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Abstract
Although waves are ubiquitous in nature it is difficult to give a precise and
unambiguous definition of what a wave is. Actually the distinction between
wave-like and non-wave-like behaviour can be fuzzy, as it is the case of a solid
sample excited by a periodic heat source. The resulting temperature oscillations
inside the sample have the same mathematical expression as highly damped
waves, the so-called thermal waves. The aim of this paper is to stress the
energy propagation as the key to affirm whether there is wave motion. In this
way it is demonstrated that there is no wave nature in these improperly called
thermal waves by showing that they do not transport energy. This result has
been obtained not only in the frame of the parabolic heat conduction equation
that evidences the diffusive nature of the heat conduction process, but also in
the frame of the hyperbolic heat conduction equation, that is a wave equation.

1. Introduction

Physicists have extended the concept of a wave to a large number of phenomena corresponding
to physical situations described by a time-varying field that propagates in both space and time.
For instance, sound waves or electromagnetic waves are launched whenever the equilibrium
is broken in the pressure field or in the electromagnetic field. This situation gives rise to the
question of whether perturbations in the temperature field can propagate as thermal waves (also
designed as heat waves or temperature waves). This term has been widely used in classical
books on heat transfer [1–3] to designate the temperature oscillations produced by a periodic
heat source, since they have the same mathematical expression as a highly damped wave,
similar to that found in electromagnetic waves propagating through metals [4]. However heat
conduction is a diffusive process governed by a parabolic differential equation which lacks
second-order derivative with respect to time, characteristic of a wave equation.

Waves are present everywhere in nature. However, the concept of waves is very hard
to define and the distinction between wave-like and non-wave-like behaviour can be fuzzy
[5]. As an example most textbooks in introductory physics lack a precise and unambiguous
definition of what a wave is. Perhaps the most acknowledged feature of wave motion is that
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energy is transferred through space without the transport of mass. This paper is addressed
to wave physics lecturers with the aim of stressing the role of energy propagation as the key
to affirm whether there is wave motion, instead of the type of differential equation it is the
solution of. To do this we discuss a limiting problem as it is the case of heat conduction in
solid samples that are excited by periodic light sources. We demonstrate that there is no wave
nature in the improperly called thermal waves by showing that the energy they transport is
zero. It must be pointed out that it has already been shown that thermal waves cannot be
considered as real travelling waves because they show neither wave fronts nor reflection and
refraction phenomena [6, 7]. However these demonstrations involve complicated mathematics
for undergraduate students. The method proposed here is simple since it uses basic physics
(energy) and mathematics.

Just for the sake of simplicity calculations are performed on an opaque and semi-infinite
material which is illuminated by a periodically modulated light beam. In the first part of
this paper we work in the frame of the parabolic heat conduction equation (with a first-order
derivative with respect to time), derived from the classical Fourier’s law, which establishes
that the heat and temperature gradients are proportional to each other, with minus the thermal
conductivity as the constant of proportionality. Its main drawback is that it does not take into
consideration any propagation speed. This means that if, for instance, a heat source is applied
to one end of a rod, the temperature of the other end begins to change instantaneously! James
Clerk Maxwell is credited to be the first to realize that Fourier’s law cannot be a complete
description of the physical processes involved in heat conduction [8]. To overcome this
limitation he introduced a relaxation time between temperature gradient and heat flux. That
is the reason why we take into consideration, in the second part of this work, the influence of
this relaxation time that leads to a hyperbolic heat equation (with both first- and second-order
derivatives with respect to time). For the purpose of this paper it is worth noting that this last
one is a wave equation similar to that found for electromagnetic waves propagating through
conducting media. Consequently it is expected that heat could propagate as a real wave.
However, we demonstrate that even in the frame of the hyperbolic heat conduction equation,
periodic illumination of a sample does not launch thermal waves because they do not carry
energy.

2. The parabolic heat conduction equation

In the classical approach, whenever there is a temperature gradient ( �∇T ) into a material a
heat flow ( �j) is instantaneously established, which in the case of homogeneous and isotropic
materials follows Fourier’s law

�j = −K �∇T , (1)

where K is the thermal conductivity of the material. Equation (1) together with the law of
energy conservation leads to the parabolic heat diffusion equation, which in the absence of
internal heat sources is written as

∇2T − 1

D

∂T

∂t
= 0, (2)

where D is the thermal diffusivity, which is related to the thermal conductivity through the
equation K = ρcD, with ρ and c being the density and the specific heat, respectively.

Let us consider an opaque and semi-infinite solid whose surface is uniformly illuminated
by a light beam of periodically modulated intensity Io(1 + cos(ωt))/2 = Re[Io(1 + eiωt )/2],
where Io is the intensity of the beam and ω = 2πf , with f being the modulation frequency.
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Figure 1. Geometry of an opaque and semi-infinite solid whose surface is uniformly illuminated
by a modulated light beam.

The geometry of the problem is shown in figure 1. The temperature at any point of the material
is given by

T (x, t) = Tamb + Tdc(x) + Tac(x, t), (3)

where Tamb is the ambient temperature, Tdc is a time-independent temperature rise above the
ambient and Tac is a periodic temperature oscillation of the same frequency as the illumination
that can be expressed as Tac(x, t) = Re[θ(x) eiωt ]. Substituting equation (3) into equation (2)
the spatial distribution of this time-dependent component satisfies Helmholtz’s equation

d2θ(x)

dx2
− q2θ(x) = 0, (4)

where q = √
iω/D.

By solving equation (4) and using as boundary condition the heat flux continuity on the
sample surface

−K
dθ(x)

dx

∣∣∣∣
x=0

= Io

2
, (5)

the time-dependent component of the temperature is obtained as

Tac(x, t) = Re

[
Io

2Kq
e−qx eiωt

]
= Io

2ε
√

ω
e−x/µ cos

(
x

µ
− ωt +

π

4

)
. (6)

Here ε = K/
√

D is the thermal effusivity of the sample and µ = √
2D/ω. In figure 2(a)

we show the amplitude of Tac as a function of the normalized depth (x/µ) for a semi-infinite
stainless steel sample (D = 4 mm2 s−1, ε = 7500 J m−2 K−1 s−1/2) illuminated by a light beam
of intensity Io = 2×106 W m–2 modulated at 100 Hz. Calculations have been performed at
t = 3.7 × 10−3 s. As time elapses the temperature oscillates between the two dashed lines.
As can be seen the parameter µ represents the depth at which the temperature amplitude is
reduced by a factor e and is usually called the thermal diffusion length. At a depth of 5 µ or
6µ the temperature oscillation in the sample is completely damped.

Equation (6) has the same mathematical shape as a plane, harmonic and highly damped
wave propagating along the x axis. This is the reason why these temperature oscillations are
usually designed as thermal waves, although they are the solution of a diffusion equation (with
first-order time derivative) instead of a wave equation (with second-order time derivative).
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Figure 2. Amplitude of the oscillation temperature as a function of the normalized depth for
a semi-infinite stainless steel sample illuminated by a light beam of intensity 2 × 106 W m−2.
(a) Simulation of the parabolic solution (6) with f = 100 Hz and t = 3.7 × 10−3 s. As time elapses
the temperature oscillates between the broken lines. (b) Simulation of the hyperbolic solution (13)
with τ = 10−10 s, f = 5 × 1010 Hz and t = 1.9 × 10−11 s.

Here we are interested in calculating the energy carried by this thermal wave. Following
with the semi-infinite sample of figure 1, the heat flux corresponding to Tac is obtained by
using equation (1):

�j ac = −K �∇Tac = Io

2
e−x/µ cos

(
x

µ
− ωt

)
î, (7)

whose time average taken over a period is 〈 �j ac〉 = �0. This means that, unlike acoustic or
electromagnetic waves, thermal waves do not carry energy. This result is related to the fact that
heat flux is proportional to the temperature gradient, and therefore to the temperature itself.
In contrast, in the case of real waves the intensity is proportional to the square of the physical
quantity involved in each particular wave (e.g. the square of the electric field in electromagnetic
waves, the square of the gas pressure in acoustic waves, the square of the displacement in waves
propagating through a tight string, etc) and therefore proportional to cos2(ωt), whose average
value is not zero. We can conclude that thermal waves are not travelling waves carrying energy,
but just an oscillation of the temperature field. This result seems paradoxical because we are
illuminating the sample surface and therefore energy is actually been transported through the
sample. However, this apparent paradox is overcome if we realize that energy is only carried
by Tdc. To clarify this point let us consider the experimental configuration in which the surface
of the semi-infinite sample is in contact with alternating cold water (temperature lower than
ambient) and hot water (temperature higher than ambient). In fact, this is the experimental
configuration used by Ångström in 1861 to measure the thermal diffusivity along a metallic
bar [9]. In this case the same amount of energy is delivered to the sample by the hot water
as it is extracted from it by the cold water, and therefore no heat transfer through the sample
takes place. The temperature of the sample is similar to that given in equations (3) and (6)
but without Tdc. This means that only a temperature oscillation with respect to the ambient
temperature appears (the improperly called thermal wave). Now there is a perfect correlation
between the fact that the average energy delivered to the sample is zero and the fact that the
thermal wave does not transport energy. Note that this situation is different from what happens
in real waves. Let us consider the simple case of a horizontal rope that is tied at one end
while the other end is shaken up and down. Now energy is delivered continuously, both when
shaken up and when shaken down, so a net amount of energy is delivered to the rope in each
period which is propagated through the rope as a travelling wave.
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3. The hyperbolic heat conduction equation

As equation (1) does not take into account any propagation speed it cannot be a fundamental
description of the transportation of heat. To overcome this problem Cattaneo proposed a delay
between the temperature gradient and the heat flux [10]:

�j(x, t + τ) = −K �∇T (x, t), (8)

where τ is the thermal relaxation time, whose value ranges for metals between 10−9 s and
10−12 s. These very small values of the relaxation time indicate that its physical effects are
negligible unless the time scale of the temperature variation is lower than nanoseconds or the
modulation frequency is higher than gigahertzs. After expanding the heat flux in Taylor series
around τ = 0 equation (8) is written as

�j(x, t) + τ
∂ �j(x, t)

∂t
= −K �∇T (x, t). (9)

Equation (9) along with the law of energy conservation leads to a hyperbolic heat conduction
equation, also known as Cattaneo’s equation, which in the absence of internal heat sources is
written as

∇2T − 1

D

∂T

∂t
− τ

D

∂2T

∂t2
= 0. (10)

The last term in equation (10) serves to overcome the paradox of instantaneous heat propagation
associated with the parabolic heat diffusion equation. Note that as τ → 0 equation (10)
reduces to equation (2). For the purpose of this paper it is interesting to point out that
equation (10) is a wave equation, the so-called telegraph equation, similar to that found for
electromagnetic waves propagating through conducting media. Consequently it is expected
that, under the experimental conditions for which the thermal relaxation time is not negligible,
heat propagates as a wave.

Let us now consider the same experimental configuration as we dealt with in section 2
and whose geometry is depicted in figure 1. As before the time-dependent component of the
temperature of the material can be written as follows: T ′

ac(x, t) = Re[θ ′(x) eiωt ]. Substituting
this expression into equation (10) the spatial distribution of this time-dependent component
satisfies Helmholtz’s equation

d2θ ′(x)

dx2
− q ′2θ ′(x) = 0, (11)

where q ′ =
√

iω
D

− τω2

D
= iω

D
(1 + iωτ). By solving equation (11) and using as boundary

condition the heat flux continuity on the sample surface

−K
dθ(x)

dx

∣∣∣∣
x=0

= Io

2
(1 + iωτ) , (12)

the time-dependent component of the temperature is obtained as

T ′
ac(x, t) = Re

[
Io

2Kq ′ (1 + iωτ) e−q ′x eiωt

]

= Io
√

τ

2ε

4

√
1 + (ωτ)2

(ωτ)2 exp

(
−x

√
ω

2D

√√
1 + (ωτ)2 − ωτ

)

× cos

(
x

√
ω

2D

√√
1 + (ωτ)2 − ωτ − ωt − arctg(ωτ)

2
+

π

4

)
. (13)
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Figure 3. (a) Amplitude and (b) phase of the temperature oscillation on the surface of a semi-infinite
stainless steel sample as a function of the modulation frequency. The solid line corresponds to the
hyperbolic solution and the dotted line to the parabolic one. Calculations have been performed
with τ = 10−10 s and Io = 106 W m−2.

This result is equivalent to that found by Yuen and Lee (see equation (12) in [11]). We
show in figure 3 the amplitude and phase of the temperature oscillation on the surface of a
semi-infinite stainless steel sample as a function of the modulation frequency. The solid line
corresponds to the hyperbolic solution using equation (13) and the dotted line to the parabolic
solution as given by equation (6). Calculations have been performed with τ = 10−10 s and Io =
106 W m−2. From this figure two different regimes can be distinguished:

(1) At low frequencies (ωτ � 1) equation (13) reduces to equation (6) and both parabolic
and hyperbolic solutions coincide. This regime is characterized by the decrease of the
amplitude of the surface temperature as the frequency increases and by a constant phase
lag of −45◦ between surface temperature and light excitation. On the other hand, as
it was discussed in section 2, the penetration depth of the temperature oscillation (the
improperly called thermal wave) depends on the modulation frequency of the light beam
according to the expression of the thermal diffusion length µ = √

2D/ω. The higher the
frequency the lower the penetration depth is.

(2) At high frequencies (ωτ 
 1) equation (13) reduces to

T ′
ac(x, t) = Io

√
τ

2ε
e− x

2
√

Dτ cos

(√
τ

D
ωx − ωt

)
. (14)

As can be seen in figure 3 both parabolic and hyperbolic solutions clearly differ. According
to the hyperbolic solution the amplitude of the surface temperature does not depend on the
modulation frequency, while the phase lag goes to zero, indicating that the modulated light
and the surface temperature are in phase. Moreover, the penetration depth µ′ = 2

√
Dτ

does not depend on the modulation frequency. In figure 2(b) we show the amplitude of T ′
ac

as a function of the normalized depth (x/µ′) for the same stainless steel sample as shown in
figure 2(a) illuminated by the same light beam but now modulated at 5 × 1010 Hz.
Calculations have been performed for τ = 10−10 s and t = 1.9 × 10−11 s. Note that now,
unlike the result found at low frequencies, the temperature oscillates many times before it
vanishes. On the other hand, the penetration depth and the temperature amplitude, which
are proportional to

√
τ , are extremely small. These results are similar to those found

by Galović and Kotoski [12] but differ from those presented by Marı́n and coworkers
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(see equation (18) in [13]) since they used equation (5) as boundary condition instead of
equation (12).

Now we are interested in accounting for the energy carried by this temperature
oscillation. To obtain the heat flux associated with T ′

ac, the first-order differential equation
(9) has to be solved. Using j (0, t) = Io eiωt/2 as boundary condition we obtain

�j ac = Io

2
exp

(
−

(
1

2
√

Dτ
+ i

ω
√

τ√
D

)
x

)
cos (ωt) î, (15)

whose time average taken over a period is 〈 �j ac〉 = �0. Therefore, as in the case of the
parabolic heat conduction equation, periodic illumination of an opaque material does not
launch any travelling thermal wave even though its behaviour is governed by a wave
equation.

4. Conclusions

In this work we have dealt with heat conduction in solid samples that are excited by periodic
heat sources. Following a macroscopic approach we have shown that the resulting temperature
oscillations inside the sample have the same mathematical expression as a thermal wave, but
as they do not transport energy they cannot be considered as real travelling waves. This result
is not surprising if we are working within the frame of the parabolic heat equation, for which
heat conduction is a diffusive process. More interesting is the fact that in the frame of the
hyperbolic heat conduction, when a time delay between temperature gradients and heat flux is
taken into account, the temperature oscillations do not transport energy either, although they
are the solution of a wave equation.
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