{\Delta}{c_s}\right)\right)$$

es decir, es de la forma

$$p = A(\cos(\alpha + \beta) + \cos(\alpha - \beta))$$

con

$$\alpha = -\omega t + \omega \frac{d}{c_s}$$
$$\beta = \omega \frac{\Delta}{c_s}$$

y usando la relación

$$\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$$

se llega a

$$p = 2A\cos\alpha\cos\beta$$

o, finalmente,

$$p = \left[2A\cos\left(\omega\frac{\Delta}{c_s}\right)\right]\cos\left(-\omega t + \omega\frac{d}{c_s}\right)$$

donde el corchete es la amplitud de la onda, mientras que el factor de la derecha representa la oscilación temporal, de manera que la perturbación total se puede escribir como

$$p = p_0 \cos\left(-\omega t + \omega \frac{d}{c_s}\right) \tag{1}$$

siendo la amplitud

$$p_0 = 2A\cos\left(\omega\frac{\Delta}{c_s}\right) \tag{2}$$

Notar que las variaciones de d producen una variación de fase en la señal, mientras que las de Δ modifican la amplitud de la señal.

Franjas de interferencia

Teniendo en cuenta que la longitud de onda vale

$$\lambda = 2\pi \frac{c_s}{\omega}$$

la (2) se puede escribir como

$$p_0 = 2A\cos\left(2\pi\frac{\Delta}{\lambda}\right)$$

lo que indica que la amplitud tendrá máximos y mínimos a medida que se varía Δ (ya sea variando y, o h, o L) y que, además, depende de la longitud de onda. Habrá máximos de amplitud para algunos valores de Δ , que llamamos Δ_m , cuando

$$\Delta_m = \frac{\lambda}{2}m\tag{3}$$

con m entero, ya que, en estos casos, la amplitud valdrá 2A o -2A y la variación pico a pico será máxima.

La idea, entonces, es medir Δ_m en los máximos de interferencia variando la posición y del detector para distintos valores de L y h, y haciendo una regresión lineal en función de m, cuya pendiente es la mitad de la longitud de onda. Si llamamos y_m la posición del detector en el máximo de orden m, se tiene

$$\Delta_m = \frac{d_A - d_B}{2} = \frac{1}{2} \left(\sqrt{L^2 + \left(y_m + \frac{h}{2} \right)^2} - \sqrt{L^2 + \left(y_m - \frac{h}{2} \right)^2} \right)$$

Como, en general, la distancia L es bastante mayor que la separación h entre los emisores, un desarrollo en serie de Δ_m en función de h queda

$$\Delta_m = \frac{h}{2} \frac{y_m}{\sqrt{L^2 + y_m^2}} + O(h^3)$$

Notar que estas aproximaciones van a ser razonables incluso cuando no se cumpla $h \ll L$ porque el término cuadrático se ha cancelado. Esto dice, por ejemplo, que si $h \approx 0.1L$ se tendrá un error del 1%.

Si, además, $y_m \ll L$ (o sea, si se observan sólo los primeros órdenes de interferencia) se puede poner

$$\Delta_m = \frac{hy_m}{2L}$$

con lo cual la (3) queda

$$y_m = \frac{\lambda L}{h} m$$

es decir que los máximos de interferencia están equiespaciados. La distancia entre dos máximos consecutivos, llamada interfranja i, vale

$$i = y_{m+1} - y_m = \frac{\lambda L}{h}$$

En esta aproximación, para h y L fijos, la interfranja es constante y a partir de su medición se puede calcular la longitud de onda.

Medición de la longitud de onda

Se propone una práctica de laboratorio para medir la longitud de onda en ultrasonido utilizando dos emisores y un detector, que es conceptualmente similar a la experiencia de Young en luz visible.

En base al esquema de la Fig. 2 se muestra el dispositivo experimental en la Fig. 3. Dado que el dispositivo y la metodología

se mostrarán en el laboratorio, aquí se mencionan los pasos a seguir de manera resumida :

- 1) Elección de la frecuencia de trabajo. Esto se hace a partir de las dos campanas de resonancia que resultan de los pares Emisor *A*-Detector y Emisor *B*-Detector. El ancho a altura mitad de estos pares es del orden de 1 KHz, se debe elegir la frecuencia de manera que los 2 pares estén cerca del máximo de resonancia.
- 2) Elección de las distancias. La separación entre emisores, h, se variará entre 5 y 15 cm, mientras que la distancia hasta el detector, L, estará en el rango de 20 a 100 cm.
- 3) Caracterización del sistema. Fijados h y L, con el emisor B desconectado, se mide la amplitud pico a pico y fase de la señal en función del desplazamiento lateral del detector (coordenada y en las Figs. 2 y 3). Se repite lo mismo con el emisor A desconectado.
- 4) Con los dos emisores conectados, se mide la posición lateral del detector para cada uno de los máximos de amplitud pico a pico. El

máximo central, que se lo denomina m=0, se obtiene con el detector en el punto medio entre los emisores (esta posición se elige como y=0) y los siguientes con números enteros sucesivos (1,2,3,... para un lado y-1,-2,-3,... para el otro siguiendo el signo de y). También se registra la fase en esos mismos puntos. Se repite para otras combinaciones de h y L.

Para encontrar la longitud de onda, para todas las mediciones se graficará Δ_m vs m ya que se cumple

$$\Delta_m = \frac{\lambda}{2}m$$

(notar que esta regresión lineal contiene un solo parámetro, es decir, su pendiente y no tiene ordenada al origen, que no es lo mismo que utilizar una regresión con dos parámetros e imponer que uno sea cero).

El análisis de los datos debe contener los siguientes puntos

1) Antes de hacer la regresión global, es bueno comparar las 3

opciones para calcular Δ_m , es decir

(a)

$$\Delta_m = \frac{1}{2} \left(\sqrt{L^2 + \left(y_m + \frac{h}{2} \right)^2} - \sqrt{L^2 + \left(y_m - \frac{h}{2} \right)^2} \right)$$

(b)

$$\Delta_m = \frac{h}{2} \frac{y_m}{\sqrt{L^2 + y_m^2}}$$

o, (c)

$$\Delta_m = \frac{hy_m}{2L}$$

Para esto se puede graficar la (b) vs la (a) y la (c) vs la (a) que en los dos casos debería ser una recta de pendiente 1 y que pasa por el origen del sistema de coordenadas. Esto permite apreciar hasta dónde las aproximaciones (b) o (c) son válidas. En particular, la (c) debería valer sólo hasta unos pocos órdenes de interferencia.

Establecer cuál es ese límite para el juego de parámetros utilizado.

- 2) Utilizando la expresión (a), (b) o (c) encontrar la longitud de onda con su error.
- 3) En el rango donde la aproximación (c) es válida verificar que la interfranja cumple

$$i = \frac{\lambda L}{h}$$

Este análisis puede complemantarse con el estudio de la fase como se describe en el Apéndice.

Apéndice

Como se vió en (1) la fase cambia a medida que d varía. Llamando Φ_m a la fase en los puntos donde hay máximos de interferencia, se tiene

$$\Phi_m = \omega \frac{d_m}{c_s} = 2\pi \frac{d_m}{\lambda}$$

La distancia d_m es

$$d_{m} = \frac{d_{A} + d_{B}}{2} = \frac{1}{2} \left(\sqrt{L^{2} + \left(y_{m} + \frac{h}{2} \right)^{2}} + \sqrt{L^{2} + \left(y_{m} - \frac{h}{2} \right)^{2}} \right)$$

que a segundo orden en h queda

$$d_m = \sqrt{L^2 + y_m^2}$$

Esto dice que el cambio de fase es casi despreciable cuando $y_m \ll L$ y, además, no depende de h. Verificar la validez de estos límites.